• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# March, May, June 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that it
21# uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
22# code paths: vanilla x86 and vanilla SSE. Former will be executed on
23# 486 and Pentium, latter on all others. SSE GHASH features so called
24# "528B" variant of "4-bit" method utilizing additional 256+16 bytes
25# of per-key storage [+512 bytes shared table]. Performance results
26# are for streamed GHASH subroutine and are expressed in cycles per
27# processed byte, less is better:
28#
29#		gcc 2.95.3(*)	SSE assembler	x86 assembler
30#
31# Pentium	105/111(**)	-		50
32# PIII		68 /75		12.2		24
33# P4		125/125		17.8		84(***)
34# Opteron	66 /70		10.1		30
35# Core2		54 /67		8.4		18
36# Atom		105/105		16.8		53
37# VIA Nano	69 /71		13.0		27
38#
39# (*)	gcc 3.4.x was observed to generate few percent slower code,
40#	which is one of reasons why 2.95.3 results were chosen,
41#	another reason is lack of 3.4.x results for older CPUs;
42#	comparison with SSE results is not completely fair, because C
43#	results are for vanilla "256B" implementation, while
44#	assembler results are for "528B";-)
45# (**)	second number is result for code compiled with -fPIC flag,
46#	which is actually more relevant, because assembler code is
47#	position-independent;
48# (***)	see comment in non-MMX routine for further details;
49#
50# To summarize, it's >2-5 times faster than gcc-generated code. To
51# anchor it to something else SHA1 assembler processes one byte in
52# ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
53# in particular, see comment at the end of the file...
54
55# May 2010
56#
57# Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
58# The question is how close is it to theoretical limit? The pclmulqdq
59# instruction latency appears to be 14 cycles and there can't be more
60# than 2 of them executing at any given time. This means that single
61# Karatsuba multiplication would take 28 cycles *plus* few cycles for
62# pre- and post-processing. Then multiplication has to be followed by
63# modulo-reduction. Given that aggregated reduction method [see
64# "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
65# white paper by Intel] allows you to perform reduction only once in
66# a while we can assume that asymptotic performance can be estimated
67# as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
68# and Naggr is the aggregation factor.
69#
70# Before we proceed to this implementation let's have closer look at
71# the best-performing code suggested by Intel in their white paper.
72# By tracing inter-register dependencies Tmod is estimated as ~19
73# cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
74# processed byte. As implied, this is quite optimistic estimate,
75# because it does not account for Karatsuba pre- and post-processing,
76# which for a single multiplication is ~5 cycles. Unfortunately Intel
77# does not provide performance data for GHASH alone. But benchmarking
78# AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
79# alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
80# the result accounts even for pre-computing of degrees of the hash
81# key H, but its portion is negligible at 16KB buffer size.
82#
83# Moving on to the implementation in question. Tmod is estimated as
84# ~13 cycles and Naggr is 2, giving asymptotic performance of ...
85# 2.16. How is it possible that measured performance is better than
86# optimistic theoretical estimate? There is one thing Intel failed
87# to recognize. By serializing GHASH with CTR in same subroutine
88# former's performance is really limited to above (Tmul + Tmod/Naggr)
89# equation. But if GHASH procedure is detached, the modulo-reduction
90# can be interleaved with Naggr-1 multiplications at instruction level
91# and under ideal conditions even disappear from the equation. So that
92# optimistic theoretical estimate for this implementation is ...
93# 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
94# at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
95# where Tproc is time required for Karatsuba pre- and post-processing,
96# is more realistic estimate. In this case it gives ... 1.91 cycles.
97# Or in other words, depending on how well we can interleave reduction
98# and one of the two multiplications the performance should be between
99# 1.91 and 2.16. As already mentioned, this implementation processes
100# one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
101# - in 2.02. x86_64 performance is better, because larger register
102# bank allows to interleave reduction and multiplication better.
103#
104# Does it make sense to increase Naggr? To start with it's virtually
105# impossible in 32-bit mode, because of limited register bank
106# capacity. Otherwise improvement has to be weighed against slower
107# setup, as well as code size and complexity increase. As even
108# optimistic estimate doesn't promise 30% performance improvement,
109# there are currently no plans to increase Naggr.
110#
111# Special thanks to David Woodhouse for providing access to a
112# Westmere-based system on behalf of Intel Open Source Technology Centre.
113
114# January 2010
115#
116# Tweaked to optimize transitions between integer and FP operations
117# on same XMM register, PCLMULQDQ subroutine was measured to process
118# one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
119# The minor regression on Westmere is outweighed by ~15% improvement
120# on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
121# similar manner resulted in almost 20% degradation on Sandy Bridge,
122# where original 64-bit code processes one byte in 1.95 cycles.
123
124#####################################################################
125# For reference, AMD Bulldozer processes one byte in 1.98 cycles in
126# 32-bit mode and 1.89 in 64-bit.
127
128# February 2013
129#
130# Overhaul: aggregate Karatsuba post-processing, improve ILP in
131# reduction_alg9. Resulting performance is 1.96 cycles per byte on
132# Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
133
134$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
135push(@INC,"${dir}","${dir}../../perlasm");
136require "x86asm.pl";
137
138$output=pop and open STDOUT,">$output";
139
140&asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
141
142$sse2=0;
143for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
144
145($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
146$inp  = "edi";
147$Htbl = "esi";
148
149$unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
150		# than unrolled, which has to be weighted against
151		# 2.5x x86-specific code size reduction.
152
153sub x86_loop {
154    my $off = shift;
155    my $rem = "eax";
156
157	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
158	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
159	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
160	&mov	($Zll,&DWP(8,$Htbl,$Zll));
161	&xor	($rem,$rem);	# avoid partial register stalls on PIII
162
163	# shrd practically kills P4, 2.5x deterioration, but P4 has
164	# MMX code-path to execute. shrd runs tad faster [than twice
165	# the shifts, move's and or's] on pre-MMX Pentium (as well as
166	# PIII and Core2), *but* minimizes code size, spares register
167	# and thus allows to fold the loop...
