1 // Copyright 2017 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/wasm/wasm-serialization.h"
6
7 #include "src/base/platform/wrappers.h"
8 #include "src/codegen/assembler-inl.h"
9 #include "src/codegen/external-reference-table.h"
10 #include "src/objects/objects-inl.h"
11 #include "src/objects/objects.h"
12 #include "src/runtime/runtime.h"
13 #include "src/snapshot/code-serializer.h"
14 #include "src/utils/ostreams.h"
15 #include "src/utils/utils.h"
16 #include "src/utils/version.h"
17 #include "src/wasm/code-space-access.h"
18 #include "src/wasm/function-compiler.h"
19 #include "src/wasm/module-compiler.h"
20 #include "src/wasm/module-decoder.h"
21 #include "src/wasm/wasm-code-manager.h"
22 #include "src/wasm/wasm-engine.h"
23 #include "src/wasm/wasm-module.h"
24 #include "src/wasm/wasm-objects-inl.h"
25 #include "src/wasm/wasm-objects.h"
26 #include "src/wasm/wasm-result.h"
27
28 namespace v8 {
29 namespace internal {
30 namespace wasm {
31
32 namespace {
33 constexpr uint8_t kLazyFunction = 2;
34 constexpr uint8_t kLiftoffFunction = 3;
35 constexpr uint8_t kTurboFanFunction = 4;
36
37 // TODO(bbudge) Try to unify the various implementations of readers and writers
38 // in Wasm, e.g. StreamProcessor and ZoneBuffer, with these.
39 class Writer {
40 public:
Writer(base::Vector<byte> buffer)41 explicit Writer(base::Vector<byte> buffer)
42 : start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}
43
bytes_written() const44 size_t bytes_written() const { return pos_ - start_; }
current_location() const45 byte* current_location() const { return pos_; }
current_size() const46 size_t current_size() const { return end_ - pos_; }
current_buffer() const47 base::Vector<byte> current_buffer() const {
48 return {current_location(), current_size()};
49 }
50
51 template <typename T>
Write(const T & value)52 void Write(const T& value) {
53 DCHECK_GE(current_size(), sizeof(T));
54 WriteUnalignedValue(reinterpret_cast<Address>(current_location()), value);
55 pos_ += sizeof(T);
56 if (FLAG_trace_wasm_serialization) {
57 StdoutStream{} << "wrote: " << static_cast<size_t>(value)
58 << " sized: " << sizeof(T) << std::endl;
59 }
60 }
61
WriteVector(const base::Vector<const byte> v)62 void WriteVector(const base::Vector<const byte> v) {
63 DCHECK_GE(current_size(), v.size());
64 if (v.size() > 0) {
65 memcpy(current_location(), v.begin(), v.size());
66 pos_ += v.size();
67 }
68 if (FLAG_trace_wasm_serialization) {
69 StdoutStream{} << "wrote vector of " << v.size() << " elements"
70 << std::endl;
71 }
72 }
73
Skip(size_t size)74 void Skip(size_t size) { pos_ += size; }
75
76 private:
77 byte* const start_;
78 byte* const end_;
79 byte* pos_;
80 };
81
82 class Reader {
83 public:
Reader(base::Vector<const byte> buffer)84 explicit Reader(base::Vector<const byte> buffer)
85 : start_(buffer.begin()), end_(buffer.end()), pos_(buffer.begin()) {}
86
bytes_read() const87 size_t bytes_read() const { return pos_ - start_; }
current_location() const88 const byte* current_location() const { return pos_; }
current_size() const89 size_t current_size() const { return end_ - pos_; }
current_buffer() const90 base::Vector<const byte> current_buffer() const {
91 return {current_location(), current_size()};
92 }
93
94 template <typename T>
Read()95 T Read() {
96 DCHECK_GE(current_size(), sizeof(T));
97 T value =
98 ReadUnalignedValue<T>(reinterpret_cast<Address>(current_location()));
99 pos_ += sizeof(T);
100 if (FLAG_trace_wasm_serialization) {
101 StdoutStream{} << "read: " << static_cast<size_t>(value)
102 << " sized: " << sizeof(T) << std::endl;
103 }
104 return value;
105 }
106
107 template <typename T>
ReadVector(size_t size)108 base::Vector<const T> ReadVector(size_t size) {
109 DCHECK_GE(current_size(), size);
110 base::Vector<const byte> bytes{pos_, size * sizeof(T)};
111 pos_ += size * sizeof(T);
112 if (FLAG_trace_wasm_serialization) {
113 StdoutStream{} << "read vector of " << size << " elements of size "
114 << sizeof(T) << " (total size " << size * sizeof(T) << ")"
115 << std::endl;
116 }
117 return base::Vector<const T>::cast(bytes);
118 }
119
Skip(size_t size)120 void Skip(size_t size) { pos_ += size; }
121
122 private:
123 const byte* const start_;
124 const byte* const end_;
125 const byte* pos_;
126 };
127
WriteHeader(Writer * writer)128 void WriteHeader(Writer* writer) {
129 writer->Write(SerializedData::kMagicNumber);
130 writer->Write(Version::Hash());
131 writer->Write(static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
132 writer->Write(FlagList::Hash());
133 DCHECK_EQ(WasmSerializer::kHeaderSize, writer->bytes_written());
134 }
135
136 // On Intel, call sites are encoded as a displacement. For linking and for
137 // serialization/deserialization, we want to store/retrieve a tag (the function
138 // index). On Intel, that means accessing the raw displacement.
