1 #include <Windows.h>
2 #include <algorithm>
3 #include <cstdint>
4 #include <fstream>
5 #include <iostream>
6 #include <memory>
7 #include <vector>
8
9 // This executable takes a Windows DLL and uses it to generate
10 // a module-definition file [1] which forwards all the exported
11 // symbols from the DLL and redirects them back to the DLL.
12 // This allows node.exe to export the same symbols as libnode.dll
13 // when building Node.js as a shared library. This is conceptually
14 // similary to the create_expfile.sh script used on AIX.
15 //
16 // Generating this .def file requires parsing data out of the
17 // PE32/PE32+ file format. Helper structs are defined in <Windows.h>
18 // hence why this is an executable and not a script. See [2] for
19 // details on the PE format.
20 //
21 // [1]: https://docs.microsoft.com/en-us/cpp/build/reference/module-definition-dot-def-files
22 // [2]: https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
23
24 // The PE32 format encodes pointers as Relative Virtual Addresses
25 // which are 32 bit offsets from the start of the image. This helper
26 // class hides the mess of the pointer arithmetic
27 struct RelativeAddress {
28 uintptr_t root;
29 uintptr_t offset = 0;
30
RelativeAddressRelativeAddress31 RelativeAddress(HMODULE handle) noexcept
32 : root(reinterpret_cast<uintptr_t>(handle)) {}
33
RelativeAddressRelativeAddress34 RelativeAddress(HMODULE handle, uintptr_t offset) noexcept
35 : root(reinterpret_cast<uintptr_t>(handle)), offset(offset) {}
36
RelativeAddressRelativeAddress37 RelativeAddress(uintptr_t root, uintptr_t offset) noexcept
38 : root(root), offset(offset) {}
39
40 template <typename T>
AsPtrToRelativeAddress41 const T* AsPtrTo() const noexcept {
42 return reinterpret_cast<const T*>(root + offset);
43 }
44
45 template <typename T>
ReadRelativeAddress46 T Read() const noexcept {
47 return *AsPtrTo<T>();
48 }
49
AtOffsetRelativeAddress50 RelativeAddress AtOffset(uintptr_t amount) const noexcept {
51 return {root, offset + amount};
52 }
53
operator +RelativeAddress54 RelativeAddress operator+(uintptr_t amount) const noexcept {
55 return {root, offset + amount};
56 }
57
ReadRelativeAddressRelativeAddress58 RelativeAddress ReadRelativeAddress() const noexcept {
59 return {root, Read<uint32_t>()};
60 }
61 };
62
63 // A wrapper around a dynamically loaded Windows DLL. This steps through the
64 // PE file structure to find the export directory and pulls out a list of
65 // all the exported symbol names.
66 struct Library {
67 HMODULE library;
68 std::string libraryName;
69 std::vector<std::string> exportedSymbols;
70
LibraryLibrary71 Library(HMODULE library) : library(library) {
72 auto libnode = RelativeAddress(library);
73
74 // At relative offset 0x3C is a 32 bit offset to the COFF signature, 4 bytes
75 // after that is the start of the COFF header.
76 auto coffHeaderPtr =
77 libnode.AtOffset(0x3C).ReadRelativeAddress().AtOffset(4);
78 auto coffHeader = coffHeaderPtr.AsPtrTo<IMAGE_FILE_HEADER>();
79
80 // After the coff header is the Optional Header (which is not optional). We
81 // don't know what type of optional header we have without examining the
82 // magic number
83 auto optionalHeaderPtr = coffHeaderPtr.AtOffset(sizeof(IMAGE_FILE_HEADER));
84 auto optionalHeader = optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER>();
85
86 auto exportDirectory =
87 (optionalHeader->Magic == 0x20b) ? optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER64>()
88 ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]
89 : optionalHeaderPtr.AsPtrTo<IMAGE_OPTIONAL_HEADER32>()
90 ->DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
91
92 auto exportTable = libnode.AtOffset(exportDirectory.VirtualAddress)
93 .AsPtrTo<IMAGE_EXPORT_DIRECTORY>();
94
95 // This is the name of the library without the suffix, this is more robust
96 // than parsing the filename as this is what the linker uses.