168	if (!$unroll) {
169	my $cnt = $inp;
170	&mov	($cnt,15);
171	&jmp	(&label("x86_loop"));
172	&set_label("x86_loop",16);
173	    for($i=1;$i<=2;$i++) {
174		&mov	(&LB($rem),&LB($Zll));
175		&shrd	($Zll,$Zlh,4);
176		&and	(&LB($rem),0xf);
177		&shrd	($Zlh,$Zhl,4);
178		&shrd	($Zhl,$Zhh,4);
179		&shr	($Zhh,4);
180		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
181
182		&mov	(&LB($rem),&BP($off,"esp",$cnt));
183		if ($i&1) {
184			&and	(&LB($rem),0xf0);
185		} else {
186			&shl	(&LB($rem),4);
187		}
188
189		&xor	($Zll,&DWP(8,$Htbl,$rem));
190		&xor	($Zlh,&DWP(12,$Htbl,$rem));
191		&xor	($Zhl,&DWP(0,$Htbl,$rem));
192		&xor	($Zhh,&DWP(4,$Htbl,$rem));
193
194		if ($i&1) {
195			&dec	($cnt);
196			&js	(&label("x86_break"));
197		} else {
198			&jmp	(&label("x86_loop"));
199		}
200	    }
201	&set_label("x86_break",16);
202	} else {
203	    for($i=1;$i<32;$i++) {
204		&comment($i);
205		&mov	(&LB($rem),&LB($Zll));
206		&shrd	($Zll,$Zlh,4);
207		&and	(&LB($rem),0xf);
208		&shrd	($Zlh,$Zhl,4);
209		&shrd	($Zhl,$Zhh,4);
210		&shr	($Zhh,4);
211		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
212
213		if ($i&1) {
214			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
215			&and	(&LB($rem),0xf0);
216		} else {
217			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
218			&shl	(&LB($rem),4);
219		}
220
221		&xor	($Zll,&DWP(8,$Htbl,$rem));
222		&xor	($Zlh,&DWP(12,$Htbl,$rem));
223		&xor	($Zhl,&DWP(0,$Htbl,$rem));
224		&xor	($Zhh,&DWP(4,$Htbl,$rem));
225	    }
226	}
227	&bswap	($Zll);
228	&bswap	($Zlh);
229	&bswap	($Zhl);
230	if (!$x86only) {
231		&bswap	($Zhh);
232	} else {
233		&mov	("eax",$Zhh);
234		&bswap	("eax");
235		&mov	($Zhh,"eax");
236	}
237}
238
239if ($unroll) {
240    &function_begin_B("_x86_gmult_4bit_inner");
241	&x86_loop(4);
242	&ret	();
243    &function_end_B("_x86_gmult_4bit_inner");
244}
245
246sub deposit_rem_4bit {
247    my $bias = shift;
248
249	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
250	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
251	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
252	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
253	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
254	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
255	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
256	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
257	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
258	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
259	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
260	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
261	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
262	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
263	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
264	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
265}
266
267$suffix = $x86only ? "" : "_x86";
268
269&function_begin("gcm_gmult_4bit".$suffix);
270	&stack_push(16+4+1);			# +1 for stack alignment
271	&mov	($inp,&wparam(0));		# load Xi
272	&mov	($Htbl,&wparam(1));		# load Htable
273
274	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
275	&mov	($Zhl,&DWP(4,$inp));
276	&mov	($Zlh,&DWP(8,$inp));
277	&mov	($Zll,&DWP(12,$inp));
278
279	&deposit_rem_4bit(16);
280
281	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
282	&mov	(&DWP(4,"esp"),$Zhl);
283	&mov	(&DWP(8,"esp"),$Zlh);
284	&mov	(&DWP(12,"esp"),$Zll);
285	&shr	($Zll,20);
286	&and	($Zll,0xf0);
287
288	if ($unroll) {
289		&call	("_x86_gmult_4bit_inner");
290	} else {
291		&x86_loop(0);
292		&mov	($inp,&wparam(0));
293	}
294
295	&mov	(&DWP(12,$inp),$Zll);
296	&mov	(&DWP(8,$inp),$Zlh);
297	&mov	(&DWP(4,$inp),$Zhl);
298	&mov	(&DWP(0,$inp),$Zhh);
299	&stack_pop(16+4+1);
300&function_end("gcm_gmult_4bit".$suffix);
301
302&function_begin("gcm_ghash_4bit".$suffix);
303	&stack_push(16+4+1);			# +1 for 64-bit alignment
304	&mov	($Zll,&wparam(0));		# load Xi
305	&mov	($Htbl,&wparam(1));		# load Htable
306	&mov	($inp,&wparam(2));		# load in
307	&mov	("ecx",&wparam(3));		# load len
308	&add	("ecx",$inp);
309	&mov	(&wparam(3),"ecx");
310
311	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
312	&mov	($Zhl,&DWP(4,$Zll));
313	&mov	($Zlh,&DWP(8,$Zll));
314	&mov	($Zll,&DWP(12,$Zll));
315
316	&deposit_rem_4bit(16);
317
318    &set_label("x86_outer_loop",16);
319	&xor	($Zll,&DWP(12,$inp));		# xor with input
320	&xor	($Zlh,&DWP(8,$inp));
321	&xor	($Zhl,&DWP(4,$inp));
322	&xor	($Zhh,&DWP(0,$inp));
323	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
324	&mov	(&DWP(8,"esp"),$Zlh);
325	&mov	(&DWP(4,"esp"),$Zhl);
326	&mov	(&DWP(0,"esp"),$Zhh);
327
328	&shr	($Zll,20);
329	&and	($Zll,0xf0);
330
331	if ($unroll) {
332		&call	("_x86_gmult_4bit_inner");
333	} else {
334		&x86_loop(0);
335		&mov	($inp,&wparam(2));
336	}
337	&lea	($inp,&DWP(16,$inp));
338	&cmp	($inp,&wparam(3));
339	&mov	(&wparam(2),$inp)	if (!$unroll);
340	&jb	(&label("x86_outer_loop"));
341
342	&mov	($inp,&wparam(0));	# load Xi
343	&mov	(&DWP(12,$inp),$Zll);
344	&mov	(&DWP(8,$inp),$Zlh);
345	&mov	(&DWP(4,$inp),$Zhl);
346	&mov	(&DWP(0,$inp),$Zhh);
347	&stack_pop(16+4+1);
348&function_end("gcm_ghash_4bit".$suffix);
349
350if (!$x86only) {{{
351
352&static_label("rem_4bit");
353
354if (!$sse2) {{	# pure-MMX "May" version...
