1 // Copyright 2020 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/objects/string-table.h"
6
7 #include <atomic>
8
9 #include "src/base/atomicops.h"
10 #include "src/base/macros.h"
11 #include "src/common/assert-scope.h"
12 #include "src/common/globals.h"
13 #include "src/common/ptr-compr-inl.h"
14 #include "src/execution/isolate-utils-inl.h"
15 #include "src/heap/safepoint.h"
16 #include "src/objects/internal-index.h"
17 #include "src/objects/object-list-macros.h"
18 #include "src/objects/slots-inl.h"
19 #include "src/objects/slots.h"
20 #include "src/objects/string-inl.h"
21 #include "src/objects/string-table-inl.h"
22 #include "src/snapshot/deserializer.h"
23 #include "src/utils/allocation.h"
24 #include "src/utils/ostreams.h"
25
26 namespace v8 {
27 namespace internal {
28
29 namespace {
30
31 static constexpr int kStringTableMaxEmptyFactor = 4;
32 static constexpr int kStringTableMinCapacity = 2048;
33
StringTableHasSufficientCapacityToAdd(int capacity,int number_of_elements,int number_of_deleted_elements,int number_of_additional_elements)34 bool StringTableHasSufficientCapacityToAdd(int capacity, int number_of_elements,
35 int number_of_deleted_elements,
36 int number_of_additional_elements) {
37 int nof = number_of_elements + number_of_additional_elements;
38 // Return true if:
39 // 50% is still free after adding number_of_additional_elements elements and
40 // at most 50% of the free elements are deleted elements.
41 if ((nof < capacity) &&
42 ((number_of_deleted_elements <= (capacity - nof) / 2))) {
43 int needed_free = nof / 2;
44 if (nof + needed_free <= capacity) return true;
45 }
46 return false;
47 }
48
ComputeStringTableCapacity(int at_least_space_for)49 int ComputeStringTableCapacity(int at_least_space_for) {
50 // Add 50% slack to make slot collisions sufficiently unlikely.
51 // See matching computation in StringTableHasSufficientCapacityToAdd().
52 int raw_capacity = at_least_space_for + (at_least_space_for >> 1);
53 int capacity = base::bits::RoundUpToPowerOfTwo32(raw_capacity);
54 return std::max(capacity, kStringTableMinCapacity);
55 }
56
ComputeStringTableCapacityWithShrink(int current_capacity,int at_least_room_for)57 int ComputeStringTableCapacityWithShrink(int current_capacity,
58 int at_least_room_for) {
59 // Only shrink if the table is very empty to avoid performance penalty.
60 DCHECK_GE(current_capacity, kStringTableMinCapacity);
61 if (at_least_room_for > (current_capacity / kStringTableMaxEmptyFactor))
62 return current_capacity;
63
64 // Recalculate the smaller capacity actually needed.
65 int new_capacity = ComputeStringTableCapacity(at_least_room_for);
66 DCHECK_GE(new_capacity, at_least_room_for);
67 // Don't go lower than room for {kStringTableMinCapacity} elements.
68 if (new_capacity < kStringTableMinCapacity) return current_capacity;
69 return new_capacity;
70 }
71
72 template <typename IsolateT, typename StringTableKey>
KeyIsMatch(IsolateT * isolate,StringTableKey * key,String string)73 bool KeyIsMatch(IsolateT* isolate, StringTableKey* key, String string) {
74 if (string.hash() != key->hash()) return false;
75 if (string.length() != key->length()) return false;
76 return key->IsMatch(isolate, string);
77 }
78
79 } // namespace
80
81 // Data holds the actual data of the string table, including capacity and number
82 // of elements.
83 //
84 // It is a variable sized structure, with a "header" followed directly in memory
85 // by the elements themselves. These are accessed as offsets from the elements_
86 // field, which itself provides storage for the first element.
87 //
88 // The elements themselves are stored as an open-addressed hash table, with
89 // quadratic probing and Smi 0 and Smi 1 as the empty and deleted sentinels,
90 // respectively.
