1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
6 #define V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
7
8 #include "src/base/logging.h"
9 #include "src/base/macros.h"
10 #include "src/common/globals.h"
11
12 // UNIMPLEMENTED_ macro for MIPS.
13 #ifdef DEBUG
14 #define UNIMPLEMENTED_MIPS() \
15 v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
16 __FILE__, __LINE__, __func__)
17 #else
18 #define UNIMPLEMENTED_MIPS()
19 #endif
20
21 #define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")
22
23 enum ArchVariants { kMips64r2, kMips64r6 };
24
25 #ifdef _MIPS_ARCH_MIPS64R2
26 static const ArchVariants kArchVariant = kMips64r2;
27 #elif _MIPS_ARCH_MIPS64R6
28 static const ArchVariants kArchVariant = kMips64r6;
29 #else
30 static const ArchVariants kArchVariant = kMips64r2;
31 #endif
32
33 enum Endianness { kLittle, kBig };
34
35 #if defined(V8_TARGET_LITTLE_ENDIAN)
36 static const Endianness kArchEndian = kLittle;
37 #elif defined(V8_TARGET_BIG_ENDIAN)
38 static const Endianness kArchEndian = kBig;
39 #else
40 #error Unknown endianness
41 #endif
42
43 // TODO(plind): consider renaming these ...
44 #if defined(__mips_hard_float) && __mips_hard_float != 0
45 // Use floating-point coprocessor instructions. This flag is raised when
46 // -mhard-float is passed to the compiler.
47 const bool IsMipsSoftFloatABI = false;
48 #elif defined(__mips_soft_float) && __mips_soft_float != 0
49 // This flag is raised when -msoft-float is passed to the compiler.
50 // Although FPU is a base requirement for v8, soft-float ABI is used
51 // on soft-float systems with FPU kernel emulation.
52 const bool IsMipsSoftFloatABI = true;
53 #else
54 const bool IsMipsSoftFloatABI = true;
55 #endif
56
57 #if defined(V8_TARGET_LITTLE_ENDIAN)
58 const uint32_t kMipsLwrOffset = 0;
59 const uint32_t kMipsLwlOffset = 3;
60 const uint32_t kMipsSwrOffset = 0;
61 const uint32_t kMipsSwlOffset = 3;
62 const uint32_t kMipsLdrOffset = 0;
63 const uint32_t kMipsLdlOffset = 7;
64 const uint32_t kMipsSdrOffset = 0;
65 const uint32_t kMipsSdlOffset = 7;
66 #elif defined(V8_TARGET_BIG_ENDIAN)
67 const uint32_t kMipsLwrOffset = 3;
68 const uint32_t kMipsLwlOffset = 0;
69 const uint32_t kMipsSwrOffset = 3;
70 const uint32_t kMipsSwlOffset = 0;
71 const uint32_t kMipsLdrOffset = 7;
72 const uint32_t kMipsLdlOffset = 0;
73 const uint32_t kMipsSdrOffset = 7;
74 const uint32_t kMipsSdlOffset = 0;
75 #else
76 #error Unknown endianness
77 #endif
78
79 #if defined(V8_TARGET_LITTLE_ENDIAN)
80 const uint32_t kLeastSignificantByteInInt32Offset = 0;
81 const uint32_t kLessSignificantWordInDoublewordOffset = 0;
82 #elif defined(V8_TARGET_BIG_ENDIAN)
83 const uint32_t kLeastSignificantByteInInt32Offset = 3;
84 const uint32_t kLessSignificantWordInDoublewordOffset = 4;
85 #else
86 #error Unknown endianness
87 #endif
88
89 #ifndef __STDC_FORMAT_MACROS
90 #define __STDC_FORMAT_MACROS
91 #endif
92 #include <inttypes.h>
93
94 // Defines constants and accessor classes to assemble, disassemble and
95 // simulate MIPS32 instructions.
96 //
97 // See: MIPS32 Architecture For Programmers
98 // Volume II: The MIPS32 Instruction Set
99 // Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.
100
101 namespace v8 {
102 namespace internal {
103
104 // TODO(sigurds): Change this value once we use relative jumps.
105 constexpr size_t kMaxPCRelativeCodeRangeInMB = 0;
106
107 // -----------------------------------------------------------------------------
108 // Registers and FPURegisters.
109
110 // Number of general purpose registers.
111 const int kNumRegisters = 32;
112 const int kInvalidRegister = -1;
113
114 // Number of registers with HI, LO, and pc.
115 const int kNumSimuRegisters = 35;
116
117 // In the simulator, the PC register is simulated as the 34th register.
118 const int kPCRegister = 34;
119
120 // Number coprocessor registers.
121 const int kNumFPURegisters = 32;
122 const int kInvalidFPURegister = -1;
123
124 // Number of MSA registers
125 const int kNumMSARegisters = 32;
126 const int kInvalidMSARegister = -1;
127
128 const int kInvalidMSAControlRegister = -1;
129 const int kMSAIRRegister = 0;
130 const int kMSACSRRegister = 1;
131 const int kMSARegSize = 128;
132 const int kMSALanesByte = kMSARegSize / 8;
133 const int kMSALanesHalf = kMSARegSize / 16;
134 const int kMSALanesWord = kMSARegSize / 32;
135 const int kMSALanesDword = kMSARegSize / 64;
136
137 // FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
138 const int kFCSRRegister = 31;
139 const int kInvalidFPUControlRegister = -1;
140 const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1u << 31) - 1;
141 const int32_t kFPUInvalidResultNegative = static_cast<int32_t>(1u << 31);
142 const uint64_t kFPU64InvalidResult =
143 static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;
144 const int64_t kFPU64InvalidResultNegative =
145 static_cast<int64_t>(static_cast<uint64_t>(1) << 63);
146
147 // FCSR constants.
148 const uint32_t kFCSRInexactFlagBit = 2;
149 const uint32_t kFCSRUnderflowFlagBit = 3;
150 const uint32_t kFCSROverflowFlagBit = 4;
151 const uint32_t kFCSRDivideByZeroFlagBit = 5;
152 const uint32_t kFCSRInvalidOpFlagBit = 6;
153 const uint32_t kFCSRNaN2008FlagBit = 18;
154
155 const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
156 const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
157 const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
158 const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
159 const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;
160 const uint32_t kFCSRNaN2008FlagMask = 1 << kFCSRNaN2008FlagBit;
161
162 const uint32_t kFCSRFlagMask =
163 kFCSRInexactFlagMask | kFCSRUnderflowFlagMask | kFCSROverflowFlagMask |
164 kFCSRDivideByZeroFlagMask | kFCSRInvalidOpFlagMask;
165
166 const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;
167
168 const uint32_t kFCSRInexactCauseBit = 12;
169 const uint32_t kFCSRUnderflowCauseBit = 13;
170 const uint32_t kFCSROverflowCauseBit = 14;
171 const uint32_t kFCSRDivideByZeroCauseBit = 15;
172 const uint32_t kFCSRInvalidOpCauseBit = 16;
173 const uint32_t kFCSRUnimplementedOpCauseBit = 17;
174
175 const uint32_t kFCSRInexactCauseMask = 1 << kFCSRInexactCauseBit;
176 const uint32_t kFCSRUnderflowCauseMask = 1 << kFCSRUnderflowCauseBit;
177 const uint32_t kFCSROverflowCauseMask = 1 << kFCSROverflowCauseBit;
178 const uint32_t kFCSRDivideByZeroCauseMask = 1 << kFCSRDivideByZeroCauseBit;
179 const uint32_t kFCSRInvalidOpCauseMask = 1 << kFCSRInvalidOpCauseBit;
180 const uint32_t kFCSRUnimplementedOpCauseMask = 1
181 << kFCSRUnimplementedOpCauseBit;
182
183 const uint32_t kFCSRCauseMask =
184 kFCSRInexactCauseMask | kFCSRUnderflowCauseMask | kFCSROverflowCauseMask |
185 kFCSRDivideByZeroCauseMask | kFCSRInvalidOpCauseMask |
186 kFCSRUnimplementedOpCauseBit;
187
188 // 'pref' instruction hints
189 const int32_t kPrefHintLoad = 0;
190 const int32_t kPrefHintStore = 1;
191 const int32_t kPrefHintLoadStreamed = 4;
192 const int32_t kPrefHintStoreStreamed = 5;
193 const int32_t kPrefHintLoadRetained = 6;
194 const int32_t kPrefHintStoreRetained = 7;
195 const int32_t kPrefHintWritebackInvalidate = 25;
196 const int32_t kPrefHintPrepareForStore = 30;
197
198 // Actual value of root register is offset from the root array's start
199 // to take advantage of negative displacement values.
200 // TODO(sigurds): Choose best value.
201 constexpr int kRootRegisterBias = 256;
202
203 // Helper functions for converting between register numbers and names.
204 class Registers {
205 public:
206 // Return the name of the register.
207 static const char* Name(int reg);
208
209 // Lookup the register number for the name provided.
210 static int Number(const char* name);
211
212 struct RegisterAlias {
213 int reg;
214 const char* name;
215 };
216
217 static const int64_t kMaxValue = 0x7fffffffffffffffl;
218 static const int64_t kMinValue = 0x8000000000000000l;
219
220 private:
221 static const char* names_[kNumSimuRegisters];
222 static const RegisterAlias aliases_[];
223 };
224
225 // Helper functions for converting between register numbers and names.
226 class FPURegisters {
227 public:
228 // Return the name of the register.
229 static const char* Name(int reg);
230
231 // Lookup the register number for the name provided.
232 static int Number(const char* name);
233
234 struct RegisterAlias {
235 int creg;
236 const char* name;
237 };
238
239 private:
240 static const char* names_[kNumFPURegisters];
241 static const RegisterAlias aliases_[];
242 };
243
244 // Helper functions for converting between register numbers and names.
245 class MSARegisters {
246 public:
247 // Return the name of the register.
248 static const char* Name(int reg);
249
250 // Lookup the register number for the name provided.
251 static int Number(const char* name);
252
253 struct RegisterAlias {
254 int creg;
255 const char* name;
256 };
257
258 private:
259 static const char* names_[kNumMSARegisters];
260 static const RegisterAlias aliases_[];
261 };
262
263 // MSA sizes.
264 enum MSASize { MSA_B = 0x0, MSA_H = 0x1, MSA_W = 0x2, MSA_D = 0x3 };
265
266 // MSA data type, top bit set for unsigned data types.
267 enum MSADataType {
268 MSAS8 = 0,
269 MSAS16 = 1,
270 MSAS32 = 2,
271 MSAS64 = 3,
272 MSAU8 = 4,
273 MSAU16 = 5,
274 MSAU32 = 6,
275 MSAU64 = 7
276 };
277
278 // -----------------------------------------------------------------------------
279 // Instructions encoding constants.
280
281 // On MIPS all instructions are 32 bits.