97 libraryName = libnode.AtOffset(exportTable->Name).AsPtrTo<char>();
98 libraryName = libraryName.substr(0, libraryName.size() - 4);
99
100 const uint32_t* functionNameTable =
101 libnode.AtOffset(exportTable->AddressOfNames).AsPtrTo<uint32_t>();
102
103 // Given an RVA, parse it as a std::string. The resulting string is empty
104 // if the symbol does not have a name (i.e. it is ordinal only).
105 auto nameRvaToName = [&](uint32_t rva) -> std::string {
106 auto namePtr = libnode.AtOffset(rva).AsPtrTo<char>();
107 if (namePtr == nullptr) return {};
108 return {namePtr};
109 };
110 std::transform(functionNameTable,
111 functionNameTable + exportTable->NumberOfNames,
112 std::back_inserter(exportedSymbols),
113 nameRvaToName);
114 }
115
~LibraryLibrary116 ~Library() { FreeLibrary(library); }
117 };
118
IsPageExecutable(void * address)119 bool IsPageExecutable(void* address) {
120 MEMORY_BASIC_INFORMATION memoryInformation;
121 size_t rc = VirtualQuery(
122 address, &memoryInformation, sizeof(MEMORY_BASIC_INFORMATION));
123
124 if (rc != 0 && memoryInformation.Protect != 0) {
125 return memoryInformation.Protect == PAGE_EXECUTE ||
126 memoryInformation.Protect == PAGE_EXECUTE_READ ||
127 memoryInformation.Protect == PAGE_EXECUTE_READWRITE ||
128 memoryInformation.Protect == PAGE_EXECUTE_WRITECOPY;
129 }
130 return false;
131 }
132
LoadLibraryOrExit(const char * dllPath)133 Library LoadLibraryOrExit(const char* dllPath) {
134 auto library = LoadLibrary(dllPath);
135 if (library != nullptr) return library;
136
137 auto error = GetLastError();
138 std::cerr << "ERROR: Failed to load " << dllPath << std::endl;
139 LPCSTR buffer = nullptr;
140 auto rc = FormatMessageA(
141 FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
142 nullptr,
143 error,
144 LANG_USER_DEFAULT,
145 (LPSTR)&buffer,
146 0,
147 nullptr);
148 if (rc != 0) {
149 std::cerr << buffer << std::endl;
150 LocalFree((HLOCAL)buffer);
151 }
152 exit(1);
153 }
154
main(int argc,char ** argv)155 int main(int argc, char** argv) {
156 if (argc != 3) {
157 std::cerr << "Usage: " << argv[0]
158 << " path\\to\\libnode.dll path\\to\\node.def" << std::endl;
159 return 1;
160 }
161
162 auto libnode = LoadLibraryOrExit(argv[1]);
163 auto defFile = std::ofstream(argv[2]);
164 defFile << "EXPORTS" << std::endl;
165
166 for (const std::string& functionName : libnode.exportedSymbols) {
167 // If a symbol doesn't have a name then it has been exported as an
168 // ordinal only. We assume that only named symbols are exported.
169 if (functionName.empty()) continue;
170
171 // Every name in the exported symbols table should be resolvable
172 // to an address because we have actually loaded the library into
173 // our address space.
174 auto address = GetProcAddress(libnode.library, functionName.c_str());
175 if (address == nullptr) {
176 std::cerr << "WARNING: " << functionName
177 << " appears in export table but is not a valid symbol"
178 << std::endl;
179 continue;
180 }
181
182 defFile << " " << functionName << " = " << libnode.libraryName << "."
183 << functionName;
184
185 // Nothing distinguishes exported global data from exported functions
186 // with C linkage. If we do not specify the DATA keyword for such symbols
187 // then consumers of the .def file will get a linker error. This manifests
188 // as nodedbg_ symbols not being found. We assert that if the symbol is in
189 // an executable page in this process then it is a function, not data.
190 if (!IsPageExecutable(address)) {
191 defFile << " DATA";
192 }
193 defFile << std::endl;
194 }
195
196 return 0;
197 }
198