• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_OBJECTS_PROPERTY_DETAILS_H_
6 #define V8_OBJECTS_PROPERTY_DETAILS_H_
7 
8 #include "include/v8-object.h"
9 #include "src/base/bit-field.h"
10 #include "src/common/globals.h"
11 #include "src/flags/flags.h"
12 #include "src/utils/allocation.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 // ES6 6.1.7.1
18 enum PropertyAttributes {
19   NONE = ::v8::None,
20   READ_ONLY = ::v8::ReadOnly,
21   DONT_ENUM = ::v8::DontEnum,
22   DONT_DELETE = ::v8::DontDelete,
23 
24   ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE,
25 
26   SEALED = DONT_DELETE,
27   FROZEN = SEALED | READ_ONLY,
28 
29   ABSENT = 64,  // Used in runtime to indicate a property is absent.
30   // ABSENT can never be stored in or returned from a descriptor's attributes
31   // bitfield.  It is only used as a return value meaning the attributes of
32   // a non-existent property.
33 };
34 
PropertyAttributesFromInt(int value)35 V8_INLINE PropertyAttributes PropertyAttributesFromInt(int value) {
36   DCHECK_EQ(value & ~PropertyAttributes::ALL_ATTRIBUTES_MASK, 0);
37   return static_cast<PropertyAttributes>(value);
38 }
39 
40 // Number of distinct bits in PropertyAttributes.
41 static const int kPropertyAttributesBitsCount = 3;
42 
43 static const int kPropertyAttributesCombinationsCount =
44     1 << kPropertyAttributesBitsCount;
45 
46 enum PropertyFilter {
47   ALL_PROPERTIES = 0,
48   ONLY_WRITABLE = 1,
49   ONLY_ENUMERABLE = 2,
50   ONLY_CONFIGURABLE = 4,
51   SKIP_STRINGS = 8,
52   SKIP_SYMBOLS = 16,
53   ONLY_ALL_CAN_READ = 32,
54   PRIVATE_NAMES_ONLY = 64,
55   ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS,
56 };
57 // Enable fast comparisons of PropertyAttributes against PropertyFilters.
58 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE));
59 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY));
60 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM));
61 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE));
62 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) &
63                ALL_ATTRIBUTES_MASK) == 0);
64 STATIC_ASSERT(ALL_PROPERTIES ==
65               static_cast<PropertyFilter>(v8::PropertyFilter::ALL_PROPERTIES));
66 STATIC_ASSERT(ONLY_WRITABLE ==
67               static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_WRITABLE));
68 STATIC_ASSERT(ONLY_ENUMERABLE ==
69               static_cast<PropertyFilter>(v8::PropertyFilter::ONLY_ENUMERABLE));
70 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(
71                                        v8::PropertyFilter::ONLY_CONFIGURABLE));
72 STATIC_ASSERT(SKIP_STRINGS ==
73               static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_STRINGS));
74 STATIC_ASSERT(SKIP_SYMBOLS ==
75               static_cast<PropertyFilter>(v8::PropertyFilter::SKIP_SYMBOLS));
76 
77 // Assert that kPropertyAttributesBitsCount value matches the definition of
78 // ALL_ATTRIBUTES_MASK.
79 STATIC_ASSERT((ALL_ATTRIBUTES_MASK == (READ_ONLY | DONT_ENUM | DONT_DELETE)) ==
80               (kPropertyAttributesBitsCount == 3));
81 
82 class Smi;
83 class TypeInfo;
84 
85 // Order of kinds is significant.
86 // Must fit in the BitField PropertyDetails::KindField.
87 enum class PropertyKind { kData = 0, kAccessor = 1 };
88 
89 // Order of modes is significant.
90 // Must fit in the BitField PropertyDetails::LocationField.
91 enum class PropertyLocation { kField = 0, kDescriptor = 1 };
92 
93 // Order of modes is significant.
94 // Must fit in the BitField PropertyDetails::ConstnessField.