139 // On ARM64, call sites are encoded as either a literal load or a direct branch.
140 // Other platforms simply require accessing the target address.
SetWasmCalleeTag(RelocInfo * rinfo,uint32_t tag)141 void SetWasmCalleeTag(RelocInfo* rinfo, uint32_t tag) {
142 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
143 DCHECK(rinfo->HasTargetAddressAddress());
144 DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
145 WriteUnalignedValue(rinfo->target_address_address(), tag);
146 #elif V8_TARGET_ARCH_ARM64
147 Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
148 if (instr->IsLdrLiteralX()) {
149 WriteUnalignedValue(rinfo->constant_pool_entry_address(),
150 static_cast<Address>(tag));
151 } else {
152 DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
153 instr->SetBranchImmTarget(
154 reinterpret_cast<Instruction*>(rinfo->pc() + tag * kInstrSize));
155 }
156 #else
157 Address addr = static_cast<Address>(tag);
158 if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
159 rinfo->set_target_external_reference(addr, SKIP_ICACHE_FLUSH);
160 } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
161 rinfo->set_wasm_stub_call_address(addr, SKIP_ICACHE_FLUSH);
162 } else {
163 rinfo->set_target_address(addr, SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH);
164 }
165 #endif
166 }
167
GetWasmCalleeTag(RelocInfo * rinfo)168 uint32_t GetWasmCalleeTag(RelocInfo* rinfo) {
169 #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
170 DCHECK(!RelocInfo::IsCompressedEmbeddedObject(rinfo->rmode()));
171 return ReadUnalignedValue<uint32_t>(rinfo->target_address_address());
172 #elif V8_TARGET_ARCH_ARM64
173 Instruction* instr = reinterpret_cast<Instruction*>(rinfo->pc());
174 if (instr->IsLdrLiteralX()) {
175 return ReadUnalignedValue<uint32_t>(rinfo->constant_pool_entry_address());
176 } else {
177 DCHECK(instr->IsBranchAndLink() || instr->IsUnconditionalBranch());
178 return static_cast<uint32_t>(instr->ImmPCOffset() / kInstrSize);
179 }
180 #else
181 Address addr;
182 if (rinfo->rmode() == RelocInfo::EXTERNAL_REFERENCE) {
183 addr = rinfo->target_external_reference();
184 } else if (rinfo->rmode() == RelocInfo::WASM_STUB_CALL) {
185 addr = rinfo->wasm_stub_call_address();
186 } else {
187 addr = rinfo->target_address();
188 }
189 return static_cast<uint32_t>(addr);
190 #endif
191 }
192
193 constexpr size_t kHeaderSize = sizeof(size_t); // total code size
194
195 constexpr size_t kCodeHeaderSize = sizeof(uint8_t) + // code kind
196 sizeof(int) + // offset of constant pool
197 sizeof(int) + // offset of safepoint table
198 sizeof(int) + // offset of handler table
199 sizeof(int) + // offset of code comments
200 sizeof(int) + // unpadded binary size
201 sizeof(int) + // stack slots
202 sizeof(int) + // tagged parameter slots
203 sizeof(int) + // code size
204 sizeof(int) + // reloc size
205 sizeof(int) + // source positions size
206 sizeof(int) + // protected instructions size
207 sizeof(WasmCode::Kind) + // code kind
208 sizeof(ExecutionTier); // tier
209
210 // A List of all isolate-independent external references. This is used to create
211 // a tag from the Address of an external reference and vice versa.
212 class ExternalReferenceList {
213 public:
214 ExternalReferenceList(const ExternalReferenceList&) = delete;
215 ExternalReferenceList& operator=(const ExternalReferenceList&) = delete;
216
tag_from_address(Address ext_ref_address) const217 uint32_t tag_from_address(Address ext_ref_address) const {
218 auto tag_addr_less_than = [this](uint32_t tag, Address searched_addr) {
219 return external_reference_by_tag_[tag] < searched_addr;
220 };
221 auto it = std::lower_bound(std::begin(tags_ordered_by_address_),
222 std::end(tags_ordered_by_address_),
223 ext_ref_address, tag_addr_less_than);
224 DCHECK_NE(std::end(tags_ordered_by_address_), it);
225 uint32_t tag = *it;
226 DCHECK_EQ(address_from_tag(tag), ext_ref_address);
227 return tag;
228 }
229
address_from_tag(uint32_t tag) const230 Address address_from_tag(uint32_t tag) const {
231 DCHECK_GT(kNumExternalReferences, tag);
232 return external_reference_by_tag_[tag];
233 }
234
Get()235 static const ExternalReferenceList& Get() {
236 static ExternalReferenceList list; // Lazily initialized.
237 return list;
238 }
239
240 private:
241 // Private constructor. There will only be a single instance of this object.