355
356$S=12;		# shift factor for rem_4bit
357
358&function_begin_B("_mmx_gmult_4bit_inner");
359# MMX version performs 3.5 times better on P4 (see comment in non-MMX
360# routine for further details), 100% better on Opteron, ~70% better
361# on Core2 and PIII... In other words effort is considered to be well
362# spent... Since initial release the loop was unrolled in order to
363# "liberate" register previously used as loop counter. Instead it's
364# used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
365# The path involves move of Z.lo from MMX to integer register,
366# effective address calculation and finally merge of value to Z.hi.
367# Reference to rem_4bit is scheduled so late that I had to >>4
368# rem_4bit elements. This resulted in 20-45% procent improvement
369# on contemporary µ-archs.
370{
371    my $cnt;
372    my $rem_4bit = "eax";
373    my @rem = ($Zhh,$Zll);
374    my $nhi = $Zhl;
375    my $nlo = $Zlh;
376
377    my ($Zlo,$Zhi) = ("mm0","mm1");
378    my $tmp = "mm2";
379
380	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
381	&mov	($nhi,$Zll);
382	&mov	(&LB($nlo),&LB($nhi));
383	&shl	(&LB($nlo),4);
384	&and	($nhi,0xf0);
385	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
386	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
387	&movd	($rem[0],$Zlo);
388
389	for ($cnt=28;$cnt>=-2;$cnt--) {
390	    my $odd = $cnt&1;
391	    my $nix = $odd ? $nlo : $nhi;
392
393		&shl	(&LB($nlo),4)			if ($odd);
394		&psrlq	($Zlo,4);
395		&movq	($tmp,$Zhi);
396		&psrlq	($Zhi,4);
397		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
398		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
399		&psllq	($tmp,60);
400		&and	($nhi,0xf0)			if ($odd);
401		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
402		&and	($rem[0],0xf);
403		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
404		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
405		&movd	($rem[1],$Zlo);
406		&pxor	($Zlo,$tmp);
407
408		push	(@rem,shift(@rem));		# "rotate" registers
409	}
410
411	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]
412
413	&psrlq	($Zlo,32);	# lower part of Zlo is already there
414	&movd	($Zhl,$Zhi);
415	&psrlq	($Zhi,32);
416	&movd	($Zlh,$Zlo);
417	&movd	($Zhh,$Zhi);
418	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4
419
420	&bswap	($Zll);
421	&bswap	($Zhl);
422	&bswap	($Zlh);
423	&xor	($Zhh,$inp);
424	&bswap	($Zhh);
425
426	&ret	();
427}
428&function_end_B("_mmx_gmult_4bit_inner");
429
430&function_begin("gcm_gmult_4bit_mmx");
431	&mov	($inp,&wparam(0));	# load Xi
432	&mov	($Htbl,&wparam(1));	# load Htable
433
434	&call	(&label("pic_point"));
435	&set_label("pic_point");
436	&blindpop("eax");
437	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
438
439	&movz	($Zll,&BP(15,$inp));
440
441	&call	("_mmx_gmult_4bit_inner");
442
443	&mov	($inp,&wparam(0));	# load Xi
444	&emms	();
445	&mov	(&DWP(12,$inp),$Zll);
446	&mov	(&DWP(4,$inp),$Zhl);
447	&mov	(&DWP(8,$inp),$Zlh);
448	&mov	(&DWP(0,$inp),$Zhh);
449&function_end("gcm_gmult_4bit_mmx");
450
451# Streamed version performs 20% better on P4, 7% on Opteron,
452# 10% on Core2 and PIII...
453&function_begin("gcm_ghash_4bit_mmx");
454	&mov	($Zhh,&wparam(0));	# load Xi
455	&mov	($Htbl,&wparam(1));	# load Htable
456	&mov	($inp,&wparam(2));	# load in
457	&mov	($Zlh,&wparam(3));	# load len
458
459	&call	(&label("pic_point"));
460	&set_label("pic_point");
461	&blindpop("eax");
462	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
463
464	&add	($Zlh,$inp);
465	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
466	&stack_push(4+1);		# +1 for stack alignment
467
468	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
469	&mov	($Zhl,&DWP(4,$Zhh));
470	&mov	($Zlh,&DWP(8,$Zhh));
471	&mov	($Zhh,&DWP(0,$Zhh));
472	&jmp	(&label("mmx_outer_loop"));
473
474    &set_label("mmx_outer_loop",16);
475	&xor	($Zll,&DWP(12,$inp));
476	&xor	($Zhl,&DWP(4,$inp));
477	&xor	($Zlh,&DWP(8,$inp));
478	&xor	($Zhh,&DWP(0,$inp));
479	&mov	(&wparam(2),$inp);
480	&mov	(&DWP(12,"esp"),$Zll);
481	&mov	(&DWP(4,"esp"),$Zhl);
482	&mov	(&DWP(8,"esp"),$Zlh);
483	&mov	(&DWP(0,"esp"),$Zhh);
484
485	&mov	($inp,"esp");
486	&shr	($Zll,24);
487
488	&call	("_mmx_gmult_4bit_inner");
489
490	&mov	($inp,&wparam(2));
491	&lea	($inp,&DWP(16,$inp));
492	&cmp	($inp,&wparam(3));
493	&jb	(&label("mmx_outer_loop"));
494
495	&mov	($inp,&wparam(0));	# load Xi
496	&emms	();
497	&mov	(&DWP(12,$inp),$Zll);
498	&mov	(&DWP(4,$inp),$Zhl);
499	&mov	(&DWP(8,$inp),$Zlh);
500	&mov	(&DWP(0,$inp),$Zhh);
501
502	&stack_pop(4+1);
503&function_end("gcm_ghash_4bit_mmx");
504
505}} else {{	# "June" MMX version...