91 class StringTable::Data {
92 public:
93 static std::unique_ptr<Data> New(int capacity);
94 static std::unique_ptr<Data> Resize(PtrComprCageBase cage_base,
95 std::unique_ptr<Data> data, int capacity);
96
slot(InternalIndex index) const97 OffHeapObjectSlot slot(InternalIndex index) const {
98 return OffHeapObjectSlot(&elements_[index.as_uint32()]);
99 }
100
Get(PtrComprCageBase cage_base,InternalIndex index) const101 Object Get(PtrComprCageBase cage_base, InternalIndex index) const {
102 return slot(index).Acquire_Load(cage_base);
103 }
104
Set(InternalIndex index,String entry)105 void Set(InternalIndex index, String entry) {
106 slot(index).Release_Store(entry);
107 }
108
ElementAdded()109 void ElementAdded() {
110 DCHECK_LT(number_of_elements_ + 1, capacity());
111 DCHECK(StringTableHasSufficientCapacityToAdd(
112 capacity(), number_of_elements(), number_of_deleted_elements(), 1));
113
114 number_of_elements_++;
115 }
DeletedElementOverwritten()116 void DeletedElementOverwritten() {
117 DCHECK_LT(number_of_elements_ + 1, capacity());
118 DCHECK(StringTableHasSufficientCapacityToAdd(
119 capacity(), number_of_elements(), number_of_deleted_elements() - 1, 1));
120
121 number_of_elements_++;
122 number_of_deleted_elements_--;
123 }
ElementsRemoved(int count)124 void ElementsRemoved(int count) {
125 DCHECK_LE(count, number_of_elements_);
126 number_of_elements_ -= count;
127 number_of_deleted_elements_ += count;
128 }
129
130 void* operator new(size_t size, int capacity);
131 void* operator new(size_t size) = delete;
132 void operator delete(void* description);
133
capacity() const134 int capacity() const { return capacity_; }
number_of_elements() const135 int number_of_elements() const { return number_of_elements_; }
number_of_deleted_elements() const136 int number_of_deleted_elements() const { return number_of_deleted_elements_; }
137
138 template <typename IsolateT, typename StringTableKey>
139 InternalIndex FindEntry(IsolateT* isolate, StringTableKey* key,
140 uint32_t hash) const;
141
142 InternalIndex FindInsertionEntry(PtrComprCageBase cage_base,
143 uint32_t hash) const;
144
145 template <typename IsolateT, typename StringTableKey>
146 InternalIndex FindEntryOrInsertionEntry(IsolateT* isolate,
147 StringTableKey* key,
148 uint32_t hash) const;
149
150 // Helper method for StringTable::TryStringToIndexOrLookupExisting.
151 template <typename Char>
152 static Address TryStringToIndexOrLookupExisting(Isolate* isolate,
153 String string, String source,
154 size_t start);
155
156 void IterateElements(RootVisitor* visitor);
157
PreviousData()158 Data* PreviousData() { return previous_data_.get(); }
DropPreviousData()159 void DropPreviousData() { previous_data_.reset(); }
160
161 void Print(PtrComprCageBase cage_base) const;
162 size_t GetCurrentMemoryUsage() const;
163
164 private:
165 explicit Data(int capacity);
166
167 // Returns probe entry.
FirstProbe(uint32_t hash,uint32_t size)168 inline static InternalIndex FirstProbe(uint32_t hash, uint32_t size) {
169 return InternalIndex(hash & (size - 1));
170 }
171
NextProbe(InternalIndex last,uint32_t number,uint32_t size)172 inline static InternalIndex NextProbe(InternalIndex last, uint32_t number,
173 uint32_t size) {
174 return InternalIndex((last.as_uint32() + number) & (size - 1));
175 }
176
177 private:
178 std::unique_ptr<Data> previous_data_;
179 int number_of_elements_;
180 int number_of_deleted_elements_;
181 const int capacity_;
182 Tagged_t elements_[1];
183 };
184
operator new(size_t size,int capacity)185 void* StringTable::Data::operator new(size_t size, int capacity) {
186 // Make sure the size given is the size of the Data structure.
187 DCHECK_EQ(size, sizeof(StringTable::Data));
188 // Make sure that the elements_ array is at the end of Data, with no padding,
189 // so that subsequent elements can be accessed as offsets from elements_.
190 STATIC_ASSERT(offsetof(StringTable::Data, elements_) ==
191 sizeof(StringTable::Data) - sizeof(Tagged_t));
192 // Make sure that elements_ is aligned when StringTable::Data is aligned.