95 enum class PropertyConstness { kMutable = 0, kConst = 1 };
96 
97 class Representation {
98  public:
99   enum Kind {
100     kNone,
101     kSmi,
102     kDouble,
103     kHeapObject,
104     kTagged,
105     // This representation is used for WasmObject fields and basically means
106     // that the actual field type information must be taken from the Wasm RTT
107     // associated with the map.
108     kWasmValue,
109     kNumRepresentations
110   };
111 
Representation()112   constexpr Representation() : kind_(kNone) {}
113 
None()114   static constexpr Representation None() { return Representation(kNone); }
Tagged()115   static constexpr Representation Tagged() { return Representation(kTagged); }
Smi()116   static constexpr Representation Smi() { return Representation(kSmi); }
Double()117   static constexpr Representation Double() { return Representation(kDouble); }
HeapObject()118   static constexpr Representation HeapObject() {
119     return Representation(kHeapObject);
120   }
WasmValue()121   static constexpr Representation WasmValue() {
122     return Representation(kWasmValue);
123   }
124 
FromKind(Kind kind)125   static constexpr Representation FromKind(Kind kind) {
126     return Representation(kind);
127   }
128 
Equals(const Representation & other)129   bool Equals(const Representation& other) const {
130     return kind_ == other.kind_;
131   }
132 
IsCompatibleForLoad(const Representation & other)133   bool IsCompatibleForLoad(const Representation& other) const {
134     return IsDouble() == other.IsDouble();
135   }
136 
IsCompatibleForStore(const Representation & other)137   bool IsCompatibleForStore(const Representation& other) const {
138     return Equals(other);
139   }
140 
141   // Returns true if a change from this representation to a more general one
142   // might cause a map deprecation.
MightCauseMapDeprecation()143   bool MightCauseMapDeprecation() const {
144     // HeapObject to tagged representation change can be done in-place.
145     // Boxed double to tagged transition is always done in-place.
146     // Note that WasmValue is not supposed to be changed at all (the only
147     // representation it fits into is WasmValue), so for the sake of predicate
148     // correctness we treat it as in-place "changeable".
149     if (IsTagged() || IsHeapObject() || IsDouble() || IsWasmValue()) {
150       return false;
151     }
152     // None to double and smi to double representation changes require
153     // deprecation, because doubles might require box allocation, see
154     // CanBeInPlaceChangedTo().
155     DCHECK(IsNone() || IsSmi());
156     return true;
157   }
158 
CanBeInPlaceChangedTo(const Representation & other)159   bool CanBeInPlaceChangedTo(const Representation& other) const {
160     if (Equals(other)) return true;
161     if (IsWasmValue() || other.IsWasmValue()) return false;
162     // If it's just a representation generalization case (i.e. property kind and
163     // attributes stays unchanged) it's fine to transition from None to anything
164     // but double without any modification to the object, because the default
165     // uninitialized value for representation None can be overwritten by both
166     // smi and tagged values. Doubles, however, would require a box allocation.
167     if (IsNone()) return !other.IsDouble();
168     if (!other.IsTagged()) return false;
169     DCHECK(IsSmi() || IsDouble() || IsHeapObject());
170     return true;
171   }
172 
173   // Return the most generic representation that this representation can be
174   // changed to in-place. If an in-place representation change is not allowed,
175   // then this will return the current representation.