282 using Instr = int32_t;
283
284 // Special Software Interrupt codes when used in the presence of the MIPS
285 // simulator.
286 enum SoftwareInterruptCodes {
287 // Transition to C code.
288 call_rt_redirected = 0xfffff
289 };
290
291 // On MIPS Simulator breakpoints can have different codes:
292 // - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
293 // the simulator will run through them and print the registers.
294 // - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
295 // instructions (see Assembler::stop()).
296 // - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
297 // debugger.
298 const uint32_t kMaxWatchpointCode = 31;
299 const uint32_t kMaxStopCode = 127;
300 STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);
301
302 // ----- Fields offset and length.
303 const int kOpcodeShift = 26;
304 const int kOpcodeBits = 6;
305 const int kRsShift = 21;
306 const int kRsBits = 5;
307 const int kRtShift = 16;
308 const int kRtBits = 5;
309 const int kRdShift = 11;
310 const int kRdBits = 5;
311 const int kSaShift = 6;
312 const int kSaBits = 5;
313 const int kLsaSaBits = 2;
314 const int kFunctionShift = 0;
315 const int kFunctionBits = 6;
316 const int kLuiShift = 16;
317 const int kBp2Shift = 6;
318 const int kBp2Bits = 2;
319 const int kBp3Shift = 6;
320 const int kBp3Bits = 3;
321 const int kBaseShift = 21;
322 const int kBaseBits = 5;
323 const int kBit6Shift = 6;
324 const int kBit6Bits = 1;
325
326 const int kImm9Shift = 7;
327 const int kImm9Bits = 9;
328 const int kImm16Shift = 0;
329 const int kImm16Bits = 16;
330 const int kImm18Shift = 0;
331 const int kImm18Bits = 18;
332 const int kImm19Shift = 0;
333 const int kImm19Bits = 19;
334 const int kImm21Shift = 0;
335 const int kImm21Bits = 21;
336 const int kImm26Shift = 0;
337 const int kImm26Bits = 26;
338 const int kImm28Shift = 0;
339 const int kImm28Bits = 28;
340 const int kImm32Shift = 0;
341 const int kImm32Bits = 32;
342 const int kMsaImm8Shift = 16;
343 const int kMsaImm8Bits = 8;
344 const int kMsaImm5Shift = 16;
345 const int kMsaImm5Bits = 5;
346 const int kMsaImm10Shift = 11;
347 const int kMsaImm10Bits = 10;
348 const int kMsaImmMI10Shift = 16;
349 const int kMsaImmMI10Bits = 10;
350
351 // In branches and jumps immediate fields point to words, not bytes,
352 // and are therefore shifted by 2.
353 const int kImmFieldShift = 2;
354
355 const int kFrBits = 5;
356 const int kFrShift = 21;
357 const int kFsShift = 11;
358 const int kFsBits = 5;
359 const int kFtShift = 16;
360 const int kFtBits = 5;
361 const int kFdShift = 6;
362 const int kFdBits = 5;
363 const int kFCccShift = 8;
364 const int kFCccBits = 3;
365 const int kFBccShift = 18;
366 const int kFBccBits = 3;
367 const int kFBtrueShift = 16;
368 const int kFBtrueBits = 1;
369 const int kWtBits = 5;
370 const int kWtShift = 16;
371 const int kWsBits = 5;
372 const int kWsShift = 11;
373 const int kWdBits = 5;
374 const int kWdShift = 6;
375
376 // ----- Miscellaneous useful masks.
377 // Instruction bit masks.
378 const int kOpcodeMask = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
379 const int kImm9Mask = ((1 << kImm9Bits) - 1) << kImm9Shift;
380 const int kImm16Mask = ((1 << kImm16Bits) - 1) << kImm16Shift;
381 const int kImm18Mask = ((1 << kImm18Bits) - 1) << kImm18Shift;
382 const int kImm19Mask = ((1 << kImm19Bits) - 1) << kImm19Shift;
383 const int kImm21Mask = ((1 << kImm21Bits) - 1) << kImm21Shift;
384 const int kImm26Mask = ((1 << kImm26Bits) - 1) << kImm26Shift;
385 const int kImm28Mask = ((1 << kImm28Bits) - 1) << kImm28Shift;
386 const int kImm5Mask = ((1 << 5) - 1);
387 const int kImm8Mask = ((1 << 8) - 1);
388 const int kImm10Mask = ((1 << 10) - 1);
389 const int kMsaI5I10Mask = ((7U << 23) | ((1 << 6) - 1));
390 const int kMsaI8Mask = ((3U << 24) | ((1 << 6) - 1));
391 const int kMsaI5Mask = ((7U << 23) | ((1 << 6) - 1));
392 const int kMsaMI10Mask = (15U << 2);
393 const int kMsaBITMask = ((7U << 23) | ((1 << 6) - 1));
394 const int kMsaELMMask = (15U << 22);
395 const int kMsaLongerELMMask = kMsaELMMask | (63U << 16);
396 const int kMsa3RMask = ((7U << 23) | ((1 << 6) - 1));
397 const int kMsa3RFMask = ((15U << 22) | ((1 << 6) - 1));
398 const int kMsaVECMask = (23U << 21);
399 const int kMsa2RMask = (7U << 18);
400 const int kMsa2RFMask = (15U << 17);
401 const int kRsFieldMask = ((1 << kRsBits) - 1) << kRsShift;
402 const int kRtFieldMask = ((1 << kRtBits) - 1) << kRtShift;
403 const int kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift;
404 const int kSaFieldMask = ((1 << kSaBits) - 1) << kSaShift;
405 const int kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
406 // Misc masks.
407 const int kHiMaskOf32 = 0xffff << 16; // Only to be used with 32-bit values
408 const int kLoMaskOf32 = 0xffff;
409 const int kSignMaskOf32 = 0x80000000; // Only to be used with 32-bit values
410 const int kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
411 const int64_t kTop16MaskOf64 = (int64_t)0xffff << 48;
412 const int64_t kHigher16MaskOf64 = (int64_t)0xffff << 32;
413 const int64_t kUpper16MaskOf64 = (int64_t)0xffff << 16;
414 const int32_t kJalRawMark = 0x00000000;
415 const int32_t kJRawMark = 0xf0000000;
416 const int32_t kJumpRawMask = 0xf0000000;
417
418 // ----- MIPS Opcodes and Function Fields.
419 // We use this presentation to stay close to the table representation in
420 // MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
421 enum Opcode : uint32_t {
422 SPECIAL = 0U << kOpcodeShift,
423 REGIMM = 1U << kOpcodeShift,
424
425 J = ((0U << 3) + 2) << kOpcodeShift,
426 JAL = ((0U << 3) + 3) << kOpcodeShift,
427 BEQ = ((0U << 3) + 4) << kOpcodeShift,
428 BNE = ((0U << 3) + 5) << kOpcodeShift,
429 BLEZ = ((0U << 3) + 6) << kOpcodeShift,
430 BGTZ = ((0U << 3) + 7) << kOpcodeShift,
431
432 ADDI = ((1U << 3) + 0) << kOpcodeShift,
433 ADDIU = ((1U << 3) + 1) << kOpcodeShift,
434 SLTI = ((1U << 3) + 2) << kOpcodeShift,
435 SLTIU = ((1U << 3) + 3) << kOpcodeShift,
436 ANDI = ((1U << 3) + 4) << kOpcodeShift,
437 ORI = ((1U << 3) + 5) << kOpcodeShift,
438 XORI = ((1U << 3) + 6) << kOpcodeShift,
439 LUI = ((1U << 3) + 7) << kOpcodeShift, // LUI/AUI family.
440 DAUI = ((3U << 3) + 5) << kOpcodeShift,
441
442 BEQC = ((2U << 3) + 0) << kOpcodeShift,
443 COP1 = ((2U << 3) + 1) << kOpcodeShift, // Coprocessor 1 class.
444 BEQL = ((2U << 3) + 4) << kOpcodeShift,
445 BNEL = ((2U << 3) + 5) << kOpcodeShift,
446 BLEZL = ((2U << 3) + 6) << kOpcodeShift,
447 BGTZL = ((2U << 3) + 7) << kOpcodeShift,
448
449 DADDI = ((3U << 3) + 0) << kOpcodeShift, // This is also BNEC.
450 DADDIU = ((3U << 3) + 1) << kOpcodeShift,
451 LDL = ((3U << 3) + 2) << kOpcodeShift,
452 LDR = ((3U << 3) + 3) << kOpcodeShift,
453 SPECIAL2 = ((3U << 3) + 4) << kOpcodeShift,
454 MSA = ((3U << 3) + 6) << kOpcodeShift,
455 SPECIAL3 = ((3U << 3) + 7) << kOpcodeShift,
456
457 LB = ((4U << 3) + 0) << kOpcodeShift,
458 LH = ((4U << 3) + 1) << kOpcodeShift,
459 LWL = ((4U << 3) + 2) << kOpcodeShift,
460 LW = ((4U << 3) + 3) << kOpcodeShift,
461 LBU = ((4U << 3) + 4) << kOpcodeShift,
462 LHU = ((4U << 3) + 5) << kOpcodeShift,
463 LWR = ((4U << 3) + 6) << kOpcodeShift,
464 LWU = ((4U << 3) + 7) << kOpcodeShift,
465
466 SB = ((5U << 3) + 0) << kOpcodeShift,
467 SH = ((5U << 3) + 1) << kOpcodeShift,
468 SWL = ((5U << 3) + 2) << kOpcodeShift,
469 SW = ((5U << 3) + 3) << kOpcodeShift,
470 SDL = ((5U << 3) + 4) << kOpcodeShift,
471 SDR = ((5U << 3) + 5) << kOpcodeShift,
472 SWR = ((5U << 3) + 6) << kOpcodeShift,
473
474 LL = ((6U << 3) + 0) << kOpcodeShift,
475 LWC1 = ((6U << 3) + 1) << kOpcodeShift,
476 BC = ((6U << 3) + 2) << kOpcodeShift,
477 LLD = ((6U << 3) + 4) << kOpcodeShift,
478 LDC1 = ((6U << 3) + 5) << kOpcodeShift,
479 POP66 = ((6U << 3) + 6) << kOpcodeShift,
480 LD = ((6U << 3) + 7) << kOpcodeShift,
481
482 PREF = ((6U << 3) + 3) << kOpcodeShift,
483
484 SC = ((7U << 3) + 0) << kOpcodeShift,
485 SWC1 = ((7U << 3) + 1) << kOpcodeShift,
486 BALC = ((7U << 3) + 2) << kOpcodeShift,
487 PCREL = ((7U << 3) + 3) << kOpcodeShift,
488 SCD = ((7U << 3) + 4) << kOpcodeShift,
489 SDC1 = ((7U << 3) + 5) << kOpcodeShift,
490 POP76 = ((7U << 3) + 6) << kOpcodeShift,
491 SD = ((7U << 3) + 7) << kOpcodeShift,
492
493 COP1X = ((1U << 4) + 3) << kOpcodeShift,
494
495 // New r6 instruction.