193 STATIC_ASSERT(
194 (alignof(StringTable::Data) + offsetof(StringTable::Data, elements_)) %
195 kTaggedSize ==
196 0);
197
198 // Subtract 1 from capacity, as the member elements_ already supplies the
199 // storage for the first element.
200 return AlignedAlloc(size + (capacity - 1) * sizeof(Tagged_t),
201 alignof(StringTable::Data));
202 }
203
operator delete(void * table)204 void StringTable::Data::operator delete(void* table) { AlignedFree(table); }
205
GetCurrentMemoryUsage() const206 size_t StringTable::Data::GetCurrentMemoryUsage() const {
207 size_t usage = sizeof(*this) + (capacity_ - 1) * sizeof(Tagged_t);
208 if (previous_data_) {
209 usage += previous_data_->GetCurrentMemoryUsage();
210 }
211 return usage;
212 }
213
Data(int capacity)214 StringTable::Data::Data(int capacity)
215 : previous_data_(nullptr),
216 number_of_elements_(0),
217 number_of_deleted_elements_(0),
218 capacity_(capacity) {
219 OffHeapObjectSlot first_slot = slot(InternalIndex(0));
220 MemsetTagged(first_slot, empty_element(), capacity);
221 }
222
New(int capacity)223 std::unique_ptr<StringTable::Data> StringTable::Data::New(int capacity) {
224 return std::unique_ptr<Data>(new (capacity) Data(capacity));
225 }
226
Resize(PtrComprCageBase cage_base,std::unique_ptr<Data> data,int capacity)227 std::unique_ptr<StringTable::Data> StringTable::Data::Resize(
228 PtrComprCageBase cage_base, std::unique_ptr<Data> data, int capacity) {
229 std::unique_ptr<Data> new_data(new (capacity) Data(capacity));
230
231 DCHECK_LT(data->number_of_elements(), new_data->capacity());
232 DCHECK(StringTableHasSufficientCapacityToAdd(
233 new_data->capacity(), new_data->number_of_elements(),
234 new_data->number_of_deleted_elements(), data->number_of_elements()));
235
236 // Rehash the elements.
237 for (InternalIndex i : InternalIndex::Range(data->capacity())) {
238 Object element = data->Get(cage_base, i);
239 if (element == empty_element() || element == deleted_element()) continue;
240 String string = String::cast(element);
241 uint32_t hash = string.hash();
242 InternalIndex insertion_index =
243 new_data->FindInsertionEntry(cage_base, hash);
244 new_data->Set(insertion_index, string);
245 }
246 new_data->number_of_elements_ = data->number_of_elements();
247
248 new_data->previous_data_ = std::move(data);
249 return new_data;
250 }
251
252 template <typename IsolateT, typename StringTableKey>
FindEntry(IsolateT * isolate,StringTableKey * key,uint32_t hash) const253 InternalIndex StringTable::Data::FindEntry(IsolateT* isolate,
254 StringTableKey* key,
255 uint32_t hash) const {
256 uint32_t count = 1;
257 // EnsureCapacity will guarantee the hash table is never full.
258 for (InternalIndex entry = FirstProbe(hash, capacity_);;
259 entry = NextProbe(entry, count++, capacity_)) {
260 // TODO(leszeks): Consider delaying the decompression until after the
261 // comparisons against empty/deleted.
262 Object element = Get(isolate, entry);
263 if (element == empty_element()) return InternalIndex::NotFound();
264 if (element == deleted_element()) continue;
265 String string = String::cast(element);
266 if (KeyIsMatch(isolate, key, string)) return entry;
267 }
268 }
269
FindInsertionEntry(PtrComprCageBase cage_base,uint32_t hash) const270 InternalIndex StringTable::Data::FindInsertionEntry(PtrComprCageBase cage_base,
271 uint32_t hash) const {
272 uint32_t count = 1;
273 // EnsureCapacity will guarantee the hash table is never full.
274 for (InternalIndex entry = FirstProbe(hash, capacity_);;
275 entry = NextProbe(entry, count++, capacity_)) {
276 // TODO(leszeks): Consider delaying the decompression until after the
277 // comparisons against empty/deleted.