506		# ... has slower "April" gcm_gmult_4bit_mmx with folded
507		# loop. This is done to conserve code size...
508$S=16;		# shift factor for rem_4bit
509
510sub mmx_loop() {
511# MMX version performs 2.8 times better on P4 (see comment in non-MMX
512# routine for further details), 40% better on Opteron and Core2, 50%
513# better on PIII... In other words effort is considered to be well
514# spent...
515    my $inp = shift;
516    my $rem_4bit = shift;
517    my $cnt = $Zhh;
518    my $nhi = $Zhl;
519    my $nlo = $Zlh;
520    my $rem = $Zll;
521
522    my ($Zlo,$Zhi) = ("mm0","mm1");
523    my $tmp = "mm2";
524
525	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
526	&mov	($nhi,$Zll);
527	&mov	(&LB($nlo),&LB($nhi));
528	&mov	($cnt,14);
529	&shl	(&LB($nlo),4);
530	&and	($nhi,0xf0);
531	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
532	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
533	&movd	($rem,$Zlo);
534	&jmp	(&label("mmx_loop"));
535
536    &set_label("mmx_loop",16);
537	&psrlq	($Zlo,4);
538	&and	($rem,0xf);
539	&movq	($tmp,$Zhi);
540	&psrlq	($Zhi,4);
541	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
542	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
543	&psllq	($tmp,60);
544	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
545	&dec	($cnt);
546	&movd	($rem,$Zlo);
547	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
548	&mov	($nhi,$nlo);
549	&pxor	($Zlo,$tmp);
550	&js	(&label("mmx_break"));
551
552	&shl	(&LB($nlo),4);
553	&and	($rem,0xf);
554	&psrlq	($Zlo,4);
555	&and	($nhi,0xf0);
556	&movq	($tmp,$Zhi);
557	&psrlq	($Zhi,4);
558	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
559	&psllq	($tmp,60);
560	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
561	&movd	($rem,$Zlo);
562	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
563	&pxor	($Zlo,$tmp);
564	&jmp	(&label("mmx_loop"));
565
566    &set_label("mmx_break",16);
567	&shl	(&LB($nlo),4);
568	&and	($rem,0xf);
569	&psrlq	($Zlo,4);
570	&and	($nhi,0xf0);
571	&movq	($tmp,$Zhi);
572	&psrlq	($Zhi,4);
573	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
574	&psllq	($tmp,60);
575	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
576	&movd	($rem,$Zlo);
577	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
578	&pxor	($Zlo,$tmp);
579
580	&psrlq	($Zlo,4);
581	&and	($rem,0xf);
582	&movq	($tmp,$Zhi);
583	&psrlq	($Zhi,4);
584	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
585	&psllq	($tmp,60);
586	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
587	&movd	($rem,$Zlo);
588	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
589	&pxor	($Zlo,$tmp);
590
591	&psrlq	($Zlo,32);	# lower part of Zlo is already there
592	&movd	($Zhl,$Zhi);
593	&psrlq	($Zhi,32);
594	&movd	($Zlh,$Zlo);
595	&movd	($Zhh,$Zhi);
596
597	&bswap	($Zll);
598	&bswap	($Zhl);
599	&bswap	($Zlh);
600	&bswap	($Zhh);
601}
602
603&function_begin("gcm_gmult_4bit_mmx");
604	&mov	($inp,&wparam(0));	# load Xi
605	&mov	($Htbl,&wparam(1));	# load Htable
606
607	&call	(&label("pic_point"));
608	&set_label("pic_point");
609	&blindpop("eax");
610	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
611
612	&movz	($Zll,&BP(15,$inp));
613
614	&mmx_loop($inp,"eax");
615
616	&emms	();
617	&mov	(&DWP(12,$inp),$Zll);
618	&mov	(&DWP(4,$inp),$Zhl);
619	&mov	(&DWP(8,$inp),$Zlh);
620	&mov	(&DWP(0,$inp),$Zhh);
621&function_end("gcm_gmult_4bit_mmx");
622
623######################################################################
624# Below subroutine is "528B" variant of "4-bit" GCM GHASH function
625# (see gcm128.c for details). It provides further 20-40% performance
626# improvement over above mentioned "May" version.
627
628&static_label("rem_8bit");
629
630&function_begin("gcm_ghash_4bit_mmx");
631{ my ($Zlo,$Zhi) = ("mm7","mm6");
632  my $rem_8bit = "esi";
633  my $Htbl = "ebx";
634
635    # parameter block
636    &mov	("eax",&wparam(0));		# Xi
637    &mov	("ebx",&wparam(1));		# Htable
638    &mov	("ecx",&wparam(2));		# inp
639    &mov	("edx",&wparam(3));		# len
640    &mov	("ebp","esp");			# original %esp
641    &call	(&label("pic_point"));
642    &set_label	("pic_point");
643    &blindpop	($rem_8bit);
644    &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
645
646    &sub	("esp",512+16+16);		# allocate stack frame...