MostGenericInPlaceChange()176   Representation MostGenericInPlaceChange() const {
177     if (IsWasmValue()) return Representation::WasmValue();
178     return Representation::Tagged();
179   }
180 
is_more_general_than(const Representation & other)181   bool is_more_general_than(const Representation& other) const {
182     if (IsWasmValue()) return false;
183     if (IsHeapObject()) return other.IsNone();
184     return kind_ > other.kind_;
185   }
186 
fits_into(const Representation & other)187   bool fits_into(const Representation& other) const {
188     return other.is_more_general_than(*this) || other.Equals(*this);
189   }
190 
generalize(Representation other)191   Representation generalize(Representation other) {
192     if (other.fits_into(*this)) return *this;
193     if (other.is_more_general_than(*this)) return other;
194     return Representation::Tagged();
195   }
196 
size()197   int size() const {
198     DCHECK(!IsNone());
199     if (IsDouble()) return kDoubleSize;
200     DCHECK(IsTagged() || IsSmi() || IsHeapObject());
201     return kTaggedSize;
202   }
203 
kind()204   constexpr Kind kind() const { return static_cast<Kind>(kind_); }
IsNone()205   constexpr bool IsNone() const { return kind_ == kNone; }
IsWasmValue()206   constexpr bool IsWasmValue() const { return kind_ == kWasmValue; }
IsTagged()207   constexpr bool IsTagged() const { return kind_ == kTagged; }
IsSmi()208   constexpr bool IsSmi() const { return kind_ == kSmi; }
IsSmiOrTagged()209   constexpr bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); }
IsDouble()210   constexpr bool IsDouble() const { return kind_ == kDouble; }
IsHeapObject()211   constexpr bool IsHeapObject() const { return kind_ == kHeapObject; }
212 
Mnemonic()213   const char* Mnemonic() const {
214     switch (kind_) {
215       case kNone:
216         return "v";
217       case kTagged:
218         return "t";
219       case kSmi:
220         return "s";
221       case kDouble:
222         return "d";
223       case kHeapObject:
224         return "h";
225       case kWasmValue:
226         return "w";
227     }
228     UNREACHABLE();
229   }
230 
231  private:
Representation(Kind k)232   explicit constexpr Representation(Kind k) : kind_(k) {}
233 
234   // Make sure kind fits in int8.
235   STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
236 
237   int8_t kind_;
238 };
239 
240 static const int kDescriptorIndexBitCount = 10;
241 static const int kFirstInobjectPropertyOffsetBitCount = 7;
242 // The maximum number of descriptors we want in a descriptor array.  It should
243 // fit in a page and also the following should hold:
244 // kMaxNumberOfDescriptors + kFieldsAdded <= PropertyArray::kMaxLength.
245 static const int kMaxNumberOfDescriptors = (1 << kDescriptorIndexBitCount) - 4;
246 static const int kInvalidEnumCacheSentinel =
247     (1 << kDescriptorIndexBitCount) - 1;
248 
249 // A PropertyCell's property details contains a cell type that is meaningful if
250 // the cell is still valid (does not hold the hole).
251 enum class PropertyCellType {
252   kMutable,       // Cell will no longer be tracked as constant.
253   kUndefined,     // The PREMONOMORPHIC of property cells.
254   kConstant,      // Cell has been assigned only once.
255   kConstantType,  // Cell has been assigned only one type.
256   // Temporary value indicating an ongoing property cell state transition. Only
257   // observable by a background thread.
258   kInTransition,
259   // Value for dictionaries not holding cells, must be 0:
260   kNoCell = kMutable,
261 };
262 
263 // PropertyDetails captures type and attributes for a property.
264 // They are used both in property dictionaries and instance descriptors.
265 class PropertyDetails {
266  public:
267   // Property details for global dictionary properties.
268   constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
269                             PropertyCellType cell_type,
270                             int dictionary_index = 0)
271       : value_(KindField::encode(kind) |
272                LocationField::encode(PropertyLocation::kField) |
273                AttributesField::encode(attributes) |
274                // We track PropertyCell constness via PropertyCellTypeField,
275                // so we set ConstnessField to kMutable to simplify DCHECKs
276                // related to non-global property constness tracking.
277                ConstnessField::encode(PropertyConstness::kMutable) |
278                DictionaryStorageField::encode(dictionary_index) |
279                PropertyCellTypeField::encode(cell_type)) {}
280 
281   // Property details for dictionary mode properties/elements.