278 Object element = Get(cage_base, entry);
279 if (element == empty_element() || element == deleted_element())
280 return entry;
281 }
282 }
283
284 template <typename IsolateT, typename StringTableKey>
FindEntryOrInsertionEntry(IsolateT * isolate,StringTableKey * key,uint32_t hash) const285 InternalIndex StringTable::Data::FindEntryOrInsertionEntry(
286 IsolateT* isolate, StringTableKey* key, uint32_t hash) const {
287 InternalIndex insertion_entry = InternalIndex::NotFound();
288 uint32_t count = 1;
289 // EnsureCapacity will guarantee the hash table is never full.
290 for (InternalIndex entry = FirstProbe(hash, capacity_);;
291 entry = NextProbe(entry, count++, capacity_)) {
292 // TODO(leszeks): Consider delaying the decompression until after the
293 // comparisons against empty/deleted.
294 Object element = Get(isolate, entry);
295 if (element == empty_element()) {
296 // Empty entry, it's our insertion entry if there was no previous Hole.
297 if (insertion_entry.is_not_found()) return entry;
298 return insertion_entry;
299 }
300
301 if (element == deleted_element()) {
302 // Holes are potential insertion candidates, but we continue the search
303 // in case we find the actual matching entry.
304 if (insertion_entry.is_not_found()) insertion_entry = entry;
305 continue;
306 }
307
308 String string = String::cast(element);
309 if (KeyIsMatch(isolate, key, string)) return entry;
310 }
311 }
312
IterateElements(RootVisitor * visitor)313 void StringTable::Data::IterateElements(RootVisitor* visitor) {
314 OffHeapObjectSlot first_slot = slot(InternalIndex(0));
315 OffHeapObjectSlot end_slot = slot(InternalIndex(capacity_));
316 visitor->VisitRootPointers(Root::kStringTable, nullptr, first_slot, end_slot);
317 }
318
Print(PtrComprCageBase cage_base) const319 void StringTable::Data::Print(PtrComprCageBase cage_base) const {
320 OFStream os(stdout);
321 os << "StringTable {" << std::endl;
322 for (InternalIndex i : InternalIndex::Range(capacity_)) {
323 os << " " << i.as_uint32() << ": " << Brief(Get(cage_base, i))
324 << std::endl;
325 }
326 os << "}" << std::endl;
327 }
328
StringTable(Isolate * isolate)329 StringTable::StringTable(Isolate* isolate)
330 : data_(Data::New(kStringTableMinCapacity).release()), isolate_(isolate) {}
331
~StringTable()332 StringTable::~StringTable() { delete data_; }
333
Capacity() const334 int StringTable::Capacity() const {
335 return data_.load(std::memory_order_acquire)->capacity();
336 }
NumberOfElements() const337 int StringTable::NumberOfElements() const {
338 {
339 base::MutexGuard table_write_guard(&write_mutex_);
340 return data_.load(std::memory_order_relaxed)->number_of_elements();
341 }
342 }
343
344 // InternalizedStringKey carries a string/internalized-string object as key.
345 class InternalizedStringKey final : public StringTableKey {
346 public:
InternalizedStringKey(Handle<String> string)347 explicit InternalizedStringKey(Handle<String> string)
348 : StringTableKey(0, string->length()), string_(string) {
349 // When sharing the string table, it's possible that another thread already
350 // internalized the key, in which case StringTable::LookupKey will perform a
351 // redundant lookup and return the already internalized copy.
352 DCHECK_IMPLIES(!FLAG_shared_string_table, !string->IsInternalizedString());
353 DCHECK(string->IsFlat());
354 // Make sure hash_field is computed.
355 string->EnsureHash();
356 set_raw_hash_field(string->raw_hash_field());
357 }
358
IsMatch(Isolate * isolate,String string)359 bool IsMatch(Isolate* isolate, String string) {
360 DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(string));
361 return string_->SlowEquals(string);
362 }
363
PrepareForInsertion(Isolate * isolate)364 void PrepareForInsertion(Isolate* isolate) {
365 StringTransitionStrategy strategy =
366 isolate->factory()->ComputeInternalizationStrategyForString(
367 string_, &maybe_internalized_map_);
368 switch (strategy) {
369 case StringTransitionStrategy::kCopy:
370 break;
371 case StringTransitionStrategy::kInPlace:
372 // In-place transition will be done in GetHandleForInsertion, when we
373 // are sure that we are going to insert the string into the table.