496 POP06 = BLEZ, // bgeuc/bleuc, blezalc, bgezalc
497 POP07 = BGTZ, // bltuc/bgtuc, bgtzalc, bltzalc
498 POP10 = ADDI, // beqzalc, bovc, beqc
499 POP26 = BLEZL, // bgezc, blezc, bgec/blec
500 POP27 = BGTZL, // bgtzc, bltzc, bltc/bgtc
501 POP30 = DADDI, // bnezalc, bnvc, bnec
502 };
503
504 enum SecondaryField : uint32_t {
505 // SPECIAL Encoding of Function Field.
506 SLL = ((0U << 3) + 0),
507 MOVCI = ((0U << 3) + 1),
508 SRL = ((0U << 3) + 2),
509 SRA = ((0U << 3) + 3),
510 SLLV = ((0U << 3) + 4),
511 LSA = ((0U << 3) + 5),
512 SRLV = ((0U << 3) + 6),
513 SRAV = ((0U << 3) + 7),
514
515 JR = ((1U << 3) + 0),
516 JALR = ((1U << 3) + 1),
517 MOVZ = ((1U << 3) + 2),
518 MOVN = ((1U << 3) + 3),
519 BREAK = ((1U << 3) + 5),
520 SYNC = ((1U << 3) + 7),
521
522 MFHI = ((2U << 3) + 0),
523 CLZ_R6 = ((2U << 3) + 0),
524 CLO_R6 = ((2U << 3) + 1),
525 MFLO = ((2U << 3) + 2),
526 DCLZ_R6 = ((2U << 3) + 2),
527 DCLO_R6 = ((2U << 3) + 3),
528 DSLLV = ((2U << 3) + 4),
529 DLSA = ((2U << 3) + 5),
530 DSRLV = ((2U << 3) + 6),
531 DSRAV = ((2U << 3) + 7),
532
533 MULT = ((3U << 3) + 0),
534 MULTU = ((3U << 3) + 1),
535 DIV = ((3U << 3) + 2),
536 DIVU = ((3U << 3) + 3),
537 DMULT = ((3U << 3) + 4),
538 DMULTU = ((3U << 3) + 5),
539 DDIV = ((3U << 3) + 6),
540 DDIVU = ((3U << 3) + 7),
541
542 ADD = ((4U << 3) + 0),
543 ADDU = ((4U << 3) + 1),
544 SUB = ((4U << 3) + 2),
545 SUBU = ((4U << 3) + 3),
546 AND = ((4U << 3) + 4),
547 OR = ((4U << 3) + 5),
548 XOR = ((4U << 3) + 6),
549 NOR = ((4U << 3) + 7),
550
551 SLT = ((5U << 3) + 2),
552 SLTU = ((5U << 3) + 3),
553 DADD = ((5U << 3) + 4),
554 DADDU = ((5U << 3) + 5),
555 DSUB = ((5U << 3) + 6),
556 DSUBU = ((5U << 3) + 7),
557
558 TGE = ((6U << 3) + 0),
559 TGEU = ((6U << 3) + 1),
560 TLT = ((6U << 3) + 2),
561 TLTU = ((6U << 3) + 3),
562 TEQ = ((6U << 3) + 4),
563 SELEQZ_S = ((6U << 3) + 5),
564 TNE = ((6U << 3) + 6),
565 SELNEZ_S = ((6U << 3) + 7),
566
567 DSLL = ((7U << 3) + 0),
568 DSRL = ((7U << 3) + 2),
569 DSRA = ((7U << 3) + 3),
570 DSLL32 = ((7U << 3) + 4),
571 DSRL32 = ((7U << 3) + 6),
572 DSRA32 = ((7U << 3) + 7),
573
574 // Multiply integers in r6.
575 MUL_MUH = ((3U << 3) + 0), // MUL, MUH.
576 MUL_MUH_U = ((3U << 3) + 1), // MUL_U, MUH_U.
577 D_MUL_MUH = ((7U << 2) + 0), // DMUL, DMUH.
578 D_MUL_MUH_U = ((7U << 2) + 1), // DMUL_U, DMUH_U.
579 RINT = ((3U << 3) + 2),
580
581 MUL_OP = ((0U << 3) + 2),
582 MUH_OP = ((0U << 3) + 3),
583 DIV_OP = ((0U << 3) + 2),
584 MOD_OP = ((0U << 3) + 3),
585
586 DIV_MOD = ((3U << 3) + 2),
587 DIV_MOD_U = ((3U << 3) + 3),
588 D_DIV_MOD = ((3U << 3) + 6),
589 D_DIV_MOD_U = ((3U << 3) + 7),
590
591 // drotr in special4?
592
593 // SPECIAL2 Encoding of Function Field.
594 MUL = ((0U << 3) + 2),
595 CLZ = ((4U << 3) + 0),
596 CLO = ((4U << 3) + 1),
597 DCLZ = ((4U << 3) + 4),
598 DCLO = ((4U << 3) + 5),
599
600 // SPECIAL3 Encoding of Function Field.
601 EXT = ((0U << 3) + 0),
602 DEXTM = ((0U << 3) + 1),
603 DEXTU = ((0U << 3) + 2),
604 DEXT = ((0U << 3) + 3),
605 INS = ((0U << 3) + 4),
606 DINSM = ((0U << 3) + 5),
607 DINSU = ((0U << 3) + 6),
608 DINS = ((0U << 3) + 7),
609
610 BSHFL = ((4U << 3) + 0),
611 DBSHFL = ((4U << 3) + 4),
612 SC_R6 = ((4U << 3) + 6),
613 SCD_R6 = ((4U << 3) + 7),
614 LL_R6 = ((6U << 3) + 6),
615 LLD_R6 = ((6U << 3) + 7),
616
617 // SPECIAL3 Encoding of sa Field.
618 BITSWAP = ((0U << 3) + 0),
619 ALIGN = ((0U << 3) + 2),
620 WSBH = ((0U << 3) + 2),
621 SEB = ((2U << 3) + 0),
622 SEH = ((3U << 3) + 0),
623
624 DBITSWAP = ((0U << 3) + 0),
625 DALIGN = ((0U << 3) + 1),
626 DBITSWAP_SA = ((0U << 3) + 0) << kSaShift,
627 DSBH = ((0U << 3) + 2),
628 DSHD = ((0U << 3) + 5),
629
630 // REGIMM encoding of rt Field.
631 BLTZ = ((0U << 3) + 0) << 16,
632 BGEZ = ((0U << 3) + 1) << 16,
633 BLTZAL = ((2U << 3) + 0) << 16,
634 BGEZAL = ((2U << 3) + 1) << 16,
635 BGEZALL = ((2U << 3) + 3) << 16,
636 DAHI = ((0U << 3) + 6) << 16,
637 DATI = ((3U << 3) + 6) << 16,
638
639 // COP1 Encoding of rs Field.
640 MFC1 = ((0U << 3) + 0) << 21,
641 DMFC1 = ((0U << 3) + 1) << 21,
642 CFC1 = ((0U << 3) + 2) << 21,
643 MFHC1 = ((0U << 3) + 3) << 21,
644 MTC1 = ((0U << 3) + 4) << 21,
645 DMTC1 = ((0U << 3) + 5) << 21,
646 CTC1 = ((0U << 3) + 6) << 21,
647 MTHC1 = ((0U << 3) + 7) << 21,
648 BC1 = ((1U << 3) + 0) << 21,
649 S = ((2U << 3) + 0) << 21,
650 D = ((2U << 3) + 1) << 21,
651 W = ((2U << 3) + 4) << 21,
652 L = ((2U << 3) + 5) << 21,
653 PS = ((2U << 3) + 6) << 21,
654 // COP1 Encoding of Function Field When rs=S.
655
656 ADD_S = ((0U << 3) + 0),
657 SUB_S = ((0U << 3) + 1),
658 MUL_S = ((0U << 3) + 2),
659 DIV_S = ((0U << 3) + 3),
660 ABS_S = ((0U << 3) + 5),
661 SQRT_S = ((0U << 3) + 4),
662 MOV_S = ((0U << 3) + 6),
663 NEG_S = ((0U << 3) + 7),
664 ROUND_L_S = ((1U << 3) + 0),
665 TRUNC_L_S = ((1U << 3) + 1),
666 CEIL_L_S = ((1U << 3) + 2),
667 FLOOR_L_S = ((1U << 3) + 3),
668 ROUND_W_S = ((1U << 3) + 4),
669 TRUNC_W_S = ((1U << 3) + 5),
670 CEIL_W_S = ((1U << 3) + 6),
671 FLOOR_W_S = ((1U << 3) + 7),
672 RECIP_S = ((2U << 3) + 5),
673 RSQRT_S = ((2U << 3) + 6),
674 MADDF_S = ((3U << 3) + 0),
675 MSUBF_S = ((3U << 3) + 1),
676 CLASS_S = ((3U << 3) + 3),
677 CVT_D_S = ((4U << 3) + 1),
678 CVT_W_S = ((4U << 3) + 4),
679 CVT_L_S = ((4U << 3) + 5),
680 CVT_PS_S = ((4U << 3) + 6),
681 // COP1 Encoding of Function Field When rs=D.
682 ADD_D = ((0U << 3) + 0),
683 SUB_D = ((0U << 3) + 1),
684 MUL_D = ((0U << 3) + 2),
685 DIV_D = ((0U << 3) + 3),
686 SQRT_D = ((0U << 3) + 4),
687 ABS_D = ((0U << 3) + 5),
688 MOV_D = ((0U << 3) + 6),
689 NEG_D = ((0U << 3) + 7),
690 ROUND_L_D = ((1U << 3) + 0),
691 TRUNC_L_D = ((1U << 3) + 1),
692 CEIL_L_D = ((1U << 3) + 2),
693 FLOOR_L_D = ((1U << 3) + 3),
694 ROUND_W_D = ((1U << 3) + 4),
695 TRUNC_W_D = ((1U << 3) + 5),
696 CEIL_W_D = ((1U << 3) + 6),
697 FLOOR_W_D = ((1U << 3) + 7),
698 RECIP_D = ((2U << 3) + 5),
699 RSQRT_D = ((2U << 3) + 6),
700 MADDF_D = ((3U << 3) + 0),
701 MSUBF_D = ((3U << 3) + 1),
702 CLASS_D = ((3U << 3) + 3),
703 MIN = ((3U << 3) + 4),
704 MINA = ((3U << 3) + 5),
705 MAX = ((3U << 3) + 6),
706 MAXA = ((3U << 3) + 7),
707 CVT_S_D = ((4U << 3) + 0),
708 CVT_W_D = ((4U << 3) + 4),
709 CVT_L_D = ((4U << 3) + 5),
710 C_F_D = ((6U << 3) + 0),
711 C_UN_D = ((6U << 3) + 1),
712 C_EQ_D = ((6U << 3) + 2),
713 C_UEQ_D = ((6U << 3) + 3),
714 C_OLT_D = ((6U << 3) + 4),
715 C_ULT_D = ((6U << 3) + 5),
716 C_OLE_D = ((6U << 3) + 6),
717 C_ULE_D = ((6U << 3) + 7),
718
719 // COP1 Encoding of Function Field When rs=W or L.