647    &and	("esp",-64);			# ...and align it
648    &sub	("esp",16);			# place for (u8)(H[]<<4)
649
650    &add	("edx","ecx");			# pointer to the end of input
651    &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
652    &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
653    &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
654
655    { my @lo  = ("mm0","mm1","mm2");
656      my @hi  = ("mm3","mm4","mm5");
657      my @tmp = ("mm6","mm7");
658      my ($off1,$off2,$i) = (0,0,);
659
660      &add	($Htbl,128);			# optimize for size
661      &lea	("edi",&DWP(16+128,"esp"));
662      &lea	("ebp",&DWP(16+256+128,"esp"));
663
664      # decompose Htable (low and high parts are kept separately),
665      # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
666      for ($i=0;$i<18;$i++) {
667
668	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
669	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
670	&psllq	($tmp[1],60)				if ($i>1);
671	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
672	&por	($lo[2],$tmp[1])			if ($i>1);
673	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
674	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
675	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
676	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
677	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
678	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
679	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
680	&shl	("edx",4)				if ($i<16);
681	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
682
683	unshift	(@lo,pop(@lo));			# "rotate" registers
684	unshift	(@hi,pop(@hi));
685	unshift	(@tmp,pop(@tmp));
686	$off1 += 8	if ($i>0);
687	$off2 += 8	if ($i>1);
688      }
689    }
690
691    &movq	($Zhi,&QWP(0,"eax"));
692    &mov	("ebx",&DWP(8,"eax"));
693    &mov	("edx",&DWP(12,"eax"));		# load Xi
694
695&set_label("outer",16);
696  { my $nlo = "eax";
697    my $dat = "edx";
698    my @nhi = ("edi","ebp");
699    my @rem = ("ebx","ecx");
700    my @red = ("mm0","mm1","mm2");
701    my $tmp = "mm3";
702
703    &xor	($dat,&DWP(12,"ecx"));		# merge input data
704    &xor	("ebx",&DWP(8,"ecx"));
705    &pxor	($Zhi,&QWP(0,"ecx"));
706    &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
707    #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
708    &mov	(&DWP(528+8,"esp"),"ebx");
709    &movq	(&QWP(528+0,"esp"),$Zhi);
710    &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
711
712    &xor	($nlo,$nlo);
713    &rol	($dat,8);
714    &mov	(&LB($nlo),&LB($dat));
715    &mov	($nhi[1],$nlo);
716    &and	(&LB($nlo),0x0f);
717    &shr	($nhi[1],4);
718    &pxor	($red[0],$red[0]);
719    &rol	($dat,8);			# next byte
720    &pxor	($red[1],$red[1]);
721    &pxor	($red[2],$red[2]);
722
723    # Just like in "May" version modulo-schedule for critical path in
724    # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
725    # is scheduled so late that rem_8bit[] has to be shifted *right*
726    # by 16, which is why last argument to pinsrw is 2, which
727    # corresponds to <<32=<<48>>16...
728    for ($j=11,$i=0;$i<15;$i++) {
729
730      if ($i>0) {
731	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
732	&rol	($dat,8);				# next byte
733	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
734
735	&pxor	($Zlo,$tmp);
736	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
737	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
738      } else {
739	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
740	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
741      }
742
743	&mov	(&LB($nlo),&LB($dat));
744	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
745
746	&movd	($rem[0],$Zlo);
747	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
748	&psrlq	($Zlo,8);				# Z>>=8
749
750	&movq	($tmp,$Zhi);
751	&mov	($nhi[0],$nlo);
752	&psrlq	($Zhi,8);
753
754	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
755	&and	(&LB($nlo),0x0f);
756	&psllq	($tmp,56);
757
758	&pxor	($Zhi,$red[1])				if ($i>1);
759	&shr	($nhi[0],4);
760	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
761
762	unshift	(@red,pop(@red));			# "rotate" registers
763	unshift	(@rem,pop(@rem));
764	unshift	(@nhi,pop(@nhi));
765    }
766
767    &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
768    &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
769    &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
770
771    &pxor	($Zlo,$tmp);
772    &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
773    &movz	($rem[1],&LB($rem[1]));
774
775    &pxor	($red[2],$red[2]);			# clear 2nd word
776    &psllq	($red[1],4);
777
778    &movd	($rem[0],$Zlo);
779    &psrlq	($Zlo,4);				# Z>>=4
780
781    &movq	($tmp,$Zhi);
782    &psrlq	($Zhi,4);
783    &shl	($rem[0],4);				# rem<<4
784
785    &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
786    &psllq	($tmp,60);
787    &movz	($rem[0],&LB($rem[0]));
788
789    &pxor	($Zlo,$tmp);
790    &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
791
792    &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
793    &pxor	($Zhi,$red[1]);
794
795    &movd	($dat,$Zlo);
796    &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
797
798    &psllq	($red[0],12);				# correct by <<16>>4
799    &pxor	($Zhi,$red[0]);
800    &psrlq	($Zlo,32);
801    &pxor	($Zhi,$red[2]);
802
803    &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
804    &movd	("ebx",$Zlo);
805    &movq	($tmp,$Zhi);			# 01234567
806    &psllw	($Zhi,8);			# 1.3.5.7.
807    &psrlw	($tmp,8);			# .0.2.4.6
808    &por	($Zhi,$tmp);			# 10325476
809    &bswap	($dat);
810    &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
811    &bswap	("ebx");
812
813    &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
814    &jne	(&label("outer"));
815  }
816
817    &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
818    &mov	(&DWP(12,"eax"),"edx");
819    &mov	(&DWP(8,"eax"),"ebx");
820    &movq	(&QWP(0,"eax"),$Zhi);
821
822    &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
823    &emms	();
824}
825&function_end("gcm_ghash_4bit_mmx");
826}}
827
828if ($sse2) {{
829######################################################################
830# PCLMULQDQ version.
831
832$Xip="eax";
833$Htbl="edx";
834$const="ecx";
835$inp="esi";
836$len="ebx";
837
838($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
839($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
840($Xn,$Xhn)=("xmm6","xmm7");
841
842&static_label("bswap");
843
844sub clmul64x64_T2 {	# minimal "register" pressure
845my ($Xhi,$Xi,$Hkey,$HK)=@_;
846
847	&movdqa		($Xhi,$Xi);		#
848	&pshufd		($T1,$Xi,0b01001110);
849	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
850	&pxor		($T1,$Xi);		#
851	&pxor		($T2,$Hkey)		if (!defined($HK));
852			$HK=$T2			if (!defined($HK));
853
854	&pclmulqdq	($Xi,$Hkey,0x00);	#######
855	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
856	&pclmulqdq	($T1,$HK,0x00);		#######
857	&xorps		($T1,$Xi);		#
858	&xorps		($T1,$Xhi);		#
859
860	&movdqa		($T2,$T1);		#
861	&psrldq		($T1,8);
862	&pslldq		($T2,8);		#
863	&pxor		($Xhi,$T1);
864	&pxor		($Xi,$T2);		#
865}
866
867sub clmul64x64_T3 {
868# Even though this subroutine offers visually better ILP, it
869# was empirically found to be a tad slower than above version.
870# At least in gcm_ghash_clmul context. But it's just as well,
871# because loop modulo-scheduling is possible only thanks to
872# minimized "register" pressure...