374 return;
375 case StringTransitionStrategy::kAlreadyTransitioned:
376 // We can see already internalized strings here only when sharing the
377 // string table and allowing concurrent internalization.
378 DCHECK(FLAG_shared_string_table);
379 return;
380 }
381
382 // Copying the string here is always threadsafe, as no instance type
383 // requiring a copy can transition any further.
384 StringShape shape(*string_);
385 // External strings get special treatment, to avoid copying their
386 // contents as long as they are not uncached.
387 if (shape.IsExternalOneByte() && !shape.IsUncachedExternal()) {
388 // TODO(syg): External strings not yet supported.
389 DCHECK(!FLAG_shared_string_table);
390 string_ =
391 isolate->factory()->InternalizeExternalString<ExternalOneByteString>(
392 string_);
393 } else if (shape.IsExternalTwoByte() && !shape.IsUncachedExternal()) {
394 // TODO(syg): External strings not yet supported.
395 DCHECK(!FLAG_shared_string_table);
396 string_ =
397 isolate->factory()->InternalizeExternalString<ExternalTwoByteString>(
398 string_);
399 } else {
400 // Otherwise allocate a new internalized string.
401 string_ = isolate->factory()->NewInternalizedStringImpl(
402 string_, string_->length(), string_->raw_hash_field());
403 }
404 }
405
GetHandleForInsertion()406 Handle<String> GetHandleForInsertion() {
407 Handle<Map> internalized_map;
408 // When preparing the string, the strategy was to in-place migrate it.
409 if (maybe_internalized_map_.ToHandle(&internalized_map)) {
410 // It is always safe to overwrite the map. The only transition possible
411 // is another thread migrated the string to internalized already.
412 // Migrations to thin are impossible, as we only call this method on table
413 // misses inside the critical section.
414 string_->set_map_no_write_barrier(*internalized_map);
415 DCHECK(string_->IsInternalizedString());
416 return string_;
417 }
418 // We prepared an internalized copy for the string or the string was already
419 // internalized.
420 // In theory we could have created a copy of a SeqString in young generation
421 // that has been promoted to old space by now. In that case we could
422 // in-place migrate the original string instead of internalizing the copy
423 // and migrating the original string to a ThinString. This scenario doesn't
424 // seem to be common enough to justify re-computing the strategy here.
425 return string_;
426 }
427
428 private:
429 Handle<String> string_;
430 MaybeHandle<Map> maybe_internalized_map_;
431 };
432
LookupString(Isolate * isolate,Handle<String> string)433 Handle<String> StringTable::LookupString(Isolate* isolate,
434 Handle<String> string) {
435 // When sharing the string table, internalization is allowed to be concurrent
436 // from multiple Isolates, assuming that:
437 //
438 // - All in-place internalizable strings (i.e. old-generation flat strings)
439 // and internalized strings are in the shared heap.
440 // - LookupKey supports concurrent access (see comment below).
441 //
442 // These assumptions guarantee the following properties:
443 //
444 // - String::Flatten is not threadsafe but is only called on non-shared
445 // strings, since non-flat strings are not shared.
446 //
447 // - String::ComputeAndSetHash is threadsafe on flat strings. This is safe
448 // because the characters are immutable and the same hash will be
449 // computed. The hash field is set with relaxed memory order. A thread that
450 // doesn't see the hash may do redundant work but will not be incorrect.
451 //
452 // - In-place internalizable strings do not incur a copy regardless of string
453 // table sharing. The map mutation is threadsafe even with relaxed memory
454 // order, because for concurrent table lookups, the "losing" thread will be
455 // correctly ordered by LookupKey's write mutex and see the updated map
456 // during the re-lookup.
457 //
458 // For lookup misses, the internalized string map is the same map in RO space
459 // regardless of which thread is doing the lookup.
460 //
461 // For lookup hits, String::MakeThin is threadsafe and spinlocks on
462 // migrating into a ThinString.