720 CVT_S_W = ((4U << 3) + 0),
721 CVT_D_W = ((4U << 3) + 1),
722 CVT_S_L = ((4U << 3) + 0),
723 CVT_D_L = ((4U << 3) + 1),
724 BC1EQZ = ((2U << 2) + 1) << 21,
725 BC1NEZ = ((3U << 2) + 1) << 21,
726 // COP1 CMP positive predicates Bit 5..4 = 00.
727 CMP_AF = ((0U << 3) + 0),
728 CMP_UN = ((0U << 3) + 1),
729 CMP_EQ = ((0U << 3) + 2),
730 CMP_UEQ = ((0U << 3) + 3),
731 CMP_LT = ((0U << 3) + 4),
732 CMP_ULT = ((0U << 3) + 5),
733 CMP_LE = ((0U << 3) + 6),
734 CMP_ULE = ((0U << 3) + 7),
735 CMP_SAF = ((1U << 3) + 0),
736 CMP_SUN = ((1U << 3) + 1),
737 CMP_SEQ = ((1U << 3) + 2),
738 CMP_SUEQ = ((1U << 3) + 3),
739 CMP_SSLT = ((1U << 3) + 4),
740 CMP_SSULT = ((1U << 3) + 5),
741 CMP_SLE = ((1U << 3) + 6),
742 CMP_SULE = ((1U << 3) + 7),
743 // COP1 CMP negative predicates Bit 5..4 = 01.
744 CMP_AT = ((2U << 3) + 0), // Reserved, not implemented.
745 CMP_OR = ((2U << 3) + 1),
746 CMP_UNE = ((2U << 3) + 2),
747 CMP_NE = ((2U << 3) + 3),
748 CMP_UGE = ((2U << 3) + 4), // Reserved, not implemented.
749 CMP_OGE = ((2U << 3) + 5), // Reserved, not implemented.
750 CMP_UGT = ((2U << 3) + 6), // Reserved, not implemented.
751 CMP_OGT = ((2U << 3) + 7), // Reserved, not implemented.
752 CMP_SAT = ((3U << 3) + 0), // Reserved, not implemented.
753 CMP_SOR = ((3U << 3) + 1),
754 CMP_SUNE = ((3U << 3) + 2),
755 CMP_SNE = ((3U << 3) + 3),
756 CMP_SUGE = ((3U << 3) + 4), // Reserved, not implemented.
757 CMP_SOGE = ((3U << 3) + 5), // Reserved, not implemented.
758 CMP_SUGT = ((3U << 3) + 6), // Reserved, not implemented.
759 CMP_SOGT = ((3U << 3) + 7), // Reserved, not implemented.
760
761 SEL = ((2U << 3) + 0),
762 MOVF = ((2U << 3) + 1), // Function field for MOVT.fmt and MOVF.fmt
763 MOVZ_C = ((2U << 3) + 2), // COP1 on FPR registers.
764 MOVN_C = ((2U << 3) + 3), // COP1 on FPR registers.
765 SELEQZ_C = ((2U << 3) + 4), // COP1 on FPR registers.
766 SELNEZ_C = ((2U << 3) + 7), // COP1 on FPR registers.
767
768 // COP1 Encoding of Function Field When rs=PS.
769
770 // COP1X Encoding of Function Field.
771 MADD_S = ((4U << 3) + 0),
772 MADD_D = ((4U << 3) + 1),
773 MSUB_S = ((5U << 3) + 0),
774 MSUB_D = ((5U << 3) + 1),
775
776 // PCREL Encoding of rt Field.
777 ADDIUPC = ((0U << 2) + 0),
778 LWPC = ((0U << 2) + 1),
779 LWUPC = ((0U << 2) + 2),
780 LDPC = ((0U << 3) + 6),
781 // reserved ((1U << 3) + 6),
782 AUIPC = ((3U << 3) + 6),
783 ALUIPC = ((3U << 3) + 7),
784
785 // POP66 Encoding of rs Field.
786 JIC = ((0U << 5) + 0),
787
788 // POP76 Encoding of rs Field.
789 JIALC = ((0U << 5) + 0),
790
791 // COP1 Encoding of rs Field for MSA Branch Instructions
792 BZ_V = (((1U << 3) + 3) << kRsShift),
793 BNZ_V = (((1U << 3) + 7) << kRsShift),
794 BZ_B = (((3U << 3) + 0) << kRsShift),
795 BZ_H = (((3U << 3) + 1) << kRsShift),
796 BZ_W = (((3U << 3) + 2) << kRsShift),
797 BZ_D = (((3U << 3) + 3) << kRsShift),
798 BNZ_B = (((3U << 3) + 4) << kRsShift),
799 BNZ_H = (((3U << 3) + 5) << kRsShift),
800 BNZ_W = (((3U << 3) + 6) << kRsShift),
801 BNZ_D = (((3U << 3) + 7) << kRsShift),
802
803 // MSA: Operation Field for MI10 Instruction Formats
804 MSA_LD = (8U << 2),
805 MSA_ST = (9U << 2),
806 LD_B = ((8U << 2) + 0),
807 LD_H = ((8U << 2) + 1),
808 LD_W = ((8U << 2) + 2),
809 LD_D = ((8U << 2) + 3),
810 ST_B = ((9U << 2) + 0),
811 ST_H = ((9U << 2) + 1),
812 ST_W = ((9U << 2) + 2),
813 ST_D = ((9U << 2) + 3),
814
815 // MSA: Operation Field for I5 Instruction Format
816 ADDVI = ((0U << 23) + 6),
817 SUBVI = ((1U << 23) + 6),
818 MAXI_S = ((2U << 23) + 6),
819 MAXI_U = ((3U << 23) + 6),
820 MINI_S = ((4U << 23) + 6),
821 MINI_U = ((5U << 23) + 6),
822 CEQI = ((0U << 23) + 7),
823 CLTI_S = ((2U << 23) + 7),
824 CLTI_U = ((3U << 23) + 7),
825 CLEI_S = ((4U << 23) + 7),
826 CLEI_U = ((5U << 23) + 7),
827 LDI = ((6U << 23) + 7), // I10 instruction format
828 I5_DF_b = (0U << 21),
829 I5_DF_h = (1U << 21),
830 I5_DF_w = (2U << 21),
831 I5_DF_d = (3U << 21),
832
833 // MSA: Operation Field for I8 Instruction Format
834 ANDI_B = ((0U << 24) + 0),
835 ORI_B = ((1U << 24) + 0),
836 NORI_B = ((2U << 24) + 0),
837 XORI_B = ((3U << 24) + 0),
838 BMNZI_B = ((0U << 24) + 1),
839 BMZI_B = ((1U << 24) + 1),
840 BSELI_B = ((2U << 24) + 1),
841 SHF_B = ((0U << 24) + 2),
842 SHF_H = ((1U << 24) + 2),
843 SHF_W = ((2U << 24) + 2),
844
845 MSA_VEC_2R_2RF_MINOR = ((3U << 3) + 6),
846
847 // MSA: Operation Field for VEC Instruction Formats
848 AND_V = (((0U << 2) + 0) << 21),
849 OR_V = (((0U << 2) + 1) << 21),
850 NOR_V = (((0U << 2) + 2) << 21),
851 XOR_V = (((0U << 2) + 3) << 21),
852 BMNZ_V = (((1U << 2) + 0) << 21),
853 BMZ_V = (((1U << 2) + 1) << 21),
854 BSEL_V = (((1U << 2) + 2) << 21),
855
856 // MSA: Operation Field for 2R Instruction Formats
857 MSA_2R_FORMAT = (((6U << 2) + 0) << 21),
858 FILL = (0U << 18),
859 PCNT = (1U << 18),
860 NLOC = (2U << 18),
861 NLZC = (3U << 18),
862 MSA_2R_DF_b = (0U << 16),
863 MSA_2R_DF_h = (1U << 16),
864 MSA_2R_DF_w = (2U << 16),
865 MSA_2R_DF_d = (3U << 16),
866
867 // MSA: Operation Field for 2RF Instruction Formats
868 MSA_2RF_FORMAT = (((6U << 2) + 1) << 21),
869 FCLASS = (0U << 17),
870 FTRUNC_S = (1U << 17),
871 FTRUNC_U = (2U << 17),
872 FSQRT = (3U << 17),
873 FRSQRT = (4U << 17),
874 FRCP = (5U << 17),
875 FRINT = (6U << 17),
876 FLOG2 = (7U << 17),
877 FEXUPL = (8U << 17),
878 FEXUPR = (9U << 17),
879 FFQL = (10U << 17),
880 FFQR = (11U << 17),
881 FTINT_S = (12U << 17),
882 FTINT_U = (13U << 17),
883 FFINT_S = (14U << 17),
884 FFINT_U = (15U << 17),
885 MSA_2RF_DF_w = (0U << 16),
886 MSA_2RF_DF_d = (1U << 16),
887
888 // MSA: Operation Field for 3R Instruction Format
889 SLL_MSA = ((0U << 23) + 13),
890 SRA_MSA = ((1U << 23) + 13),
891 SRL_MSA = ((2U << 23) + 13),
892 BCLR = ((3U << 23) + 13),
893 BSET = ((4U << 23) + 13),
894 BNEG = ((5U << 23) + 13),
895 BINSL = ((6U << 23) + 13),
896 BINSR = ((7U << 23) + 13),
897 ADDV = ((0U << 23) + 14),
898 SUBV = ((1U << 23) + 14),
899 MAX_S = ((2U << 23) + 14),
900 MAX_U = ((3U << 23) + 14),
901 MIN_S = ((4U << 23) + 14),
902 MIN_U = ((5U << 23) + 14),
903 MAX_A = ((6U << 23) + 14),
904 MIN_A = ((7U << 23) + 14),
905 CEQ = ((0U << 23) + 15),
906 CLT_S = ((2U << 23) + 15),
907 CLT_U = ((3U << 23) + 15),
908 CLE_S = ((4U << 23) + 15),
909 CLE_U = ((5U << 23) + 15),
910 ADD_A = ((0U << 23) + 16),
911 ADDS_A = ((1U << 23) + 16),
912 ADDS_S = ((2U << 23) + 16),
913 ADDS_U = ((3U << 23) + 16),
914 AVE_S = ((4U << 23) + 16),
915 AVE_U = ((5U << 23) + 16),
916 AVER_S = ((6U << 23) + 16),
917 AVER_U = ((7U << 23) + 16),
918 SUBS_S = ((0U << 23) + 17),
919 SUBS_U = ((1U << 23) + 17),
920 SUBSUS_U = ((2U << 23) + 17),
921 SUBSUU_S = ((3U << 23) + 17),
922 ASUB_S = ((4U << 23) + 17),
923 ASUB_U = ((5U << 23) + 17),
924 MULV = ((0U << 23) + 18),
925 MADDV = ((1U << 23) + 18),
926 MSUBV = ((2U << 23) + 18),
927 DIV_S_MSA = ((4U << 23) + 18),
928 DIV_U = ((5U << 23) + 18),
929 MOD_S = ((6U << 23) + 18),