873my ($Xhi,$Xi,$Hkey)=@_;
874
875	&movdqa		($T1,$Xi);		#
876	&movdqa		($Xhi,$Xi);
877	&pclmulqdq	($Xi,$Hkey,0x00);	#######
878	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
879	&pshufd		($T2,$T1,0b01001110);	#
880	&pshufd		($T3,$Hkey,0b01001110);
881	&pxor		($T2,$T1);		#
882	&pxor		($T3,$Hkey);
883	&pclmulqdq	($T2,$T3,0x00);		#######
884	&pxor		($T2,$Xi);		#
885	&pxor		($T2,$Xhi);		#
886
887	&movdqa		($T3,$T2);		#
888	&psrldq		($T2,8);
889	&pslldq		($T3,8);		#
890	&pxor		($Xhi,$T2);
891	&pxor		($Xi,$T3);		#
892}
893
894if (1) {		# Algorithm 9 with <<1 twist.
895			# Reduction is shorter and uses only two
896			# temporary registers, which makes it better
897			# candidate for interleaving with 64x64
898			# multiplication. Pre-modulo-scheduled loop
899			# was found to be ~20% faster than Algorithm 5
900			# below. Algorithm 9 was therefore chosen for
901			# further optimization...
902
903sub reduction_alg9 {	# 17/11 times faster than Intel version
904my ($Xhi,$Xi) = @_;
905
906	# 1st phase
907	&movdqa		($T2,$Xi);		#
908	&movdqa		($T1,$Xi);
909	&psllq		($Xi,5);
910	&pxor		($T1,$Xi);		#
911	&psllq		($Xi,1);
912	&pxor		($Xi,$T1);		#
913	&psllq		($Xi,57);		#
914	&movdqa		($T1,$Xi);		#
915	&pslldq		($Xi,8);
916	&psrldq		($T1,8);		#
917	&pxor		($Xi,$T2);
918	&pxor		($Xhi,$T1);		#
919
920	# 2nd phase
921	&movdqa		($T2,$Xi);
922	&psrlq		($Xi,1);
923	&pxor		($Xhi,$T2);		#
924	&pxor		($T2,$Xi);
925	&psrlq		($Xi,5);
926	&pxor		($Xi,$T2);		#
927	&psrlq		($Xi,1);		#
928	&pxor		($Xi,$Xhi)		#
929}
930
931&function_begin_B("gcm_init_clmul");
932	&mov		($Htbl,&wparam(0));
933	&mov		($Xip,&wparam(1));
934
935	&call		(&label("pic"));
936&set_label("pic");
937	&blindpop	($const);
938	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
939
940	&movdqu		($Hkey,&QWP(0,$Xip));
941	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
942
943	# <<1 twist
944	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
945	&movdqa		($T1,$Hkey);
946	&psllq		($Hkey,1);
947	&pxor		($T3,$T3);		#
948	&psrlq		($T1,63);
949	&pcmpgtd	($T3,$T2);		# broadcast carry bit
950	&pslldq		($T1,8);
951	&por		($Hkey,$T1);		# H<<=1
952
953	# magic reduction
954	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
955	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
956
957	# calculate H^2
958	&movdqa		($Xi,$Hkey);
959	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
960	&reduction_alg9	($Xhi,$Xi);
961
962	&pshufd		($T1,$Hkey,0b01001110);
963	&pshufd		($T2,$Xi,0b01001110);
964	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
965	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
966	&pxor		($T2,$Xi);		# Karatsuba pre-processing
967	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
968	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
969	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
970
971	&ret		();
972&function_end_B("gcm_init_clmul");
973
974&function_begin_B("gcm_gmult_clmul");
975	&mov		($Xip,&wparam(0));
976	&mov		($Htbl,&wparam(1));
977
978	&call		(&label("pic"));
979&set_label("pic");
980	&blindpop	($const);
981	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
982
983	&movdqu		($Xi,&QWP(0,$Xip));
984	&movdqa		($T3,&QWP(0,$const));
985	&movups		($Hkey,&QWP(0,$Htbl));
986	&pshufb		($Xi,$T3);
987	&movups		($T2,&QWP(32,$Htbl));
988
989	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
990	&reduction_alg9	($Xhi,$Xi);
991
992	&pshufb		($Xi,$T3);
993	&movdqu		(&QWP(0,$Xip),$Xi);
994
995	&ret	();
996&function_end_B("gcm_gmult_clmul");
997
998&function_begin("gcm_ghash_clmul");
999	&mov		($Xip,&wparam(0));
1000	&mov		($Htbl,&wparam(1));
1001	&mov		($inp,&wparam(2));
1002	&mov		($len,&wparam(3));
1003
1004	&call		(&label("pic"));
1005&set_label("pic");
1006	&blindpop	($const);
1007	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1008
1009	&movdqu		($Xi,&QWP(0,$Xip));
1010	&movdqa		($T3,&QWP(0,$const));
1011	&movdqu		($Hkey,&QWP(0,$Htbl));
1012	&pshufb		($Xi,$T3);
1013
1014	&sub		($len,0x10);
1015	&jz		(&label("odd_tail"));
1016
1017	#######
1018	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1019	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1020	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1021	#
1022	&movdqu		($T1,&QWP(0,$inp));	# Ii
1023	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1024	&pshufb		($T1,$T3);
1025	&pshufb		($Xn,$T3);
1026	&movdqu		($T3,&QWP(32,$Htbl));
1027	&pxor		($Xi,$T1);		# Ii+Xi
1028
1029	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
1030	&movdqa		($Xhn,$Xn);
1031	&pxor		($T1,$Xn);		#
1032	&lea		($inp,&DWP(32,$inp));	# i+=2
1033
1034	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1035	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1036	&pclmulqdq	($T1,$T3,0x00);		#######
1037	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1038	&nop		();
1039
1040	&sub		($len,0x20);
1041	&jbe		(&label("even_tail"));
1042	&jmp		(&label("mod_loop"));
1043
1044&set_label("mod_loop",32);
1045	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1046	&movdqa		($Xhi,$Xi);
1047	&pxor		($T2,$Xi);		#
1048	&nop		();
1049
1050	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1051	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1052	&pclmulqdq	($T2,$T3,0x10);		#######
1053	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1054
1055	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1056	&movdqa		($T3,&QWP(0,$const));
1057	&xorps		($Xhi,$Xhn);
1058	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
1059	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1060	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
1061	&pxor		($T1,$Xhi);		#
1062
1063	 &pshufb	($Xhn,$T3);
1064	&pxor		($T2,$T1);		#
1065
1066	&movdqa		($T1,$T2);		#
1067	&psrldq		($T2,8);