463
464 string = String::Flatten(isolate, string);
465 if (string->IsInternalizedString()) return string;
466
467 InternalizedStringKey key(string);
468 Handle<String> result = LookupKey(isolate, &key);
469
470 if (!string->IsInternalizedString()) {
471 string->MakeThin(isolate, *result);
472 }
473
474 return result;
475 }
476
477 template <typename StringTableKey, typename IsolateT>
LookupKey(IsolateT * isolate,StringTableKey * key)478 Handle<String> StringTable::LookupKey(IsolateT* isolate, StringTableKey* key) {
479 // String table lookups are allowed to be concurrent, assuming that:
480 //
481 // - The Heap access is allowed to be concurrent (using LocalHeap or
482 // similar),
483 // - All writes to the string table are guarded by the Isolate string table
484 // mutex,
485 // - Resizes of the string table first copies the old contents to the new
486 // table, and only then sets the new string table pointer to the new
487 // table,
488 // - Only GCs can remove elements from the string table.
489 //
490 // These assumptions allow us to make the following statement:
491 //
492 // "Reads are allowed when not holding the lock, as long as false negatives
493 // (misses) are ok. We will never get a false positive (hit of an entry no
494 // longer in the table)"
495 //
496 // This is because we _know_ that if we find an entry in the string table, any
497 // entry will also be in all reallocations of that tables. This is required
498 // for strong consistency of internalized string equality implying reference
499 // equality.
500 //
501 // We therefore try to optimistically read from the string table without
502 // taking the lock (both here and in the NoAllocate version of the lookup),
503 // and on a miss we take the lock and try to write the entry, with a second
504 // read lookup in case the non-locked read missed a write.
505 //
506 // One complication is allocation -- we don't want to allocate while holding
507 // the string table lock. This applies to both allocation of new strings, and
508 // re-allocation of the string table on resize. So, we optimistically allocate
509 // (without copying values) outside the lock, and potentially discard the
510 // allocation if another write also did an allocation. This assumes that
511 // writes are rarer than reads.
512
513 // Load the current string table data, in case another thread updates the
514 // data while we're reading.
515 const Data* current_data = data_.load(std::memory_order_acquire);
516
517 // First try to find the string in the table. This is safe to do even if the
518 // table is now reallocated; we won't find a stale entry in the old table
519 // because the new table won't delete it's corresponding entry until the
520 // string is dead, in which case it will die in this table too and worst
521 // case we'll have a false miss.
522 InternalIndex entry = current_data->FindEntry(isolate, key, key->hash());
523 if (entry.is_found()) {
524 Handle<String> result(String::cast(current_data->Get(isolate, entry)),
525 isolate);
526 DCHECK_IMPLIES(FLAG_shared_string_table, result->InSharedHeap());
527 return result;
528 }
529
530 // No entry found, so adding new string.
531 key->PrepareForInsertion(isolate);
532 {
533 base::MutexGuard table_write_guard(&write_mutex_);
534
535 Data* data = EnsureCapacity(isolate, 1);
536
537 // Check one last time if the key is present in the table, in case it was
538 // added after the check.
539 entry = data->FindEntryOrInsertionEntry(isolate, key, key->hash());
540
541 Object element = data->Get(isolate, entry);
542 if (element == empty_element()) {
543 // This entry is empty, so write it and register that we added an
544 // element.
545 Handle<String> new_string = key->GetHandleForInsertion();
546 DCHECK_IMPLIES(FLAG_shared_string_table, new_string->IsShared());
547 data->Set(entry, *new_string);
548 data->ElementAdded();
549 return new_string;
550 } else if (element == deleted_element()) {
551 // This entry was deleted, so overwrite it and register that we
552 // overwrote a deleted element.
553 Handle<String> new_string = key->GetHandleForInsertion();
554 DCHECK_IMPLIES(FLAG_shared_string_table, new_string->IsShared());
555 data->Set(entry, *new_string);
556 data->DeletedElementOverwritten();
557 return new_string;
558 } else {
559 // Return the existing string as a handle.
560 return handle(String::cast(element), isolate);
561 }
562 }
563 }
564
565 template Handle<String> StringTable::LookupKey(Isolate* isolate,
566 OneByteStringKey* key);
567 template Handle<String> StringTable::LookupKey(Isolate* isolate,
568 TwoByteStringKey* key);
569 template Handle<String> StringTable::LookupKey(Isolate* isolate,
570 SeqOneByteSubStringKey* key);
571 template Handle<String> StringTable::LookupKey(Isolate* isolate,
572 SeqTwoByteSubStringKey* key);
573
574 template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
575 OneByteStringKey* key);
576 template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
577 TwoByteStringKey* key);
578
579 template Handle<String> StringTable::LookupKey(Isolate* isolate,
580 StringTableInsertionKey* key);
581 template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
582 StringTableInsertionKey* key);
583
EnsureCapacity(PtrComprCageBase cage_base,int additional_elements)584 StringTable::Data* StringTable::EnsureCapacity(PtrComprCageBase cage_base,
585 int additional_elements) {
586 // This call is only allowed while the write mutex is held.