ExternalReferenceList()242 ExternalReferenceList() {
243 for (uint32_t i = 0; i < kNumExternalReferences; ++i) {
244 tags_ordered_by_address_[i] = i;
245 }
246 auto addr_by_tag_less_than = [this](uint32_t a, uint32_t b) {
247 return external_reference_by_tag_[a] < external_reference_by_tag_[b];
248 };
249 std::sort(std::begin(tags_ordered_by_address_),
250 std::end(tags_ordered_by_address_), addr_by_tag_less_than);
251 }
252
253 #define COUNT_EXTERNAL_REFERENCE(name, ...) +1
254 static constexpr uint32_t kNumExternalReferencesList =
255 EXTERNAL_REFERENCE_LIST(COUNT_EXTERNAL_REFERENCE);
256 static constexpr uint32_t kNumExternalReferencesIntrinsics =
257 FOR_EACH_INTRINSIC(COUNT_EXTERNAL_REFERENCE);
258 static constexpr uint32_t kNumExternalReferences =
259 kNumExternalReferencesList + kNumExternalReferencesIntrinsics;
260 #undef COUNT_EXTERNAL_REFERENCE
261
262 Address external_reference_by_tag_[kNumExternalReferences] = {
263 #define EXT_REF_ADDR(name, desc) ExternalReference::name().address(),
264 EXTERNAL_REFERENCE_LIST(EXT_REF_ADDR)
265 #undef EXT_REF_ADDR
266 #define RUNTIME_ADDR(name, ...) \
267 ExternalReference::Create(Runtime::k##name).address(),
268 FOR_EACH_INTRINSIC(RUNTIME_ADDR)
269 #undef RUNTIME_ADDR
270 };
271 uint32_t tags_ordered_by_address_[kNumExternalReferences];
272 };
273
274 static_assert(std::is_trivially_destructible<ExternalReferenceList>::value,
275 "static destructors not allowed");
276
277 } // namespace
278
279 class V8_EXPORT_PRIVATE NativeModuleSerializer {
280 public:
281 NativeModuleSerializer(const NativeModule*, base::Vector<WasmCode* const>);
282 NativeModuleSerializer(const NativeModuleSerializer&) = delete;
283 NativeModuleSerializer& operator=(const NativeModuleSerializer&) = delete;
284
285 size_t Measure() const;
286 bool Write(Writer* writer);
287
288 private:
289 size_t MeasureCode(const WasmCode*) const;
290 void WriteHeader(Writer*, size_t total_code_size);
291 void WriteCode(const WasmCode*, Writer*);
292
293 const NativeModule* const native_module_;
294 const base::Vector<WasmCode* const> code_table_;
295 bool write_called_ = false;
296 size_t total_written_code_ = 0;
297 int num_turbofan_functions_ = 0;
298 };
299
NativeModuleSerializer(const NativeModule * module,base::Vector<WasmCode * const> code_table)300 NativeModuleSerializer::NativeModuleSerializer(
301 const NativeModule* module, base::Vector<WasmCode* const> code_table)
302 : native_module_(module), code_table_(code_table) {
303 DCHECK_NOT_NULL(native_module_);
304 // TODO(mtrofin): persist the export wrappers. Ideally, we'd only persist
305 // the unique ones, i.e. the cache.
306 }
307
MeasureCode(const WasmCode * code) const308 size_t NativeModuleSerializer::MeasureCode(const WasmCode* code) const {
309 if (code == nullptr) return sizeof(uint8_t);
310 DCHECK_EQ(WasmCode::kWasmFunction, code->kind());
311 if (code->tier() != ExecutionTier::kTurbofan) {
312 return sizeof(uint8_t);
313 }
314 return kCodeHeaderSize + code->instructions().size() +
315 code->reloc_info().size() + code->source_positions().size() +
316 code->protected_instructions_data().size();
317 }
318
Measure() const319 size_t NativeModuleSerializer::Measure() const {
320 size_t size = kHeaderSize;
321 for (WasmCode* code : code_table_) {
322 size += MeasureCode(code);
323 }
324 return size;
325 }
326
WriteHeader(Writer * writer,size_t total_code_size)327 void NativeModuleSerializer::WriteHeader(Writer* writer,
328 size_t total_code_size) {
329 // TODO(eholk): We need to properly preserve the flag whether the trap
330 // handler was used or not when serializing.
331
332 writer->Write(total_code_size);
333 }
334
WriteCode(const WasmCode * code,Writer * writer)335 void NativeModuleSerializer::WriteCode(const WasmCode* code, Writer* writer) {
336 if (code == nullptr) {
337 writer->Write(kLazyFunction);
338 return;
339 }
340
341 DCHECK_EQ(WasmCode::kWasmFunction, code->kind());
342 // Only serialize TurboFan code, as Liftoff code can contain breakpoints or
343 // non-relocatable constants.
344 if (code->tier() != ExecutionTier::kTurbofan) {
345 // We check if the function has been executed already. If so, we serialize
346 // it as {kLiftoffFunction} so that upon deserialization the function will
347 // get compiled with Liftoff eagerly. If the function has not been executed
348 // yet, we serialize it as {kLazyFunction}, and the function will not get
349 // compiled upon deserialization.