282   constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
283                             PropertyConstness constness,
284                             int dictionary_index = 0)
285       : value_(KindField::encode(kind) |
286                LocationField::encode(PropertyLocation::kField) |
287                AttributesField::encode(attributes) |
288                ConstnessField::encode(constness) |
289                DictionaryStorageField::encode(dictionary_index) |
290                PropertyCellTypeField::encode(PropertyCellType::kNoCell)) {}
291 
292   // Property details for fast mode properties.
293   constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes,
294                             PropertyLocation location,
295                             PropertyConstness constness,
296                             Representation representation, int field_index = 0)
297       : value_(
298             KindField::encode(kind) | AttributesField::encode(attributes) |
299             LocationField::encode(location) |
300             ConstnessField::encode(constness) |
301             RepresentationField::encode(EncodeRepresentation(representation)) |
302             FieldIndexField::encode(field_index)) {}
303 
304   static constexpr PropertyDetails Empty(
305       PropertyCellType cell_type = PropertyCellType::kNoCell) {
306     return PropertyDetails(PropertyKind::kData, NONE, cell_type);
307   }
308 
309   bool operator==(PropertyDetails const& other) {
310     return value_ == other.value_;
311   }
312 
313   bool operator!=(PropertyDetails const& other) {
314     return value_ != other.value_;
315   }
316 
pointer()317   int pointer() const { return DescriptorPointer::decode(value_); }
318 
set_pointer(int i)319   PropertyDetails set_pointer(int i) const {
320     return PropertyDetails(value_, i);
321   }
322 
set_cell_type(PropertyCellType type)323   PropertyDetails set_cell_type(PropertyCellType type) const {
324     PropertyDetails details = *this;
325     details.value_ = PropertyCellTypeField::update(details.value_, type);
326     return details;
327   }
328 
set_index(int index)329   PropertyDetails set_index(int index) const {
330     PropertyDetails details = *this;
331     details.value_ = DictionaryStorageField::update(details.value_, index);
332     return details;
333   }
334 
CopyWithRepresentation(Representation representation)335   PropertyDetails CopyWithRepresentation(Representation representation) const {
336     return PropertyDetails(value_, representation);
337   }
CopyWithConstness(PropertyConstness constness)338   PropertyDetails CopyWithConstness(PropertyConstness constness) const {
339     return PropertyDetails(value_, constness);
340   }
CopyAddAttributes(PropertyAttributes new_attributes)341   PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const {
342     new_attributes =
343         static_cast<PropertyAttributes>(attributes() | new_attributes);
344     return PropertyDetails(value_, new_attributes);
345   }
346 
347   // Conversion for storing details as Object.
348   explicit inline PropertyDetails(Smi smi);
349   inline Smi AsSmi() const;
350 
EncodeRepresentation(Representation representation)351   static constexpr uint8_t EncodeRepresentation(Representation representation) {
352     return representation.kind();
353   }
354 
DecodeRepresentation(uint32_t bits)355   static Representation DecodeRepresentation(uint32_t bits) {
356     return Representation::FromKind(static_cast<Representation::Kind>(bits));
357   }
358 
kind()359   PropertyKind kind() const { return KindField::decode(value_); }
location()360   PropertyLocation location() const { return LocationField::decode(value_); }
constness()361   PropertyConstness constness() const { return ConstnessField::decode(value_); }
362 
attributes()363   PropertyAttributes attributes() const {
364     return AttributesField::decode(value_);
365   }
366 
HasKindAndAttributes(PropertyKind kind,PropertyAttributes attributes)367   bool HasKindAndAttributes(PropertyKind kind, PropertyAttributes attributes) {
368     return (value_ & (KindField::kMask | AttributesField::kMask)) ==
369            (KindField::encode(kind) | AttributesField::encode(attributes));
370   }
371 
dictionary_index()372   int dictionary_index() const {
373     return DictionaryStorageField::decode(value_);
374   }
375 
representation()376   Representation representation() const {
377     return DecodeRepresentation(RepresentationField::decode(value_));
378   }
379 
field_index()380   int field_index() const { return FieldIndexField::decode(value_); }
381 
382   inline int field_width_in_words() const;
383 
IsValidIndex(int index)384   static bool IsValidIndex(int index) {
385     return DictionaryStorageField::is_valid(index);
386   }
387 
IsReadOnly()388   bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; }
IsConfigurable()389   bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; }
IsDontEnum()390   bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; }
IsEnumerable()391   bool IsEnumerable() const { return !IsDontEnum(); }
cell_type()392   PropertyCellType cell_type() const {
393     return PropertyCellTypeField::decode(value_);
394   }
395 
396   bool operator==(const PropertyDetails& b) const { return value_ == b.value_; }
397 
398   // Bit fields in value_ (type, shift, size). Must be public so the
399   // constants can be embedded in generated code.