1068	&pslldq		($T1,8);		#
1069	&pxor		($Xhi,$T2);
1070	&pxor		($Xi,$T1);		#
1071	 &pshufb	($Xn,$T3);
1072	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
1073
1074	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
1075	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
1076	  &movdqa	($T1,$Xi);
1077	  &psllq	($Xi,5);
1078	  &pxor		($T1,$Xi);		#
1079	  &psllq	($Xi,1);
1080	  &pxor		($Xi,$T1);		#
1081	&pclmulqdq	($Xn,$Hkey,0x00);	#######
1082	&movups		($T3,&QWP(32,$Htbl));
1083	  &psllq	($Xi,57);		#
1084	  &movdqa	($T1,$Xi);		#
1085	  &pslldq	($Xi,8);
1086	  &psrldq	($T1,8);		#
1087	  &pxor		($Xi,$T2);
1088	  &pxor		($Xhi,$T1);		#
1089	&pshufd		($T1,$Xhn,0b01001110);
1090	  &movdqa	($T2,$Xi);		# 2nd phase
1091	  &psrlq	($Xi,1);
1092	&pxor		($T1,$Xhn);
1093	  &pxor		($Xhi,$T2);		#
1094	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
1095	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
1096	  &pxor		($T2,$Xi);
1097	  &psrlq	($Xi,5);
1098	  &pxor		($Xi,$T2);		#
1099	  &psrlq	($Xi,1);		#
1100	  &pxor		($Xi,$Xhi)		#
1101	&pclmulqdq	($T1,$T3,0x00);		#######
1102
1103	&lea		($inp,&DWP(32,$inp));
1104	&sub		($len,0x20);
1105	&ja		(&label("mod_loop"));
1106
1107&set_label("even_tail");
1108	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
1109	&movdqa		($Xhi,$Xi);
1110	&pxor		($T2,$Xi);		#
1111
1112	&pclmulqdq	($Xi,$Hkey,0x00);	#######
1113	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
1114	&pclmulqdq	($T2,$T3,0x10);		#######
1115	&movdqa		($T3,&QWP(0,$const));
1116
1117	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1118	&xorps		($Xhi,$Xhn);
1119	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
1120	&pxor		($T1,$Xhi);		#
1121
1122	&pxor		($T2,$T1);		#
1123
1124	&movdqa		($T1,$T2);		#
1125	&psrldq		($T2,8);
1126	&pslldq		($T1,8);		#
1127	&pxor		($Xhi,$T2);
1128	&pxor		($Xi,$T1);		#
1129
1130	&reduction_alg9	($Xhi,$Xi);
1131
1132	&test		($len,$len);
1133	&jnz		(&label("done"));
1134
1135	&movups		($Hkey,&QWP(0,$Htbl));	# load H
1136&set_label("odd_tail");
1137	&movdqu		($T1,&QWP(0,$inp));	# Ii
1138	&pshufb		($T1,$T3);
1139	&pxor		($Xi,$T1);		# Ii+Xi
1140
1141	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1142	&reduction_alg9	($Xhi,$Xi);
1143
1144&set_label("done");
1145	&pshufb		($Xi,$T3);
1146	&movdqu		(&QWP(0,$Xip),$Xi);
1147&function_end("gcm_ghash_clmul");
1148
1149} else {		# Algorithm 5. Kept for reference purposes.
1150
1151sub reduction_alg5 {	# 19/16 times faster than Intel version
1152my ($Xhi,$Xi)=@_;
1153
1154	# <<1
1155	&movdqa		($T1,$Xi);		#
1156	&movdqa		($T2,$Xhi);
1157	&pslld		($Xi,1);
1158	&pslld		($Xhi,1);		#
1159	&psrld		($T1,31);
1160	&psrld		($T2,31);		#
1161	&movdqa		($T3,$T1);
1162	&pslldq		($T1,4);
1163	&psrldq		($T3,12);		#
1164	&pslldq		($T2,4);
1165	&por		($Xhi,$T3);		#
1166	&por		($Xi,$T1);
1167	&por		($Xhi,$T2);		#
1168
1169	# 1st phase
1170	&movdqa		($T1,$Xi);
1171	&movdqa		($T2,$Xi);
1172	&movdqa		($T3,$Xi);		#
1173	&pslld		($T1,31);
1174	&pslld		($T2,30);
1175	&pslld		($Xi,25);		#
1176	&pxor		($T1,$T2);
1177	&pxor		($T1,$Xi);		#
1178	&movdqa		($T2,$T1);		#
1179	&pslldq		($T1,12);
1180	&psrldq		($T2,4);		#
1181	&pxor		($T3,$T1);
1182
1183	# 2nd phase
1184	&pxor		($Xhi,$T3);		#
1185	&movdqa		($Xi,$T3);
1186	&movdqa		($T1,$T3);
1187	&psrld		($Xi,1);		#
1188	&psrld		($T1,2);
1189	&psrld		($T3,7);		#
1190	&pxor		($Xi,$T1);
1191	&pxor		($Xhi,$T2);
1192	&pxor		($Xi,$T3);		#
1193	&pxor		($Xi,$Xhi);		#
1194}
1195
1196&function_begin_B("gcm_init_clmul");
1197	&mov		($Htbl,&wparam(0));
1198	&mov		($Xip,&wparam(1));
1199
1200	&call		(&label("pic"));
1201&set_label("pic");
1202	&blindpop	($const);
1203	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1204
1205	&movdqu		($Hkey,&QWP(0,$Xip));
1206	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
1207
1208	# calculate H^2
1209	&movdqa		($Xi,$Hkey);
1210	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1211	&reduction_alg5	($Xhi,$Xi);
1212
1213	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
1214	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
1215
1216	&ret		();
1217&function_end_B("gcm_init_clmul");
1218
1219&function_begin_B("gcm_gmult_clmul");
1220	&mov		($Xip,&wparam(0));
1221	&mov		($Htbl,&wparam(1));
1222
1223	&call		(&label("pic"));
1224&set_label("pic");
1225	&blindpop	($const);
1226	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1227
1228	&movdqu		($Xi,&QWP(0,$Xip));
1229	&movdqa		($Xn,&QWP(0,$const));
1230	&movdqu		($Hkey,&QWP(0,$Htbl));
1231	&pshufb		($Xi,$Xn);
1232
1233	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
1234	&reduction_alg5	($Xhi,$Xi);
1235
1236	&pshufb		($Xi,$Xn);
1237	&movdqu		(&QWP(0,$Xip),$Xi);
1238
1239	&ret	();
1240&function_end_B("gcm_gmult_clmul");
1241
1242&function_begin("gcm_ghash_clmul");
1243	&mov		($Xip,&wparam(0));
1244	&mov		($Htbl,&wparam(1));
1245	&mov		($inp,&wparam(2));
1246	&mov		($len,&wparam(3));
1247
1248	&call		(&label("pic"));
1249&set_label("pic");
1250	&blindpop	($const);
1251	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
1252
1253	&movdqu		($Xi,&QWP(0,$Xip));
1254	&movdqa		($T3,&QWP(0,$const));
1255	&movdqu		($Hkey,&QWP(0,$Htbl));
1256	&pshufb		($Xi,$T3);
1257
1258	&sub		($len,0x10);
1259	&jz		(&label("odd_tail"));
1260
1261	#######
1262	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
1263	#	[(H*Ii+1) + (H*Xi+1)] mod P =
1264	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
1265	#
1266	&movdqu		($T1,&QWP(0,$inp));	# Ii
1267	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1268	&pshufb		($T1,$T3);
1269	&pshufb		($Xn,$T3);
1270	&pxor		($Xi,$T1);		# Ii+Xi
1271
1272	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1273	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1274