350 NativeModule* native_module = code->native_module();
351 uint32_t budget =
352 native_module->tiering_budget_array()[declared_function_index(
353 native_module->module(), code->index())];
354 writer->Write(budget == static_cast<uint32_t>(FLAG_wasm_tiering_budget)
355 ? kLazyFunction
356 : kLiftoffFunction);
357 return;
358 }
359
360 ++num_turbofan_functions_;
361 writer->Write(kTurboFanFunction);
362 // Write the size of the entire code section, followed by the code header.
363 writer->Write(code->constant_pool_offset());
364 writer->Write(code->safepoint_table_offset());
365 writer->Write(code->handler_table_offset());
366 writer->Write(code->code_comments_offset());
367 writer->Write(code->unpadded_binary_size());
368 writer->Write(code->stack_slots());
369 writer->Write(code->raw_tagged_parameter_slots_for_serialization());
370 writer->Write(code->instructions().length());
371 writer->Write(code->reloc_info().length());
372 writer->Write(code->source_positions().length());
373 writer->Write(code->protected_instructions_data().length());
374 writer->Write(code->kind());
375 writer->Write(code->tier());
376
377 // Get a pointer to the destination buffer, to hold relocated code.
378 byte* serialized_code_start = writer->current_buffer().begin();
379 byte* code_start = serialized_code_start;
380 size_t code_size = code->instructions().size();
381 writer->Skip(code_size);
382 // Write the reloc info, source positions, and protected code.
383 writer->WriteVector(code->reloc_info());
384 writer->WriteVector(code->source_positions());
385 writer->WriteVector(code->protected_instructions_data());
386 #if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_ARM || \
387 V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390X || \
388 V8_TARGET_ARCH_RISCV64
389 // On platforms that don't support misaligned word stores, copy to an aligned
390 // buffer if necessary so we can relocate the serialized code.
391 std::unique_ptr<byte[]> aligned_buffer;
392 if (!IsAligned(reinterpret_cast<Address>(serialized_code_start),
393 kSystemPointerSize)) {
394 // 'byte' does not guarantee an alignment but seems to work well enough in
395 // practice.
396 aligned_buffer.reset(new byte[code_size]);
397 code_start = aligned_buffer.get();
398 }
399 #endif
400 memcpy(code_start, code->instructions().begin(), code_size);
401 // Relocate the code.
402 int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
403 RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
404 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
405 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
406 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
407 RelocIterator orig_iter(code->instructions(), code->reloc_info(),
408 code->constant_pool(), mask);
409 for (RelocIterator iter(
410 {code_start, code->instructions().size()}, code->reloc_info(),
411 reinterpret_cast<Address>(code_start) + code->constant_pool_offset(),
412 mask);
413 !iter.done(); iter.next(), orig_iter.next()) {
414 RelocInfo::Mode mode = orig_iter.rinfo()->rmode();
415 switch (mode) {
416 case RelocInfo::WASM_CALL: {
417 Address orig_target = orig_iter.rinfo()->wasm_call_address();
418 uint32_t tag =
419 native_module_->GetFunctionIndexFromJumpTableSlot(orig_target);
420 SetWasmCalleeTag(iter.rinfo(), tag);
421 } break;
422 case RelocInfo::WASM_STUB_CALL: {
423 Address target = orig_iter.rinfo()->wasm_stub_call_address();
424 uint32_t tag = native_module_->GetRuntimeStubId(target);
425 DCHECK_GT(WasmCode::kRuntimeStubCount, tag);
426 SetWasmCalleeTag(iter.rinfo(), tag);
427 } break;
428 case RelocInfo::EXTERNAL_REFERENCE: {
429 Address orig_target = orig_iter.rinfo()->target_external_reference();
430 uint32_t ext_ref_tag =
431 ExternalReferenceList::Get().tag_from_address(orig_target);
432 SetWasmCalleeTag(iter.rinfo(), ext_ref_tag);
433 } break;
434 case RelocInfo::INTERNAL_REFERENCE:
435 case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
436 Address orig_target = orig_iter.rinfo()->target_internal_reference();
437 Address offset = orig_target - code->instruction_start();
438 Assembler::deserialization_set_target_internal_reference_at(
439 iter.rinfo()->pc(), offset, mode);
440 } break;
441 default:
442 UNREACHABLE();
443 }
444 }
445 // If we copied to an aligned buffer, copy code into serialized buffer.
446 if (code_start != serialized_code_start) {
447 memcpy(serialized_code_start, code_start, code_size);
448 }
449 total_written_code_ += code_size;
450 }
451
Write(Writer * writer)452 bool NativeModuleSerializer::Write(Writer* writer) {
453 DCHECK(!write_called_);
454 write_called_ = true;
455
456 size_t total_code_size = 0;
457 for (WasmCode* code : code_table_) {
458 if (code && code->tier() == ExecutionTier::kTurbofan) {
459 DCHECK(IsAligned(code->instructions().size(), kCodeAlignment));
460 total_code_size += code->instructions().size();
461 }
462 }
463 WriteHeader(writer, total_code_size);
464
465 for (WasmCode* code : code_table_) {
466 WriteCode(code, writer);
467 }
468 // If not a single function was written, serialization was not successful.