400   using KindField = base::BitField<PropertyKind, 0, 1>;
401   using ConstnessField = KindField::Next<PropertyConstness, 1>;
402   using AttributesField = ConstnessField::Next<PropertyAttributes, 3>;
403   static const int kAttributesReadOnlyMask =
404       (READ_ONLY << AttributesField::kShift);
405   static const int kAttributesDontDeleteMask =
406       (DONT_DELETE << AttributesField::kShift);
407   static const int kAttributesDontEnumMask =
408       (DONT_ENUM << AttributesField::kShift);
409 
410   // Bit fields for normalized/dictionary mode objects.
411   using PropertyCellTypeField = AttributesField::Next<PropertyCellType, 3>;
412   using DictionaryStorageField = PropertyCellTypeField::Next<uint32_t, 23>;
413 
414   // Bit fields for fast objects.
415   using LocationField = AttributesField::Next<PropertyLocation, 1>;
416   using RepresentationField = LocationField::Next<uint32_t, 3>;
417   using DescriptorPointer =
418       RepresentationField::Next<uint32_t, kDescriptorIndexBitCount>;
419   using FieldIndexField =
420       DescriptorPointer::Next<uint32_t, kDescriptorIndexBitCount>;
421 
422   // All bits for both fast and slow objects must fit in a smi.
423   STATIC_ASSERT(DictionaryStorageField::kLastUsedBit < 31);
424   STATIC_ASSERT(FieldIndexField::kLastUsedBit < 31);
425 
426   // DictionaryStorageField must be the last field, so that overflowing it
427   // doesn't overwrite other fields.
428   STATIC_ASSERT(DictionaryStorageField::kLastUsedBit == 30);
429 
430   // All bits for non-global dictionary mode objects except enumeration index
431   // must fit in a byte.
432   STATIC_ASSERT(KindField::kLastUsedBit < 8);
433   STATIC_ASSERT(ConstnessField::kLastUsedBit < 8);
434   STATIC_ASSERT(AttributesField::kLastUsedBit < 8);
435 
436   static const int kInitialIndex = 1;
437 
438   static constexpr PropertyConstness kConstIfDictConstnessTracking =
439       V8_DICT_PROPERTY_CONST_TRACKING_BOOL ? PropertyConstness::kConst
440                                            : PropertyConstness::kMutable;
441 
442 #ifdef OBJECT_PRINT
443   // For our gdb macros, we should perhaps change these in the future.
444   void Print(bool dictionary_mode);
445 #endif
446 
447   enum PrintMode {
448     kPrintAttributes = 1 << 0,
449     kPrintFieldIndex = 1 << 1,
450     kPrintRepresentation = 1 << 2,
451     kPrintPointer = 1 << 3,
452 
453     kForProperties = kPrintFieldIndex,
454     kForTransitions = kPrintAttributes,
455     kPrintFull = -1,
456   };
457   void PrintAsSlowTo(std::ostream& out, bool print_dict_index);
458   void PrintAsFastTo(std::ostream& out, PrintMode mode = kPrintFull);
459 
460   // Encodes those property details for non-global dictionary properties
461   // with an enumeration index of 0 as a single byte.