587 write_mutex_.AssertHeld();
588
589 // This load can be relaxed as the table pointer can only be modified while
590 // the lock is held.
591 Data* data = data_.load(std::memory_order_relaxed);
592
593 // Grow or shrink table if needed. We first try to shrink the table, if it
594 // is sufficiently empty; otherwise we make sure to grow it so that it has
595 // enough space.
596 int current_capacity = data->capacity();
597 int current_nof = data->number_of_elements();
598 int capacity_after_shrinking =
599 ComputeStringTableCapacityWithShrink(current_capacity, current_nof + 1);
600
601 int new_capacity = -1;
602 if (capacity_after_shrinking < current_capacity) {
603 DCHECK(StringTableHasSufficientCapacityToAdd(capacity_after_shrinking,
604 current_nof, 0, 1));
605 new_capacity = capacity_after_shrinking;
606 } else if (!StringTableHasSufficientCapacityToAdd(
607 current_capacity, current_nof,
608 data->number_of_deleted_elements(), 1)) {
609 new_capacity = ComputeStringTableCapacity(current_nof + 1);
610 }
611
612 if (new_capacity != -1) {
613 std::unique_ptr<Data> new_data =
614 Data::Resize(cage_base, std::unique_ptr<Data>(data), new_capacity);
615 // `new_data` is the new owner of `data`.
616 DCHECK_EQ(new_data->PreviousData(), data);
617 // Release-store the new data pointer as `data_`, so that it can be
618 // acquire-loaded by other threads. This string table becomes the owner of
619 // the pointer.
620 data = new_data.release();
621 data_.store(data, std::memory_order_release);
622 }
623
624 return data;
625 }
626
627 // static
628 template <typename Char>
TryStringToIndexOrLookupExisting(Isolate * isolate,String string,String source,size_t start)629 Address StringTable::Data::TryStringToIndexOrLookupExisting(Isolate* isolate,
630 String string,
631 String source,
632 size_t start) {
633 // TODO(leszeks): This method doesn't really belong on StringTable::Data.
634 // Ideally it would be a free function in an anonymous namespace, but that
635 // causes issues around method and class visibility.
636
637 DisallowGarbageCollection no_gc;
638 uint64_t seed = HashSeed(isolate);
639
640 int length = string.length();
641
642 std::unique_ptr<Char[]> buffer;
643 const Char* chars;
644
645 SharedStringAccessGuardIfNeeded access_guard(isolate);
646 if (source.IsConsString(isolate)) {
647 DCHECK(!source.IsFlat(isolate));
648 buffer.reset(new Char[length]);
649 String::WriteToFlat(source, buffer.get(), 0, length, isolate, access_guard);
650 chars = buffer.get();
651 } else {
652 chars = source.GetChars<Char>(isolate, no_gc, access_guard) + start;
653 }
654 // TODO(verwaest): Internalize to one-byte when possible.
655 SequentialStringKey<Char> key(base::Vector<const Char>(chars, length), seed);
656
657 // String could be an array index.
658 uint32_t raw_hash_field = key.raw_hash_field();
659
660 if (Name::ContainsCachedArrayIndex(raw_hash_field)) {
661 return Smi::FromInt(String::ArrayIndexValueBits::decode(raw_hash_field))
662 .ptr();
663 }
664
665 if (Name::IsIntegerIndex(raw_hash_field)) {
666 // It is an index, but it's not cached.
667 return Smi::FromInt(ResultSentinel::kUnsupported).ptr();
668 }
669
670 Data* string_table_data =
671 isolate->string_table()->data_.load(std::memory_order_acquire);
672
673 InternalIndex entry = string_table_data->FindEntry(isolate, &key, key.hash());
674 if (entry.is_not_found()) {
675 // A string that's not an array index, and not in the string table,
676 // cannot have been used as a property name before.