469 if (num_turbofan_functions_ == 0) return false;
470
471 // Make sure that the serialized total code size was correct.
472 CHECK_EQ(total_written_code_, total_code_size);
473
474 return true;
475 }
476
WasmSerializer(NativeModule * native_module)477 WasmSerializer::WasmSerializer(NativeModule* native_module)
478 : native_module_(native_module),
479 code_table_(native_module->SnapshotCodeTable()) {}
480
GetSerializedNativeModuleSize() const481 size_t WasmSerializer::GetSerializedNativeModuleSize() const {
482 NativeModuleSerializer serializer(native_module_,
483 base::VectorOf(code_table_));
484 return kHeaderSize + serializer.Measure();
485 }
486
SerializeNativeModule(base::Vector<byte> buffer) const487 bool WasmSerializer::SerializeNativeModule(base::Vector<byte> buffer) const {
488 NativeModuleSerializer serializer(native_module_,
489 base::VectorOf(code_table_));
490 size_t measured_size = kHeaderSize + serializer.Measure();
491 if (buffer.size() < measured_size) return false;
492
493 Writer writer(buffer);
494 WriteHeader(&writer);
495
496 if (!serializer.Write(&writer)) return false;
497 DCHECK_EQ(measured_size, writer.bytes_written());
498 return true;
499 }
500
501 struct DeserializationUnit {
502 base::Vector<const byte> src_code_buffer;
503 std::unique_ptr<WasmCode> code;
504 NativeModule::JumpTablesRef jump_tables;
505 };
506
507 class DeserializationQueue {
508 public:
Add(std::vector<DeserializationUnit> batch)509 void Add(std::vector<DeserializationUnit> batch) {
510 DCHECK(!batch.empty());
511 base::MutexGuard guard(&mutex_);
512 queue_.emplace(std::move(batch));
513 }
514
Pop()515 std::vector<DeserializationUnit> Pop() {
516 base::MutexGuard guard(&mutex_);
517 if (queue_.empty()) return {};
518 auto batch = std::move(queue_.front());
519 queue_.pop();
520 return batch;
521 }
522
PopAll()523 std::vector<DeserializationUnit> PopAll() {
524 base::MutexGuard guard(&mutex_);
525 if (queue_.empty()) return {};
526 auto units = std::move(queue_.front());
527 queue_.pop();
528 while (!queue_.empty()) {
529 units.insert(units.end(), std::make_move_iterator(queue_.front().begin()),
530 std::make_move_iterator(queue_.front().end()));
531 queue_.pop();
532 }
533 return units;
534 }
535
NumBatches() const536 size_t NumBatches() const {
537 base::MutexGuard guard(&mutex_);
538 return queue_.size();
539 }
540
541 private:
542 mutable base::Mutex mutex_;
543 std::queue<std::vector<DeserializationUnit>> queue_;
544 };
545
546 class V8_EXPORT_PRIVATE NativeModuleDeserializer {
547 public:
548 explicit NativeModuleDeserializer(NativeModule*);
549 NativeModuleDeserializer(const NativeModuleDeserializer&) = delete;
550 NativeModuleDeserializer& operator=(const NativeModuleDeserializer&) = delete;
551
552 bool Read(Reader* reader);
553
lazy_functions()554 base::Vector<const int> lazy_functions() {
555 return base::VectorOf(lazy_functions_);
556 }
557
liftoff_functions()558 base::Vector<const int> liftoff_functions() {
559 return base::VectorOf(liftoff_functions_);
560 }
561
562 private:
563 friend class DeserializeCodeTask;
564
565 void ReadHeader(Reader* reader);
566 DeserializationUnit ReadCode(int fn_index, Reader* reader);
567 void CopyAndRelocate(const DeserializationUnit& unit);
568 void Publish(std::vector<DeserializationUnit> batch);
569
570 NativeModule* const native_module_;
571 #ifdef DEBUG
572 bool read_called_ = false;
573 #endif
574
575 // Updated in {ReadCode}.
576 size_t remaining_code_size_ = 0;
577 base::Vector<byte> current_code_space_;
578 NativeModule::JumpTablesRef current_jump_tables_;
579 std::vector<int> lazy_functions_;
580 std::vector<int> liftoff_functions_;
581 };
582
583 class DeserializeCodeTask : public JobTask {
584 public:
DeserializeCodeTask(NativeModuleDeserializer * deserializer,DeserializationQueue * reloc_queue)585 DeserializeCodeTask(NativeModuleDeserializer* deserializer,
586 DeserializationQueue* reloc_queue)
587 : deserializer_(deserializer), reloc_queue_(reloc_queue) {}
588
Run(JobDelegate * delegate)589 void Run(JobDelegate* delegate) override {
590 CodeSpaceWriteScope code_space_write_scope(deserializer_->native_module_);
591 do {
592 // Repeatedly publish everything that was copied already.