930 MOD_U = ((7U << 23) + 18),
931 DOTP_S = ((0U << 23) + 19),
932 DOTP_U = ((1U << 23) + 19),
933 DPADD_S = ((2U << 23) + 19),
934 DPADD_U = ((3U << 23) + 19),
935 DPSUB_S = ((4U << 23) + 19),
936 DPSUB_U = ((5U << 23) + 19),
937 SLD = ((0U << 23) + 20),
938 SPLAT = ((1U << 23) + 20),
939 PCKEV = ((2U << 23) + 20),
940 PCKOD = ((3U << 23) + 20),
941 ILVL = ((4U << 23) + 20),
942 ILVR = ((5U << 23) + 20),
943 ILVEV = ((6U << 23) + 20),
944 ILVOD = ((7U << 23) + 20),
945 VSHF = ((0U << 23) + 21),
946 SRAR = ((1U << 23) + 21),
947 SRLR = ((2U << 23) + 21),
948 HADD_S = ((4U << 23) + 21),
949 HADD_U = ((5U << 23) + 21),
950 HSUB_S = ((6U << 23) + 21),
951 HSUB_U = ((7U << 23) + 21),
952 MSA_3R_DF_b = (0U << 21),
953 MSA_3R_DF_h = (1U << 21),
954 MSA_3R_DF_w = (2U << 21),
955 MSA_3R_DF_d = (3U << 21),
956
957 // MSA: Operation Field for 3RF Instruction Format
958 FCAF = ((0U << 22) + 26),
959 FCUN = ((1U << 22) + 26),
960 FCEQ = ((2U << 22) + 26),
961 FCUEQ = ((3U << 22) + 26),
962 FCLT = ((4U << 22) + 26),
963 FCULT = ((5U << 22) + 26),
964 FCLE = ((6U << 22) + 26),
965 FCULE = ((7U << 22) + 26),
966 FSAF = ((8U << 22) + 26),
967 FSUN = ((9U << 22) + 26),
968 FSEQ = ((10U << 22) + 26),
969 FSUEQ = ((11U << 22) + 26),
970 FSLT = ((12U << 22) + 26),
971 FSULT = ((13U << 22) + 26),
972 FSLE = ((14U << 22) + 26),
973 FSULE = ((15U << 22) + 26),
974 FADD = ((0U << 22) + 27),
975 FSUB = ((1U << 22) + 27),
976 FMUL = ((2U << 22) + 27),
977 FDIV = ((3U << 22) + 27),
978 FMADD = ((4U << 22) + 27),
979 FMSUB = ((5U << 22) + 27),
980 FEXP2 = ((7U << 22) + 27),
981 FEXDO = ((8U << 22) + 27),
982 FTQ = ((10U << 22) + 27),
983 FMIN = ((12U << 22) + 27),
984 FMIN_A = ((13U << 22) + 27),
985 FMAX = ((14U << 22) + 27),
986 FMAX_A = ((15U << 22) + 27),
987 FCOR = ((1U << 22) + 28),
988 FCUNE = ((2U << 22) + 28),
989 FCNE = ((3U << 22) + 28),
990 MUL_Q = ((4U << 22) + 28),
991 MADD_Q = ((5U << 22) + 28),
992 MSUB_Q = ((6U << 22) + 28),
993 FSOR = ((9U << 22) + 28),
994 FSUNE = ((10U << 22) + 28),
995 FSNE = ((11U << 22) + 28),
996 MULR_Q = ((12U << 22) + 28),
997 MADDR_Q = ((13U << 22) + 28),
998 MSUBR_Q = ((14U << 22) + 28),
999
1000 // MSA: Operation Field for ELM Instruction Format
1001 MSA_ELM_MINOR = ((3U << 3) + 1),
1002 SLDI = (0U << 22),
1003 CTCMSA = ((0U << 22) | (62U << 16)),
1004 SPLATI = (1U << 22),
1005 CFCMSA = ((1U << 22) | (62U << 16)),
1006 COPY_S = (2U << 22),
1007 MOVE_V = ((2U << 22) | (62U << 16)),
1008 COPY_U = (3U << 22),
1009 INSERT = (4U << 22),
1010 INSVE = (5U << 22),
1011 ELM_DF_B = ((0U << 4) << 16),
1012 ELM_DF_H = ((4U << 3) << 16),
1013 ELM_DF_W = ((12U << 2) << 16),
1014 ELM_DF_D = ((28U << 1) << 16),
1015
1016 // MSA: Operation Field for BIT Instruction Format
1017 SLLI = ((0U << 23) + 9),
1018 SRAI = ((1U << 23) + 9),
1019 SRLI = ((2U << 23) + 9),
1020 BCLRI = ((3U << 23) + 9),
1021 BSETI = ((4U << 23) + 9),
1022 BNEGI = ((5U << 23) + 9),
1023 BINSLI = ((6U << 23) + 9),
1024 BINSRI = ((7U << 23) + 9),
1025 SAT_S = ((0U << 23) + 10),
1026 SAT_U = ((1U << 23) + 10),
1027 SRARI = ((2U << 23) + 10),
1028 SRLRI = ((3U << 23) + 10),
1029 BIT_DF_b = ((14U << 3) << 16),
1030 BIT_DF_h = ((6U << 4) << 16),
1031 BIT_DF_w = ((2U << 5) << 16),
1032 BIT_DF_d = ((0U << 6) << 16),
1033
1034 nullptrSF = 0U
1035 };
1036
1037 enum MSAMinorOpcode : uint32_t {
1038 kMsaMinorUndefined = 0,
1039 kMsaMinorI8,
1040 kMsaMinorI5,
1041 kMsaMinorI10,
1042 kMsaMinorBIT,
1043 kMsaMinor3R,
1044 kMsaMinor3RF,
1045 kMsaMinorELM,
1046 kMsaMinorVEC,
1047 kMsaMinor2R,
1048 kMsaMinor2RF,
1049 kMsaMinorMI10
1050 };
1051
1052 // ----- Emulated conditions.
1053 // On MIPS we use this enum to abstract from conditional branch instructions.
1054 // The 'U' prefix is used to specify unsigned comparisons.
1055 // Opposite conditions must be paired as odd/even numbers
1056 // because 'NegateCondition' function flips LSB to negate condition.
1057 enum Condition {
1058 // Any value < 0 is considered no_condition.
1059 kNoCondition = -1,
1060 overflow = 0,
1061 no_overflow = 1,
1062 Uless = 2,
1063 Ugreater_equal = 3,
1064 Uless_equal = 4,
1065 Ugreater = 5,
1066 equal = 6,
1067 not_equal = 7, // Unordered or Not Equal.
1068 negative = 8,
1069 positive = 9,
1070 parity_even = 10,
1071 parity_odd = 11,
1072 less = 12,
1073 greater_equal = 13,
1074 less_equal = 14,
1075 greater = 15,
1076 ueq = 16, // Unordered or Equal.
1077 ogl = 17, // Ordered and Not Equal.
1078 cc_always = 18,
1079
1080 // Aliases.
1081 carry = Uless,
1082 not_carry = Ugreater_equal,
1083 zero = equal,
1084 eq = equal,
1085 not_zero = not_equal,
1086 ne = not_equal,
1087 nz = not_equal,
1088 sign = negative,
1089 not_sign = positive,
1090 mi = negative,
1091 pl = positive,
1092 hi = Ugreater,
1093 ls = Uless_equal,
1094 ge = greater_equal,
1095 lt = less,
1096 gt = greater,
1097 le = less_equal,
1098 hs = Ugreater_equal,
1099 lo = Uless,
1100 al = cc_always,
1101 ult = Uless,
1102 uge = Ugreater_equal,
1103 ule = Uless_equal,
1104 ugt = Ugreater,
1105 cc_default = kNoCondition
1106 };
1107
1108 // Returns the equivalent of !cc.
1109 // Negation of the default kNoCondition (-1) results in a non-default
1110 // no_condition value (-2). As long as tests for no_condition check
1111 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)1112 inline Condition NegateCondition(Condition cc) {
1113 DCHECK(cc != cc_always);
1114 return static_cast<Condition>(cc ^ 1);
1115 }
1116
NegateFpuCondition(Condition cc)1117 inline Condition NegateFpuCondition(Condition cc) {
1118 DCHECK(cc != cc_always);
1119 switch (cc) {
1120 case ult:
1121 return ge;
1122 case ugt:
1123 return le;
1124 case uge:
1125 return lt;
1126 case ule:
1127 return gt;
1128 case lt:
1129 return uge;
1130 case gt:
1131 return ule;
1132 case ge:
1133 return ult;
1134 case le:
1135 return ugt;
1136 case eq:
1137 return ne;
1138 case ne:
1139 return eq;
1140 case ueq:
1141 return ogl;
1142 case ogl:
1143 return ueq;
1144 default:
1145 return cc;
1146 }
1147 }
1148
1149 enum MSABranchCondition {
1150 all_not_zero = 0, // Branch If All Elements Are Not Zero
1151 one_elem_not_zero, // Branch If At Least One Element of Any Format Is Not
1152 // Zero
1153 one_elem_zero, // Branch If At Least One Element Is Zero
1154 all_zero // Branch If All Elements of Any Format Are Zero
1155 };
1156
NegateMSABranchCondition(MSABranchCondition cond)1157 inline MSABranchCondition NegateMSABranchCondition(MSABranchCondition cond) {
1158 switch (cond) {
1159 case all_not_zero:
1160 return one_elem_zero;
1161 case one_elem_not_zero:
1162 return all_zero;
1163 case one_elem_zero:
1164 return all_not_zero;
1165 case all_zero:
1166 return one_elem_not_zero;
1167 default:
1168 return cond;
1169 }
1170 }
1171
1172 enum MSABranchDF {
1173 MSA_BRANCH_B = 0,
1174 MSA_BRANCH_H,
1175 MSA_BRANCH_W,
1176 MSA_BRANCH_D,
1177 MSA_BRANCH_V
1178 };
1179
1180 // ----- Coprocessor conditions.