677 return Smi::FromInt(ResultSentinel::kNotFound).ptr();
678 }
679
680 String internalized = String::cast(string_table_data->Get(isolate, entry));
681 // string can be internalized here, if another thread internalized it.
682 // If we found and entry in the string table and string is not internalized,
683 // there is no way that it can transition to internalized later on. So a last
684 // check here is sufficient.
685 if (!string.IsInternalizedString()) {
686 string.MakeThin(isolate, internalized);
687 } else {
688 DCHECK(FLAG_shared_string_table);
689 }
690 return internalized.ptr();
691 }
692
693 // static
TryStringToIndexOrLookupExisting(Isolate * isolate,Address raw_string)694 Address StringTable::TryStringToIndexOrLookupExisting(Isolate* isolate,
695 Address raw_string) {
696 String string = String::cast(Object(raw_string));
697 if (string.IsInternalizedString()) {
698 // string could be internalized, if the string table is shared and another
699 // thread internalized it.
700 DCHECK(FLAG_shared_string_table);
701 return raw_string;
702 }
703
704 // Valid array indices are >= 0, so they cannot be mixed up with any of
705 // the result sentinels, which are negative.
706 STATIC_ASSERT(
707 !String::ArrayIndexValueBits::is_valid(ResultSentinel::kUnsupported));
708 STATIC_ASSERT(
709 !String::ArrayIndexValueBits::is_valid(ResultSentinel::kNotFound));
710
711 size_t start = 0;
712 String source = string;
713 if (source.IsSlicedString()) {
714 SlicedString sliced = SlicedString::cast(source);
715 start = sliced.offset();
716 source = sliced.parent();
717 } else if (source.IsConsString() && source.IsFlat()) {
718 source = ConsString::cast(source).first();
719 }
720 if (source.IsThinString()) {
721 source = ThinString::cast(source).actual();
722 if (string.length() == source.length()) {
723 return source.ptr();
724 }
725 }
726
727 if (source.IsOneByteRepresentation()) {
728 return StringTable::Data::TryStringToIndexOrLookupExisting<uint8_t>(
729 isolate, string, source, start);
730 }
731 return StringTable::Data::TryStringToIndexOrLookupExisting<uint16_t>(
732 isolate, string, source, start);
733 }
734
Print(PtrComprCageBase cage_base) const735 void StringTable::Print(PtrComprCageBase cage_base) const {
736 data_.load(std::memory_order_acquire)->Print(cage_base);
737 }
738
GetCurrentMemoryUsage() const739 size_t StringTable::GetCurrentMemoryUsage() const {
740 return sizeof(*this) +
741 data_.load(std::memory_order_acquire)->GetCurrentMemoryUsage();
742 }
743
IterateElements(RootVisitor * visitor)744 void StringTable::IterateElements(RootVisitor* visitor) {
745 // This should only happen during garbage collection when background threads
746 // are paused, so the load can be relaxed.
747 isolate_->heap()->safepoint()->AssertActive();
748 data_.load(std::memory_order_relaxed)->IterateElements(visitor);
749 }
750
DropOldData()751 void StringTable::DropOldData() {
752 // This should only happen during garbage collection when background threads
753 // are paused, so the load can be relaxed.
754 isolate_->heap()->safepoint()->AssertActive();
755 DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
756 data_.load(std::memory_order_relaxed)->DropPreviousData();
757 }
758
NotifyElementsRemoved(int count)759 void StringTable::NotifyElementsRemoved(int count) {
760 // This should only happen during garbage collection when background threads
761 // are paused, so the load can be relaxed.
762 isolate_->heap()->safepoint()->AssertActive();
763 DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
764 data_.load(std::memory_order_relaxed)->ElementsRemoved(count);
765 }
766
UpdateCountersIfOwnedBy(Isolate * isolate)767 void StringTable::UpdateCountersIfOwnedBy(Isolate* isolate) {
768 DCHECK_EQ(isolate->string_table(), this);
769 if (!isolate->OwnsStringTable()) return;
770 isolate->counters()->string_table_capacity()->Set(Capacity());
771 isolate->counters()->number_of_symbols()->Set(NumberOfElements());
772 }
773
774 } // namespace internal
775 } // namespace v8
776