593 TryPublishing(delegate);
594
595 auto batch = reloc_queue_->Pop();
596 if (batch.empty()) break;
597 for (const auto& unit : batch) {
598 deserializer_->CopyAndRelocate(unit);
599 }
600 publish_queue_.Add(std::move(batch));
601 delegate->NotifyConcurrencyIncrease();
602 } while (!delegate->ShouldYield());
603 }
604
GetMaxConcurrency(size_t) const605 size_t GetMaxConcurrency(size_t /* worker_count */) const override {
606 // Number of copy&reloc batches, plus 1 if there is also something to
607 // publish.
608 bool publish = publishing_.load(std::memory_order_relaxed) == false &&
609 publish_queue_.NumBatches() > 0;
610 return reloc_queue_->NumBatches() + (publish ? 1 : 0);
611 }
612
613 private:
TryPublishing(JobDelegate * delegate)614 void TryPublishing(JobDelegate* delegate) {
615 // Publishing is sequential, so only start publishing if no one else is.
616 if (publishing_.exchange(true, std::memory_order_relaxed)) return;
617
618 WasmCodeRefScope code_scope;
619 while (true) {
620 bool yield = false;
621 while (!yield) {
622 auto to_publish = publish_queue_.PopAll();
623 if (to_publish.empty()) break;
624 deserializer_->Publish(std::move(to_publish));
625 yield = delegate->ShouldYield();
626 }
627 publishing_.store(false, std::memory_order_relaxed);
628 if (yield) break;
629 // After finishing publishing, check again if new work arrived in the mean
630 // time. If so, continue publishing.
631 if (publish_queue_.NumBatches() == 0) break;
632 if (publishing_.exchange(true, std::memory_order_relaxed)) break;
633 // We successfully reset {publishing_} from {false} to {true}.
634 }
635 }
636
637 NativeModuleDeserializer* const deserializer_;
638 DeserializationQueue* const reloc_queue_;
639 DeserializationQueue publish_queue_;
640 std::atomic<bool> publishing_{false};
641 };
642
NativeModuleDeserializer(NativeModule * native_module)643 NativeModuleDeserializer::NativeModuleDeserializer(NativeModule* native_module)
644 : native_module_(native_module) {}
645
Read(Reader * reader)646 bool NativeModuleDeserializer::Read(Reader* reader) {
647 DCHECK(!read_called_);
648 #ifdef DEBUG
649 read_called_ = true;
650 #endif
651
652 ReadHeader(reader);
653 uint32_t total_fns = native_module_->num_functions();
654 uint32_t first_wasm_fn = native_module_->num_imported_functions();
655
656 WasmCodeRefScope wasm_code_ref_scope;
657
658 DeserializationQueue reloc_queue;
659
660 std::unique_ptr<JobHandle> job_handle = V8::GetCurrentPlatform()->PostJob(
661 TaskPriority::kUserVisible,
662 std::make_unique<DeserializeCodeTask>(this, &reloc_queue));
663
664 // Choose a batch size such that we do not create too small batches (>=100k
665 // code bytes), but also not too many (<=100 batches).
666 constexpr size_t kMinBatchSizeInBytes = 100000;
667 size_t batch_limit =
668 std::max(kMinBatchSizeInBytes, remaining_code_size_ / 100);
669
670 std::vector<DeserializationUnit> batch;
671 size_t batch_size = 0;
672 CodeSpaceWriteScope code_space_write_scope(native_module_);
673 for (uint32_t i = first_wasm_fn; i < total_fns; ++i) {
674 DeserializationUnit unit = ReadCode(i, reader);
675 if (!unit.code) continue;
676 batch_size += unit.code->instructions().size();
677 batch.emplace_back(std::move(unit));
678 if (batch_size >= batch_limit) {
679 reloc_queue.Add(std::move(batch));
680 DCHECK(batch.empty());
681 batch_size = 0;
682 job_handle->NotifyConcurrencyIncrease();
683 }
684 }
685
686 // We should have read the expected amount of code now, and should have fully
687 // utilized the allocated code space.
688 DCHECK_EQ(0, remaining_code_size_);
689 DCHECK_EQ(0, current_code_space_.size());
690
691 if (!batch.empty()) {
692 reloc_queue.Add(std::move(batch));
693 job_handle->NotifyConcurrencyIncrease();
694 }
695
696 // Wait for all tasks to finish, while participating in their work.
697 job_handle->Join();
698
699 return reader->current_size() == 0;
700 }
701
ReadHeader(Reader * reader)702 void NativeModuleDeserializer::ReadHeader(Reader* reader) {
703 remaining_code_size_ = reader->Read<size_t>();
704 }
705
ReadCode(int fn_index,Reader * reader)706 DeserializationUnit NativeModuleDeserializer::ReadCode(int fn_index,
707 Reader* reader) {
708 uint8_t code_kind = reader->Read<uint8_t>();
709 if (code_kind == kLazyFunction) {
710 lazy_functions_.push_back(fn_index);
711 return {};
712 }
713 if (code_kind == kLiftoffFunction) {
714 liftoff_functions_.push_back(fn_index);
715 return {};
716 }
717
718 int constant_pool_offset = reader->Read<int>();
719 int safepoint_table_offset = reader->Read<int>();
720 int handler_table_offset = reader->Read<int>();
721 int code_comment_offset = reader->Read<int>();
722 int unpadded_binary_size = reader->Read<int>();
723 int stack_slot_count = reader->Read<int>();
724 uint32_t tagged_parameter_slots = reader->Read<uint32_t>();
725 int code_size = reader->Read<int>();
726 int reloc_size = reader->Read<int>();
727 int source_position_size = reader->Read<int>();
728 int protected_instructions_size = reader->Read<int>();
729 WasmCode::Kind kind = reader->Read<WasmCode::Kind>();
730 ExecutionTier tier = reader->Read<ExecutionTier>();
731
732 DCHECK(IsAligned(code_size, kCodeAlignment));
733 DCHECK_GE(remaining_code_size_, code_size);
734 if (current_code_space_.size() < static_cast<size_t>(code_size)) {
735 // Allocate the next code space. Don't allocate more than 90% of
736 // {kMaxCodeSpaceSize}, to leave some space for jump tables.