1181 enum FPUCondition {
1182 kNoFPUCondition = -1,
1183
1184 F = 0x00, // False.
1185 UN = 0x01, // Unordered.
1186 EQ = 0x02, // Equal.
1187 UEQ = 0x03, // Unordered or Equal.
1188 OLT = 0x04, // Ordered or Less Than, on Mips release < 6.
1189 LT = 0x04, // Ordered or Less Than, on Mips release >= 6.
1190 ULT = 0x05, // Unordered or Less Than.
1191 OLE = 0x06, // Ordered or Less Than or Equal, on Mips release < 6.
1192 LE = 0x06, // Ordered or Less Than or Equal, on Mips release >= 6.
1193 ULE = 0x07, // Unordered or Less Than or Equal.
1194
1195 // Following constants are available on Mips release >= 6 only.
1196 ORD = 0x11, // Ordered, on Mips release >= 6.
1197 UNE = 0x12, // Not equal, on Mips release >= 6.
1198 NE = 0x13, // Ordered Greater Than or Less Than. on Mips >= 6 only.
1199 };
1200
1201 // FPU rounding modes.
1202 enum FPURoundingMode {
1203 RN = 0 << 0, // Round to Nearest.
1204 RZ = 1 << 0, // Round towards zero.
1205 RP = 2 << 0, // Round towards Plus Infinity.
1206 RM = 3 << 0, // Round towards Minus Infinity.
1207
1208 // Aliases.
1209 kRoundToNearest = RN,
1210 kRoundToZero = RZ,
1211 kRoundToPlusInf = RP,
1212 kRoundToMinusInf = RM,
1213
1214 mode_round = RN,
1215 mode_ceil = RP,
1216 mode_floor = RM,
1217 mode_trunc = RZ
1218 };
1219
1220 const uint32_t kFPURoundingModeMask = 3 << 0;
1221
1222 enum CheckForInexactConversion {
1223 kCheckForInexactConversion,
1224 kDontCheckForInexactConversion
1225 };
1226
1227 enum class MaxMinKind : int { kMin = 0, kMax = 1 };
1228
1229 // -----------------------------------------------------------------------------
1230 // Hints.
1231
1232 // Branch hints are not used on the MIPS. They are defined so that they can
1233 // appear in shared function signatures, but will be ignored in MIPS
1234 // implementations.
1235 enum Hint { no_hint = 0 };
1236
NegateHint(Hint hint)1237 inline Hint NegateHint(Hint hint) { return no_hint; }
1238
1239 // -----------------------------------------------------------------------------
1240 // Specific instructions, constants, and masks.
1241 // These constants are declared in assembler-mips.cc, as they use named
1242 // registers and other constants.
1243
1244 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
1245 // operations as post-increment of sp.
1246 extern const Instr kPopInstruction;
1247 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
1248 extern const Instr kPushInstruction;
1249 // Sw(r, MemOperand(sp, 0))
1250 extern const Instr kPushRegPattern;
1251 // Lw(r, MemOperand(sp, 0))
1252 extern const Instr kPopRegPattern;
1253 extern const Instr kLwRegFpOffsetPattern;
1254 extern const Instr kSwRegFpOffsetPattern;
1255 extern const Instr kLwRegFpNegOffsetPattern;
1256 extern const Instr kSwRegFpNegOffsetPattern;
1257 // A mask for the Rt register for push, pop, lw, sw instructions.
1258 extern const Instr kRtMask;
1259 extern const Instr kLwSwInstrTypeMask;
1260 extern const Instr kLwSwInstrArgumentMask;
1261 extern const Instr kLwSwOffsetMask;
1262
1263 // Break 0xfffff, reserved for redirected real time call.
1264 const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
1265 // A nop instruction. (Encoding of sll 0 0 0).
1266 const Instr nopInstr = 0;
1267
OpcodeToBitNumber(Opcode opcode)1268 static constexpr uint64_t OpcodeToBitNumber(Opcode opcode) {
1269 return 1ULL << (static_cast<uint32_t>(opcode) >> kOpcodeShift);
1270 }
1271
1272 constexpr uint8_t kInstrSize = 4;
1273 constexpr uint8_t kInstrSizeLog2 = 2;
1274
1275 class InstructionBase {
1276 public:
1277 enum {
1278 // On MIPS PC cannot actually be directly accessed. We behave as if PC was
1279 // always the value of the current instruction being executed.
1280 kPCReadOffset = 0
1281 };
1282
1283 // Instruction type.
1284 enum Type { kRegisterType, kImmediateType, kJumpType, kUnsupported = -1 };
1285
1286 // Get the raw instruction bits.
InstructionBits()1287 inline Instr InstructionBits() const {
1288 return *reinterpret_cast<const Instr*>(this);
1289 }
1290
1291 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)1292 inline void SetInstructionBits(Instr value) {
1293 *reinterpret_cast<Instr*>(this) = value;
1294 }
1295
1296 // Read one particular bit out of the instruction bits.
Bit(int nr)1297 inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
1298
1299 // Read a bit field out of the instruction bits.
Bits(int hi,int lo)1300 inline int Bits(int hi, int lo) const {
1301 return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1);
1302 }
1303
1304 static constexpr uint64_t kOpcodeImmediateTypeMask =
1305 OpcodeToBitNumber(REGIMM) | OpcodeToBitNumber(BEQ) |
1306 OpcodeToBitNumber(BNE) | OpcodeToBitNumber(BLEZ) |
1307 OpcodeToBitNumber(BGTZ) | OpcodeToBitNumber(ADDI) |
1308 OpcodeToBitNumber(DADDI) | OpcodeToBitNumber(ADDIU) |
1309 OpcodeToBitNumber(DADDIU) | OpcodeToBitNumber(SLTI) |
1310 OpcodeToBitNumber(SLTIU) | OpcodeToBitNumber(ANDI) |
1311 OpcodeToBitNumber(ORI) | OpcodeToBitNumber(XORI) |
1312 OpcodeToBitNumber(LUI) | OpcodeToBitNumber(BEQL) |
1313 OpcodeToBitNumber(BNEL) | OpcodeToBitNumber(BLEZL) |
1314 OpcodeToBitNumber(BGTZL) | OpcodeToBitNumber(POP66) |
1315 OpcodeToBitNumber(POP76) | OpcodeToBitNumber(LB) | OpcodeToBitNumber(LH) |
1316 OpcodeToBitNumber(LWL) | OpcodeToBitNumber(LW) | OpcodeToBitNumber(LWU) |
1317 OpcodeToBitNumber(LD) | OpcodeToBitNumber(LBU) | OpcodeToBitNumber(LHU) |
1318 OpcodeToBitNumber(LDL) | OpcodeToBitNumber(LDR) | OpcodeToBitNumber(LWR) |
1319 OpcodeToBitNumber(SDL) | OpcodeToBitNumber(SB) | OpcodeToBitNumber(SH) |
1320 OpcodeToBitNumber(SWL) | OpcodeToBitNumber(SW) | OpcodeToBitNumber(SD) |
1321 OpcodeToBitNumber(SWR) | OpcodeToBitNumber(SDR) |
1322 OpcodeToBitNumber(LWC1) | OpcodeToBitNumber(LDC1) |
1323 OpcodeToBitNumber(SWC1) | OpcodeToBitNumber(SDC1) |
1324 OpcodeToBitNumber(PCREL) | OpcodeToBitNumber(DAUI) |
1325 OpcodeToBitNumber(BC) | OpcodeToBitNumber(BALC);
1326
1327 #define FunctionFieldToBitNumber(function) (1ULL << function)
1328
1329 // On r6, DCLZ_R6 aliases to existing MFLO.
1330 static const uint64_t kFunctionFieldRegisterTypeMask =
1331 FunctionFieldToBitNumber(JR) | FunctionFieldToBitNumber(JALR) |
1332 FunctionFieldToBitNumber(BREAK) | FunctionFieldToBitNumber(SLL) |
1333 FunctionFieldToBitNumber(DSLL) | FunctionFieldToBitNumber(DSLL32) |
1334 FunctionFieldToBitNumber(SRL) | FunctionFieldToBitNumber(DSRL) |
1335 FunctionFieldToBitNumber(DSRL32) | FunctionFieldToBitNumber(SRA) |
1336 FunctionFieldToBitNumber(DSRA) | FunctionFieldToBitNumber(DSRA32) |
1337 FunctionFieldToBitNumber(SLLV) | FunctionFieldToBitNumber(DSLLV) |
1338 FunctionFieldToBitNumber(SRLV) | FunctionFieldToBitNumber(DSRLV) |
1339 FunctionFieldToBitNumber(SRAV) | FunctionFieldToBitNumber(DSRAV) |
1340 FunctionFieldToBitNumber(LSA) | FunctionFieldToBitNumber(DLSA) |
1341 FunctionFieldToBitNumber(MFHI) | FunctionFieldToBitNumber(MFLO) |
1342 FunctionFieldToBitNumber(MULT) | FunctionFieldToBitNumber(DMULT) |
1343 FunctionFieldToBitNumber(MULTU) | FunctionFieldToBitNumber(DMULTU) |
1344 FunctionFieldToBitNumber(DIV) | FunctionFieldToBitNumber(DDIV) |
1345 FunctionFieldToBitNumber(DIVU) | FunctionFieldToBitNumber(DDIVU) |
1346 FunctionFieldToBitNumber(ADD) | FunctionFieldToBitNumber(DADD) |
1347 FunctionFieldToBitNumber(ADDU) | FunctionFieldToBitNumber(DADDU) |
1348 FunctionFieldToBitNumber(SUB) | FunctionFieldToBitNumber(DSUB) |
1349 FunctionFieldToBitNumber(SUBU) | FunctionFieldToBitNumber(DSUBU) |
1350 FunctionFieldToBitNumber(AND) | FunctionFieldToBitNumber(OR) |
1351 FunctionFieldToBitNumber(XOR) | FunctionFieldToBitNumber(NOR) |
1352 FunctionFieldToBitNumber(SLT) | FunctionFieldToBitNumber(SLTU) |
1353 FunctionFieldToBitNumber(TGE) | FunctionFieldToBitNumber(TGEU) |
1354 FunctionFieldToBitNumber(TLT) | FunctionFieldToBitNumber(TLTU) |
1355 FunctionFieldToBitNumber(TEQ) | FunctionFieldToBitNumber(TNE) |
1356 FunctionFieldToBitNumber(MOVZ) | FunctionFieldToBitNumber(MOVN) |
1357 FunctionFieldToBitNumber(MOVCI) | FunctionFieldToBitNumber(SELEQZ_S) |
1358 FunctionFieldToBitNumber(SELNEZ_S) | FunctionFieldToBitNumber(SYNC);
1359
1360 // Accessors for the different named fields used in the MIPS encoding.