1275	&sub		($len,0x20);
1276	&lea		($inp,&DWP(32,$inp));	# i+=2
1277	&jbe		(&label("even_tail"));
1278
1279&set_label("mod_loop");
1280	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1281	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1282
1283	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1284	&pxor		($Xhi,$Xhn);
1285
1286	&reduction_alg5	($Xhi,$Xi);
1287
1288	#######
1289	&movdqa		($T3,&QWP(0,$const));
1290	&movdqu		($T1,&QWP(0,$inp));	# Ii
1291	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
1292	&pshufb		($T1,$T3);
1293	&pshufb		($Xn,$T3);
1294	&pxor		($Xi,$T1);		# Ii+Xi
1295
1296	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
1297	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
1298
1299	&sub		($len,0x20);
1300	&lea		($inp,&DWP(32,$inp));
1301	&ja		(&label("mod_loop"));
1302
1303&set_label("even_tail");
1304	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
1305
1306	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
1307	&pxor		($Xhi,$Xhn);
1308
1309	&reduction_alg5	($Xhi,$Xi);
1310
1311	&movdqa		($T3,&QWP(0,$const));
1312	&test		($len,$len);
1313	&jnz		(&label("done"));
1314
1315	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
1316&set_label("odd_tail");
1317	&movdqu		($T1,&QWP(0,$inp));	# Ii
1318	&pshufb		($T1,$T3);
1319	&pxor		($Xi,$T1);		# Ii+Xi
1320
1321	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
1322	&reduction_alg5	($Xhi,$Xi);
1323
1324	&movdqa		($T3,&QWP(0,$const));
1325&set_label("done");
1326	&pshufb		($Xi,$T3);
1327	&movdqu		(&QWP(0,$Xip),$Xi);
1328&function_end("gcm_ghash_clmul");
1329
1330}
1331
1332&set_label("bswap",64);
1333	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
1334	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
1335&set_label("rem_8bit",64);
1336	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
1337	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
1338	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
1339	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
1340	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
1341	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
1342	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
1343	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
1344	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
1345	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
1346	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
1347	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
1348	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
1349	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
1350	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
1351	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
1352	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
1353	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
1354	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
1355	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
1356	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
1357	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
1358	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
1359	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
1360	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
1361	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
1362	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
1363	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
1364	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
1365	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
1366	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
1367	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
1368}}	# $sse2
1369
1370&set_label("rem_4bit",64);
1371	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
1372	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
1373	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
1374	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
1375}}}	# !$x86only
1376
1377&asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
1378&asm_finish();
1379
1380close STDOUT or die "error closing STDOUT: $!";
1381
1382# A question was risen about choice of vanilla MMX. Or rather why wasn't
1383# SSE2 chosen instead? In addition to the fact that MMX runs on legacy
1384# CPUs such as PIII, "4-bit" MMX version was observed to provide better
1385# performance than *corresponding* SSE2 one even on contemporary CPUs.
1386# SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
1387# implementation featuring full range of lookup-table sizes, but with
1388# per-invocation lookup table setup. Latter means that table size is
1389# chosen depending on how much data is to be hashed in every given call,
1390# more data - larger table. Best reported result for Core2 is ~4 cycles
1391# per processed byte out of 64KB block. This number accounts even for
1392# 64KB table setup overhead. As discussed in gcm128.c we choose to be
1393# more conservative in respect to lookup table sizes, but how do the
1394# results compare? Minimalistic "256B" MMX version delivers ~11 cycles
1395# on same platform. As also discussed in gcm128.c, next in line "8-bit
1396# Shoup's" or "4KB" method should deliver twice the performance of
1397# "256B" one, in other words not worse than ~6 cycles per byte. It
1398# should be also be noted that in SSE2 case improvement can be "super-
1399# linear," i.e. more than twice, mostly because >>8 maps to single
1400# instruction on SSE2 register. This is unlike "4-bit" case when >>4
1401# maps to same amount of instructions in both MMX and SSE2 cases.
1402# Bottom line is that switch to SSE2 is considered to be justifiable
1403# only in case we choose to implement "8-bit" method...
1404