737 constexpr size_t kMaxReservation =
738 RoundUp<kCodeAlignment>(WasmCodeAllocator::kMaxCodeSpaceSize * 9 / 10);
739 size_t code_space_size = std::min(kMaxReservation, remaining_code_size_);
740 std::tie(current_code_space_, current_jump_tables_) =
741 native_module_->AllocateForDeserializedCode(code_space_size);
742 DCHECK_EQ(current_code_space_.size(), code_space_size);
743 DCHECK(current_jump_tables_.is_valid());
744 }
745
746 DeserializationUnit unit;
747 unit.src_code_buffer = reader->ReadVector<byte>(code_size);
748 auto reloc_info = reader->ReadVector<byte>(reloc_size);
749 auto source_pos = reader->ReadVector<byte>(source_position_size);
750 auto protected_instructions =
751 reader->ReadVector<byte>(protected_instructions_size);
752
753 base::Vector<uint8_t> instructions =
754 current_code_space_.SubVector(0, code_size);
755 current_code_space_ += code_size;
756 remaining_code_size_ -= code_size;
757
758 unit.code = native_module_->AddDeserializedCode(
759 fn_index, instructions, stack_slot_count, tagged_parameter_slots,
760 safepoint_table_offset, handler_table_offset, constant_pool_offset,
761 code_comment_offset, unpadded_binary_size, protected_instructions,
762 reloc_info, source_pos, kind, tier);
763 unit.jump_tables = current_jump_tables_;
764 return unit;
765 }
766
CopyAndRelocate(const DeserializationUnit & unit)767 void NativeModuleDeserializer::CopyAndRelocate(
768 const DeserializationUnit& unit) {
769 memcpy(unit.code->instructions().begin(), unit.src_code_buffer.begin(),
770 unit.src_code_buffer.size());
771
772 // Relocate the code.
773 int mask = RelocInfo::ModeMask(RelocInfo::WASM_CALL) |
774 RelocInfo::ModeMask(RelocInfo::WASM_STUB_CALL) |
775 RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
776 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
777 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
778 for (RelocIterator iter(unit.code->instructions(), unit.code->reloc_info(),
779 unit.code->constant_pool(), mask);
780 !iter.done(); iter.next()) {
781 RelocInfo::Mode mode = iter.rinfo()->rmode();
782 switch (mode) {
783 case RelocInfo::WASM_CALL: {
784 uint32_t tag = GetWasmCalleeTag(iter.rinfo());
785 Address target =
786 native_module_->GetNearCallTargetForFunction(tag, unit.jump_tables);
787 iter.rinfo()->set_wasm_call_address(target, SKIP_ICACHE_FLUSH);
788 break;
789 }
790 case RelocInfo::WASM_STUB_CALL: {
791 uint32_t tag = GetWasmCalleeTag(iter.rinfo());
792 DCHECK_LT(tag, WasmCode::kRuntimeStubCount);
793 Address target = native_module_->GetNearRuntimeStubEntry(
794 static_cast<WasmCode::RuntimeStubId>(tag), unit.jump_tables);
795 iter.rinfo()->set_wasm_stub_call_address(target, SKIP_ICACHE_FLUSH);
796 break;
797 }
798 case RelocInfo::EXTERNAL_REFERENCE: {
799 uint32_t tag = GetWasmCalleeTag(iter.rinfo());
800 Address address = ExternalReferenceList::Get().address_from_tag(tag);
801 iter.rinfo()->set_target_external_reference(address, SKIP_ICACHE_FLUSH);
802 break;
803 }
804 case RelocInfo::INTERNAL_REFERENCE:
805 case RelocInfo::INTERNAL_REFERENCE_ENCODED: {
806 Address offset = iter.rinfo()->target_internal_reference();
807 Address target = unit.code->instruction_start() + offset;
808 Assembler::deserialization_set_target_internal_reference_at(
809 iter.rinfo()->pc(), target, mode);
810 break;
811 }
812 default:
813 UNREACHABLE();
814 }
815 }
816
817 // Finally, flush the icache for that code.