ToByte()462   uint8_t ToByte() {
463     // We only care about the value of KindField, ConstnessField, and
464     // AttributesField. We've statically asserted earlier that these fields fit
465     // into a byte together.
466 
467     DCHECK_EQ(PropertyLocation::kField, location());
468     STATIC_ASSERT(static_cast<int>(PropertyLocation::kField) == 0);
469 
470     DCHECK_EQ(PropertyCellType::kNoCell, cell_type());
471     STATIC_ASSERT(static_cast<int>(PropertyCellType::kNoCell) == 0);
472 
473     // Only to be used when the enum index isn't actually maintained
474     // by the PropertyDetails:
475     DCHECK_EQ(0, dictionary_index());
476 
477     return value_;
478   }
479 
480   // Only to be used for bytes obtained by ToByte. In particular, only used for
481   // non-global dictionary properties.
FromByte(uint8_t encoded_details)482   static PropertyDetails FromByte(uint8_t encoded_details) {
483     // The 0-extension to 32bit sets PropertyLocation to kField,
484     // PropertyCellType to kNoCell, and enumeration index to 0, as intended.
485     // Everything else is obtained from |encoded_details|.
486     PropertyDetails details(encoded_details);
487     DCHECK_EQ(PropertyLocation::kField, details.location());
488     DCHECK_EQ(PropertyCellType::kNoCell, details.cell_type());
489     DCHECK_EQ(0, details.dictionary_index());
490     return details;
491   }
492 
493  private:
PropertyDetails(int value,int pointer)494   PropertyDetails(int value, int pointer) {
495     value_ = DescriptorPointer::update(value, pointer);
496   }
PropertyDetails(int value,Representation representation)497   PropertyDetails(int value, Representation representation) {
498     value_ = RepresentationField::update(value,
499                                          EncodeRepresentation(representation));
500   }
PropertyDetails(int value,PropertyConstness constness)501   PropertyDetails(int value, PropertyConstness constness) {
502     value_ = ConstnessField::update(value, constness);
503   }
PropertyDetails(int value,PropertyAttributes attributes)504   PropertyDetails(int value, PropertyAttributes attributes) {
505     value_ = AttributesField::update(value, attributes);
506   }
507 
PropertyDetails(uint32_t value)508   explicit PropertyDetails(uint32_t value) : value_{value} {}
509 
510   uint32_t value_;
511 };
512 
513 // kField location is more general than kDescriptor, kDescriptor generalizes
514 // only to itself.
IsGeneralizableTo(PropertyLocation a,PropertyLocation b)515 inline bool IsGeneralizableTo(PropertyLocation a, PropertyLocation b) {
516   return b == PropertyLocation::kField || a == PropertyLocation::kDescriptor;
517 }
518 
519 // PropertyConstness::kMutable constness is more general than
520 // VariableMode::kConst, VariableMode::kConst generalizes only to itself.
IsGeneralizableTo(PropertyConstness a,PropertyConstness b)521 inline bool IsGeneralizableTo(PropertyConstness a, PropertyConstness b) {
522   return b == PropertyConstness::kMutable || a == PropertyConstness::kConst;
523 }
524 
GeneralizeConstness(PropertyConstness a,PropertyConstness b)525 inline PropertyConstness GeneralizeConstness(PropertyConstness a,
526                                              PropertyConstness b) {
527   return a == PropertyConstness::kMutable ? PropertyConstness::kMutable : b;
528 }
529 
530 V8_EXPORT_PRIVATE std::ostream& operator<<(
531     std::ostream& os, const Representation& representation);
532 V8_EXPORT_PRIVATE std::ostream& operator<<(
533     std::ostream& os, const PropertyAttributes& attributes);
534 V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os,
535                                            PropertyConstness constness);
536 V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os,
537                                            PropertyCellType type);
538 }  // namespace internal
539 }  // namespace v8
540 
541 #endif  // V8_OBJECTS_PROPERTY_DETAILS_H_
542