OpcodeValue()1361 inline Opcode OpcodeValue() const {
1362 return static_cast<Opcode>(
1363 Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
1364 }
1365
FunctionFieldRaw()1366 inline int FunctionFieldRaw() const {
1367 return InstructionBits() & kFunctionFieldMask;
1368 }
1369
1370 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1371 inline Opcode OpcodeFieldRaw() const {
1372 return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
1373 }
1374
1375 // Safe to call within InstructionType().
RsFieldRawNoAssert()1376 inline int RsFieldRawNoAssert() const {
1377 return InstructionBits() & kRsFieldMask;
1378 }
1379
SaFieldRaw()1380 inline int SaFieldRaw() const { return InstructionBits() & kSaFieldMask; }
1381
1382 // Get the encoding type of the instruction.
1383 inline Type InstructionType() const;
1384
MSAMinorOpcodeField()1385 inline MSAMinorOpcode MSAMinorOpcodeField() const {
1386 int op = this->FunctionFieldRaw();
1387 switch (op) {
1388 case 0:
1389 case 1:
1390 case 2:
1391 return kMsaMinorI8;
1392 case 6:
1393 return kMsaMinorI5;
1394 case 7:
1395 return (((this->InstructionBits() & kMsaI5I10Mask) == LDI)
1396 ? kMsaMinorI10
1397 : kMsaMinorI5);
1398 case 9:
1399 case 10:
1400 return kMsaMinorBIT;
1401 case 13:
1402 case 14:
1403 case 15:
1404 case 16:
1405 case 17:
1406 case 18:
1407 case 19:
1408 case 20:
1409 case 21:
1410 return kMsaMinor3R;
1411 case 25:
1412 return kMsaMinorELM;
1413 case 26:
1414 case 27:
1415 case 28:
1416 return kMsaMinor3RF;
1417 case 30:
1418 switch (this->RsFieldRawNoAssert()) {
1419 case MSA_2R_FORMAT:
1420 return kMsaMinor2R;
1421 case MSA_2RF_FORMAT:
1422 return kMsaMinor2RF;
1423 default:
1424 return kMsaMinorVEC;
1425 }
1426 break;
1427 case 32:
1428 case 33:
1429 case 34:
1430 case 35:
1431 case 36:
1432 case 37:
1433 case 38:
1434 case 39:
1435 return kMsaMinorMI10;
1436 default:
1437 return kMsaMinorUndefined;
1438 }
1439 }
1440
1441 protected:
InstructionBase()1442 InstructionBase() {}
1443 };
1444
1445 template <class T>
1446 class InstructionGetters : public T {
1447 public:
RsValue()1448 inline int RsValue() const {
1449 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1450 this->InstructionType() == InstructionBase::kImmediateType);
1451 return this->Bits(kRsShift + kRsBits - 1, kRsShift);
1452 }
1453
RtValue()1454 inline int RtValue() const {
1455 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1456 this->InstructionType() == InstructionBase::kImmediateType);
1457 return this->Bits(kRtShift + kRtBits - 1, kRtShift);
1458 }
1459
RdValue()1460 inline int RdValue() const {
1461 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1462 return this->Bits(kRdShift + kRdBits - 1, kRdShift);
1463 }
1464
BaseValue()1465 inline int BaseValue() const {
1466 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1467 return this->Bits(kBaseShift + kBaseBits - 1, kBaseShift);
1468 }
1469
SaValue()1470 inline int SaValue() const {
1471 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1472 return this->Bits(kSaShift + kSaBits - 1, kSaShift);
1473 }
1474
LsaSaValue()1475 inline int LsaSaValue() const {
1476 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1477 return this->Bits(kSaShift + kLsaSaBits - 1, kSaShift);
1478 }
1479
FunctionValue()1480 inline int FunctionValue() const {
1481 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1482 this->InstructionType() == InstructionBase::kImmediateType);
1483 return this->Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
1484 }
1485
FdValue()1486 inline int FdValue() const {
1487 return this->Bits(kFdShift + kFdBits - 1, kFdShift);
1488 }
1489
FsValue()1490 inline int FsValue() const {
1491 return this->Bits(kFsShift + kFsBits - 1, kFsShift);
1492 }
1493
FtValue()1494 inline int FtValue() const {
1495 return this->Bits(kFtShift + kFtBits - 1, kFtShift);
1496 }
1497
FrValue()1498 inline int FrValue() const {
1499 return this->Bits(kFrShift + kFrBits - 1, kFrShift);
1500 }
1501
WdValue()1502 inline int WdValue() const {
1503 return this->Bits(kWdShift + kWdBits - 1, kWdShift);
1504 }
1505
WsValue()1506 inline int WsValue() const {
1507 return this->Bits(kWsShift + kWsBits - 1, kWsShift);
1508 }
1509
WtValue()1510 inline int WtValue() const {
1511 return this->Bits(kWtShift + kWtBits - 1, kWtShift);
1512 }
1513
Bp2Value()1514 inline int Bp2Value() const {
1515 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1516 return this->Bits(kBp2Shift + kBp2Bits - 1, kBp2Shift);
1517 }
1518
Bp3Value()1519 inline int Bp3Value() const {
1520 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1521 return this->Bits(kBp3Shift + kBp3Bits - 1, kBp3Shift);
1522 }
1523
1524 // Float Compare condition code instruction bits.
FCccValue()1525 inline int FCccValue() const {
1526 return this->Bits(kFCccShift + kFCccBits - 1, kFCccShift);
1527 }
1528
1529 // Float Branch condition code instruction bits.
FBccValue()1530 inline int FBccValue() const {
1531 return this->Bits(kFBccShift + kFBccBits - 1, kFBccShift);
1532 }
1533
1534 // Float Branch true/false instruction bit.
FBtrueValue()1535 inline int FBtrueValue() const {
1536 return this->Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
1537 }
1538
1539 // Return the fields at their original place in the instruction encoding.
OpcodeFieldRaw()1540 inline Opcode OpcodeFieldRaw() const {
1541 return static_cast<Opcode>(this->InstructionBits() & kOpcodeMask);
1542 }
1543
RsFieldRaw()1544 inline int RsFieldRaw() const {
1545 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1546 this->InstructionType() == InstructionBase::kImmediateType);
1547 return this->InstructionBits() & kRsFieldMask;
1548 }
1549
1550 // Same as above function, but safe to call within InstructionType().
RsFieldRawNoAssert()1551 inline int RsFieldRawNoAssert() const {
1552 return this->InstructionBits() & kRsFieldMask;
1553 }
1554
RtFieldRaw()1555 inline int RtFieldRaw() const {
1556 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1557 this->InstructionType() == InstructionBase::kImmediateType);
1558 return this->InstructionBits() & kRtFieldMask;
1559 }
1560
RdFieldRaw()1561 inline int RdFieldRaw() const {
1562 DCHECK_EQ(this->InstructionType(), InstructionBase::kRegisterType);
1563 return this->InstructionBits() & kRdFieldMask;
1564 }
1565
SaFieldRaw()1566 inline int SaFieldRaw() const {
1567 return this->InstructionBits() & kSaFieldMask;
1568 }
1569
FunctionFieldRaw()1570 inline int FunctionFieldRaw() const {
1571 return this->InstructionBits() & kFunctionFieldMask;
1572 }
1573
1574 // Get the secondary field according to the opcode.
SecondaryValue()1575 inline int SecondaryValue() const {
1576 Opcode op = this->OpcodeFieldRaw();
1577 switch (op) {
1578 case SPECIAL:
1579 case SPECIAL2:
1580 return FunctionValue();
1581 case COP1:
1582 return RsValue();
1583 case REGIMM:
1584 return RtValue();
1585 default:
1586 return nullptrSF;
1587 }
1588 }
1589
ImmValue(int bits)1590 inline int32_t ImmValue(int bits) const {
1591 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1592 return this->Bits(bits - 1, 0);
1593 }
1594
Imm9Value()1595 inline int32_t Imm9Value() const {
1596 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1597 return this->Bits(kImm9Shift + kImm9Bits - 1, kImm9Shift);
1598 }
1599
Imm16Value()1600 inline int32_t Imm16Value() const {
1601 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1602 return this->Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
1603 }
1604
Imm18Value()1605 inline int32_t Imm18Value() const {
1606 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1607 return this->Bits(kImm18Shift + kImm18Bits - 1, kImm18Shift);
1608 }
1609
Imm19Value()1610 inline int32_t Imm19Value() const {
1611 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1612 return this->Bits(kImm19Shift + kImm19Bits - 1, kImm19Shift);
1613 }
1614
Imm21Value()1615 inline int32_t Imm21Value() const {
1616 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1617 return this->Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
1618 }
1619
Imm26Value()1620 inline int32_t Imm26Value() const {
1621 DCHECK((this->InstructionType() == InstructionBase::kJumpType) ||
1622 (this->InstructionType() == InstructionBase::kImmediateType));
1623 return this->Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
1624 }
1625
MsaImm8Value()1626 inline int32_t MsaImm8Value() const {
1627 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1628 return this->Bits(kMsaImm8Shift + kMsaImm8Bits - 1, kMsaImm8Shift);
1629 }
1630
MsaImm5Value()1631 inline int32_t MsaImm5Value() const {
1632 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1633 return this->Bits(kMsaImm5Shift + kMsaImm5Bits - 1, kMsaImm5Shift);
1634 }
1635
MsaImm10Value()1636 inline int32_t MsaImm10Value() const {
1637 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1638 return this->Bits(kMsaImm10Shift + kMsaImm10Bits - 1, kMsaImm10Shift);
1639 }
1640
MsaImmMI10Value()1641 inline int32_t MsaImmMI10Value() const {
1642 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1643 return this->Bits(kMsaImmMI10Shift + kMsaImmMI10Bits - 1, kMsaImmMI10Shift);
1644 }
1645
MsaBitDf()1646 inline int32_t MsaBitDf() const {
1647 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1648 int32_t df_m = this->Bits(22, 16);
1649 if (((df_m >> 6) & 1U) == 0) {
1650 return 3;
1651 } else if (((df_m >> 5) & 3U) == 2) {
1652 return 2;
1653 } else if (((df_m >> 4) & 7U) == 6) {
1654 return 1;
1655 } else if (((df_m >> 3) & 15U) == 14) {
1656 return 0;
1657 } else {
1658 return -1;
1659 }
1660 }
1661
MsaBitMValue()1662 inline int32_t MsaBitMValue() const {
1663 DCHECK_EQ(this->InstructionType(), InstructionBase::kImmediateType);
1664 return this->Bits(16 + this->MsaBitDf() + 3, 16);
1665 }
1666
MsaElmDf()1667 inline int32_t MsaElmDf() const {
1668 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1669 this->InstructionType() == InstructionBase::kImmediateType);
1670 int32_t df_n = this->Bits(21, 16);
1671 if (((df_n >> 4) & 3U) == 0) {
1672 return 0;
1673 } else if (((df_n >> 3) & 7U) == 4) {
1674 return 1;
1675 } else if (((df_n >> 2) & 15U) == 12) {
1676 return 2;
1677 } else if (((df_n >> 1) & 31U) == 28) {
1678 return 3;
1679 } else {
1680 return -1;
1681 }
1682 }
1683
MsaElmNValue()1684 inline int32_t MsaElmNValue() const {
1685 DCHECK(this->InstructionType() == InstructionBase::kRegisterType ||
1686 this->InstructionType() == InstructionBase::kImmediateType);
1687 return this->Bits(16 + 4 - this->MsaElmDf(), 16);
1688 }
1689
1690 static bool IsForbiddenAfterBranchInstr(Instr instr);
1691
1692 // Say if the instruction should not be used in a branch delay slot or
1693 // immediately after a compact branch.