818 FlushInstructionCache(unit.code->instructions().begin(),
819 unit.code->instructions().size());
820 }
821
Publish(std::vector<DeserializationUnit> batch)822 void NativeModuleDeserializer::Publish(std::vector<DeserializationUnit> batch) {
823 DCHECK(!batch.empty());
824 std::vector<std::unique_ptr<WasmCode>> codes;
825 codes.reserve(batch.size());
826 for (auto& unit : batch) {
827 codes.emplace_back(std::move(unit).code);
828 }
829 auto published_codes = native_module_->PublishCode(base::VectorOf(codes));
830 for (auto* wasm_code : published_codes) {
831 wasm_code->MaybePrint();
832 wasm_code->Validate();
833 }
834 }
835
IsSupportedVersion(base::Vector<const byte> header)836 bool IsSupportedVersion(base::Vector<const byte> header) {
837 if (header.size() < WasmSerializer::kHeaderSize) return false;
838 byte current_version[WasmSerializer::kHeaderSize];
839 Writer writer({current_version, WasmSerializer::kHeaderSize});
840 WriteHeader(&writer);
841 return memcmp(header.begin(), current_version, WasmSerializer::kHeaderSize) ==
842 0;
843 }
844
DeserializeNativeModule(Isolate * isolate,base::Vector<const byte> data,base::Vector<const byte> wire_bytes_vec,base::Vector<const char> source_url)845 MaybeHandle<WasmModuleObject> DeserializeNativeModule(
846 Isolate* isolate, base::Vector<const byte> data,
847 base::Vector<const byte> wire_bytes_vec,
848 base::Vector<const char> source_url) {
849 if (!IsWasmCodegenAllowed(isolate, isolate->native_context())) return {};
850 if (!IsSupportedVersion(data)) return {};
851
852 // Make the copy of the wire bytes early, so we use the same memory for
853 // decoding, lookup in the native module cache, and insertion into the cache.
854 auto owned_wire_bytes = base::OwnedVector<uint8_t>::Of(wire_bytes_vec);
855
856 // TODO(titzer): module features should be part of the serialization format.
857 WasmEngine* wasm_engine = GetWasmEngine();
858 WasmFeatures enabled_features = WasmFeatures::FromIsolate(isolate);
859 ModuleResult decode_result = DecodeWasmModule(
860 enabled_features, owned_wire_bytes.start(), owned_wire_bytes.end(), false,
861 i::wasm::kWasmOrigin, isolate->counters(), isolate->metrics_recorder(),
862 isolate->GetOrRegisterRecorderContextId(isolate->native_context()),
863 DecodingMethod::kDeserialize, wasm_engine->allocator());
864 if (decode_result.failed()) return {};
865 std::shared_ptr<WasmModule> module = std::move(decode_result).value();
866 CHECK_NOT_NULL(module);
867
868 auto shared_native_module = wasm_engine->MaybeGetNativeModule(
869 module->origin, owned_wire_bytes.as_vector(), isolate);
870 if (shared_native_module == nullptr) {
871 DynamicTiering dynamic_tiering = isolate->IsWasmDynamicTieringEnabled()
872 ? DynamicTiering::kEnabled
873 : DynamicTiering::kDisabled;
874 const bool kIncludeLiftoff = dynamic_tiering == DynamicTiering::kDisabled;
875 size_t code_size_estimate =
876 wasm::WasmCodeManager::EstimateNativeModuleCodeSize(
877 module.get(), kIncludeLiftoff, dynamic_tiering);
878 shared_native_module = wasm_engine->NewNativeModule(
879 isolate, enabled_features, std::move(module), code_size_estimate);
880 // We have to assign a compilation ID here, as it is required for a
881 // potential re-compilation, e.g. triggered by
882 // {TierDownAllModulesPerIsolate}. The value is -2 so that it is different
883 // than the compilation ID of actual compilations, and also different than
884 // the sentinel value of the CompilationState.
885 shared_native_module->compilation_state()->set_compilation_id(-2);
886 shared_native_module->SetWireBytes(std::move(owned_wire_bytes));
887
888 NativeModuleDeserializer deserializer(shared_native_module.get());
889 Reader reader(data + WasmSerializer::kHeaderSize);
890 bool error = !deserializer.Read(&reader);
891 if (error) {
892 wasm_engine->UpdateNativeModuleCache(error, &shared_native_module,
893 isolate);
894 return {};
895 }
896 shared_native_module->compilation_state()->InitializeAfterDeserialization(
897 deserializer.lazy_functions(), deserializer.liftoff_functions());
898 wasm_engine->UpdateNativeModuleCache(error, &shared_native_module, isolate);
899 }
900
901 Handle<FixedArray> export_wrappers;
902 CompileJsToWasmWrappers(isolate, shared_native_module->module(),
903 &export_wrappers);
904
905 Handle<Script> script =
906 wasm_engine->GetOrCreateScript(isolate, shared_native_module, source_url);
907 Handle<WasmModuleObject> module_object = WasmModuleObject::New(
908 isolate, shared_native_module, script, export_wrappers);
909
910 // Finish the Wasm script now and make it public to the debugger.
911 isolate->debug()->OnAfterCompile(script);
912
913 // Log the code within the generated module for profiling.
914 shared_native_module->LogWasmCodes(isolate, *script);
915
916 return module_object;
917 }
918
919 } // namespace wasm
920 } // namespace internal
921 } // namespace v8
922