IsForbiddenAfterBranch()1694 inline bool IsForbiddenAfterBranch() const {
1695 return IsForbiddenAfterBranchInstr(this->InstructionBits());
1696 }
1697
IsForbiddenInBranchDelay()1698 inline bool IsForbiddenInBranchDelay() const {
1699 return IsForbiddenAfterBranch();
1700 }
1701
1702 // Say if the instruction 'links'. e.g. jal, bal.
1703 bool IsLinkingInstruction() const;
1704 // Say if the instruction is a break or a trap.
1705 bool IsTrap() const;
1706
IsMSABranchInstr()1707 inline bool IsMSABranchInstr() const {
1708 if (this->OpcodeFieldRaw() == COP1) {
1709 switch (this->RsFieldRaw()) {
1710 case BZ_V:
1711 case BZ_B:
1712 case BZ_H:
1713 case BZ_W:
1714 case BZ_D:
1715 case BNZ_V:
1716 case BNZ_B:
1717 case BNZ_H:
1718 case BNZ_W:
1719 case BNZ_D:
1720 return true;
1721 default:
1722 return false;
1723 }
1724 }
1725 return false;
1726 }
1727
IsMSAInstr()1728 inline bool IsMSAInstr() const {
1729 if (this->IsMSABranchInstr() || (this->OpcodeFieldRaw() == MSA))
1730 return true;
1731 return false;
1732 }
1733 };
1734
1735 class Instruction : public InstructionGetters<InstructionBase> {
1736 public:
1737 // Instructions are read of out a code stream. The only way to get a
1738 // reference to an instruction is to convert a pointer. There is no way
1739 // to allocate or create instances of class Instruction.
1740 // Use the At(pc) function to create references to Instruction.
At(byte * pc)1741 static Instruction* At(byte* pc) {
1742 return reinterpret_cast<Instruction*>(pc);
1743 }
1744
1745 private:
1746 // We need to prevent the creation of instances of class Instruction.
1747 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
1748 };
1749
1750 // -----------------------------------------------------------------------------
1751 // MIPS assembly various constants.
1752
1753 // C/C++ argument slots size.
1754 const int kCArgSlotCount = 0;
1755
1756 // TODO(plind): below should be based on kPointerSize
1757 // TODO(plind): find all usages and remove the needless instructions for n64.
1758 const int kCArgsSlotsSize = kCArgSlotCount * kInstrSize * 2;
1759
1760 const int kInvalidStackOffset = -1;
1761 const int kBranchReturnOffset = 2 * kInstrSize;
1762
1763 static const int kNegOffset = 0x00008000;
1764
InstructionType()1765 InstructionBase::Type InstructionBase::InstructionType() const {
1766 switch (OpcodeFieldRaw()) {
1767 case SPECIAL:
1768 if (FunctionFieldToBitNumber(FunctionFieldRaw()) &
1769 kFunctionFieldRegisterTypeMask) {
1770 return kRegisterType;
1771 }
1772 return kUnsupported;
1773 case SPECIAL2:
1774 switch (FunctionFieldRaw()) {
1775 case MUL:
1776 case CLZ:
1777 case DCLZ:
1778 return kRegisterType;
1779 default:
1780 return kUnsupported;
1781 }
1782 break;
1783 case SPECIAL3:
1784 switch (FunctionFieldRaw()) {
1785 case INS:
1786 case DINS:
1787 case DINSM:
1788 case DINSU:
1789 case EXT:
1790 case DEXT:
1791 case DEXTM:
1792 case DEXTU:
1793 return kRegisterType;
1794 case BSHFL: {
1795 int sa = SaFieldRaw() >> kSaShift;
1796 switch (sa) {
1797 case BITSWAP:
1798 case WSBH:
1799 case SEB:
1800 case SEH:
1801 return kRegisterType;
1802 }
1803 sa >>= kBp2Bits;
1804 switch (sa) {
1805 case ALIGN:
1806 return kRegisterType;
1807 default:
1808 return kUnsupported;
1809 }
1810 }
1811 case LL_R6:
1812 case LLD_R6:
1813 case SC_R6:
1814 case SCD_R6: {
1815 DCHECK_EQ(kArchVariant, kMips64r6);
1816 return kImmediateType;
1817 }
1818 case DBSHFL: {
1819 int sa = SaFieldRaw() >> kSaShift;
1820 switch (sa) {
1821 case DBITSWAP:
1822 case DSBH:
1823 case DSHD:
1824 return kRegisterType;
1825 }
1826 sa = SaFieldRaw() >> kSaShift;
1827 sa >>= kBp3Bits;
1828 switch (sa) {
1829 case DALIGN:
1830 return kRegisterType;
1831 default:
1832 return kUnsupported;
1833 }
1834 }
1835 default:
1836 return kUnsupported;
1837 }
1838 break;
1839 case COP1: // Coprocessor instructions.
1840 switch (RsFieldRawNoAssert()) {
1841 case BC1: // Branch on coprocessor condition.
1842 case BC1EQZ:
1843 case BC1NEZ:
1844 return kImmediateType;
1845 // MSA Branch instructions
1846 case BZ_V:
1847 case BNZ_V:
1848 case BZ_B:
1849 case BZ_H:
1850 case BZ_W:
1851 case BZ_D:
1852 case BNZ_B:
1853 case BNZ_H:
1854 case BNZ_W:
1855 case BNZ_D:
1856 return kImmediateType;
1857 default:
1858 return kRegisterType;
1859 }
1860 break;
1861 case COP1X:
1862 return kRegisterType;
1863
1864 // 26 bits immediate type instructions. e.g.: j imm26.
1865 case J:
1866 case JAL:
1867 return kJumpType;
1868
1869 case MSA:
1870 switch (MSAMinorOpcodeField()) {
1871 case kMsaMinor3R:
1872 case kMsaMinor3RF:
1873 case kMsaMinorVEC:
1874 case kMsaMinor2R:
1875 case kMsaMinor2RF:
1876 return kRegisterType;
1877 case kMsaMinorELM:
1878 switch (InstructionBits() & kMsaLongerELMMask) {
1879 case CFCMSA:
1880 case CTCMSA:
1881 case MOVE_V:
1882 return kRegisterType;
1883 default:
1884 return kImmediateType;
1885 }
1886 default:
1887 return kImmediateType;
1888 }
1889
1890 default:
1891 return kImmediateType;
1892 }
1893 return kUnsupported;
1894 }
1895 #undef OpcodeToBitNumber
1896 #undef FunctionFieldToBitNumber
1897
1898 // -----------------------------------------------------------------------------
1899 // Instructions.
1900
1901 template <class P>
IsLinkingInstruction()1902 bool InstructionGetters<P>::IsLinkingInstruction() const {
1903 switch (OpcodeFieldRaw()) {
1904 case JAL:
1905 return true;
1906 case POP76:
1907 if (RsFieldRawNoAssert() == JIALC)
1908 return true; // JIALC
1909 else
1910 return false; // BNEZC
1911 case REGIMM:
1912 switch (RtFieldRaw()) {
1913 case BGEZAL:
1914 case BLTZAL:
1915 return true;
1916 default:
1917 return false;
1918 }
1919 case SPECIAL:
1920 switch (FunctionFieldRaw()) {
1921 case JALR:
1922 return true;
1923 default:
1924 return false;
1925 }
1926 default:
1927 return false;
1928 }
1929 }
1930
1931 template <class P>
IsTrap()1932 bool InstructionGetters<P>::IsTrap() const {
1933 if (OpcodeFieldRaw() != SPECIAL) {
1934 return false;
1935 } else {
1936 switch (FunctionFieldRaw()) {
1937 case BREAK:
1938 case TGE:
1939 case TGEU:
1940 case TLT:
1941 case TLTU:
1942 case TEQ:
1943 case TNE:
1944 return true;
1945 default:
1946 return false;
1947 }
1948 }
1949 }
1950
1951 // static
1952 template <class T>
IsForbiddenAfterBranchInstr(Instr instr)1953 bool InstructionGetters<T>::IsForbiddenAfterBranchInstr(Instr instr) {
1954 Opcode opcode = static_cast<Opcode>(instr & kOpcodeMask);
1955 switch (opcode) {
1956 case J:
1957 case JAL:
1958 case BEQ:
1959 case BNE:
1960 case BLEZ: // POP06 bgeuc/bleuc, blezalc, bgezalc
1961 case BGTZ: // POP07 bltuc/bgtuc, bgtzalc, bltzalc
1962 case BEQL:
1963 case BNEL:
1964 case BLEZL: // POP26 bgezc, blezc, bgec/blec
1965 case BGTZL: // POP27 bgtzc, bltzc, bltc/bgtc
1966 case BC:
1967 case BALC:
1968 case POP10: // beqzalc, bovc, beqc
1969 case POP30: // bnezalc, bnvc, bnec
1970 case POP66: // beqzc, jic
1971 case POP76: // bnezc, jialc
1972 return true;
1973 case REGIMM:
1974 switch (instr & kRtFieldMask) {
1975 case BLTZ:
1976 case BGEZ:
1977 case BLTZAL:
1978 case BGEZAL:
1979 return true;
1980 default:
1981 return false;
1982 }
1983 break;
1984 case SPECIAL:
1985 switch (instr & kFunctionFieldMask) {
1986 case JR:
1987 case JALR:
1988 return true;
1989 default:
1990 return false;
1991 }
1992 break;
1993 case COP1:
1994 switch (instr & kRsFieldMask) {
1995 case BC1:
1996 case BC1EQZ:
1997 case BC1NEZ:
1998 case BZ_V:
1999 case BZ_B:
2000 case BZ_H:
2001 case BZ_W:
2002 case BZ_D:
2003 case BNZ_V:
2004 case BNZ_B:
2005 case BNZ_H:
2006 case BNZ_W:
2007 case BNZ_D:
2008 return true;
2009 break;
2010 default:
2011 return false;
2012 }
2013 break;
2014 default:
2015 return false;
2016 }
2017 }
2018 } // namespace internal
2019 } // namespace v8
2020
2021 #endif // V8_CODEGEN_MIPS64_CONSTANTS_MIPS64_H_
2022