• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*!
2 A library for finding occurrences of many patterns at once. This library
3 provides multiple pattern search principally through an implementation of the
4 [Aho-Corasick algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm),
5 which builds a fast finite state machine for executing searches in linear time.
6 
7 Additionally, this library provides a number of configuration options for
8 building the automaton that permit controlling the space versus time trade
9 off. Other features include simple ASCII case insensitive matching, finding
10 overlapping matches, replacements, searching streams and even searching and
11 replacing text in streams.
12 
13 Finally, unlike all other (known) Aho-Corasick implementations, this one
14 supports enabling
15 [leftmost-first](enum.MatchKind.html#variant.LeftmostFirst)
16 or
17 [leftmost-longest](enum.MatchKind.html#variant.LeftmostFirst)
18 match semantics, using a (seemingly) novel alternative construction algorithm.
19 For more details on what match semantics means, see the
20 [`MatchKind`](enum.MatchKind.html)
21 type.
22 
23 # Overview
24 
25 This section gives a brief overview of the primary types in this crate:
26 
27 * [`AhoCorasick`](struct.AhoCorasick.html) is the primary type and represents
28   an Aho-Corasick automaton. This is the type you use to execute searches.
29 * [`AhoCorasickBuilder`](struct.AhoCorasickBuilder.html) can be used to build
30   an Aho-Corasick automaton, and supports configuring a number of options.
31 * [`Match`](struct.Match.html) represents a single match reported by an
32   Aho-Corasick automaton. Each match has two pieces of information: the pattern
33   that matched and the start and end byte offsets corresponding to the position
34   in the haystack at which it matched.
35 
36 Additionally, the [`packed`](packed/index.html) sub-module contains a lower
37 level API for using fast vectorized routines for finding a small number of
38 patterns in a haystack.
39 
40 # Example: basic searching
41 
42 This example shows how to search for occurrences of multiple patterns
43 simultaneously. Each match includes the pattern that matched along with the
44 byte offsets of the match.
45 
46 ```
47 use aho_corasick::AhoCorasick;
48 
49 let patterns = &["apple", "maple", "Snapple"];
50 let haystack = "Nobody likes maple in their apple flavored Snapple.";
51 
52 let ac = AhoCorasick::new(patterns);
53 let mut matches = vec![];
54 for mat in ac.find_iter(haystack) {
55     matches.push((mat.pattern(), mat.start(), mat.end()));
56 }
57 assert_eq!(matches, vec![
58     (1, 13, 18),
59     (0, 28, 33),
60     (2, 43, 50),
61 ]);
62 ```
63 
64 # Example: case insensitivity
65 
66 This is like the previous example, but matches `Snapple` case insensitively
67 using `AhoCorasickBuilder`:
68 
69 ```
70 use aho_corasick::AhoCorasickBuilder;
71 
72 let patterns = &["apple", "maple", "snapple"];
73 let haystack = "Nobody likes maple in their apple flavored Snapple.";
74 
75 let ac = AhoCorasickBuilder::new()
76     .ascii_case_insensitive(true)
77     .build(patterns);
78 let mut matches = vec![];
79 for mat in ac.find_iter(haystack) {
80     matches.push((mat.pattern(), mat.start(), mat.end()));
81 }
82 assert_eq!(matches, vec![
83     (1, 13, 18),
84     (0, 28, 33),
85     (2, 43, 50),
86 ]);
87 ```
88 
89 # Example: replacing matches in a stream
90 
91 This example shows how to execute a search and replace on a stream without
92 loading the entire stream into memory first.
93 
94 ```
95 use aho_corasick::AhoCorasick;
96 
97 # fn example() -> Result<(), ::std::io::Error> {
98 let patterns = &["fox", "brown", "quick"];
99 let replace_with = &["sloth", "grey", "slow"];
100 
101 // In a real example, these might be `std::fs::File`s instead. All you need to
102 // do is supply a pair of `std::io::Read` and `std::io::Write` implementations.
103 let rdr = "The quick brown fox.";
104 let mut wtr = vec![];
105 
106 let ac = AhoCorasick::new(patterns);
107 ac.stream_replace_all(rdr.as_bytes(), &mut wtr, replace_with)?;
108 assert_eq!(b"The slow grey sloth.".to_vec(), wtr);
109 # Ok(()) }; example().unwrap()
110 ```
111 
112 # Example: finding the leftmost first match
113 
114 In the textbook description of Aho-Corasick, its formulation is typically
115 structured such that it reports all possible matches, even when they overlap
116 with another. In many cases, overlapping matches may not be desired, such as
117 the case of finding all successive non-overlapping matches like you might with
118 a standard regular expression.
119 
120 Unfortunately the "obvious" way to modify the Aho-Corasick algorithm to do
121 this doesn't always work in the expected way, since it will report matches as
122 soon as they are seen. For example, consider matching the regex `Samwise|Sam`
123 against the text `Samwise`. Most regex engines (that are Perl-like, or
124 non-POSIX) will report `Samwise` as a match, but the standard Aho-Corasick
125 algorithm modified for reporting non-overlapping matches will report `Sam`.
126 
127 A novel contribution of this library is the ability to change the match
128 semantics of Aho-Corasick (without additional search time overhead) such that
129 `Samwise` is reported instead. For example, here's the standard approach:
130 
131 ```
132 use aho_corasick::AhoCorasick;
133 
134 let patterns = &["Samwise", "Sam"];
135 let haystack = "Samwise";
136 
137 let ac = AhoCorasick::new(patterns);
138 let mat = ac.find(haystack).expect("should have a match");
139 assert_eq!("Sam", &haystack[mat.start()..mat.end()]);
140 ```
141 
142 And now here's the leftmost-first version, which matches how a Perl-like
143 regex will work:
144 
145 ```
146 use aho_corasick::{AhoCorasickBuilder, MatchKind};
147 
148 let patterns = &["Samwise", "Sam"];
149 let haystack = "Samwise";
150 
151 let ac = AhoCorasickBuilder::new()
152     .match_kind(MatchKind::LeftmostFirst)
153     .build(patterns);
154 let mat = ac.find(haystack).expect("should have a match");
155 assert_eq!("Samwise", &haystack[mat.start()..mat.end()]);
156 ```
157 
158 In addition to leftmost-first semantics, this library also supports
159 leftmost-longest semantics, which match the POSIX behavior of a regular
160 expression alternation. See
161 [`MatchKind`](enum.MatchKind.html)
162 for more details.
163 
164 # Prefilters
165 
166 While an Aho-Corasick automaton can perform admirably when compared to more
167 naive solutions, it is generally slower than more specialized algorithms that
168 are accelerated using vector instructions such as SIMD.
169 
170 For that reason, this library will internally use a "prefilter" to attempt
171 to accelerate searches when possible. Currently, this library has several
172 different algorithms it might use depending on the patterns provided. Once the
173 number of patterns gets too big, prefilters are no longer used.
174 
175 While a prefilter is generally good to have on by default since it works
176 well in the common case, it can lead to less predictable or even sub-optimal
177 performance in some cases. For that reason, prefilters can be explicitly
178 disabled via
179 [`AhoCorasickBuilder::prefilter`](struct.AhoCorasickBuilder.html#method.prefilter).
180 */
181 #![allow(clippy::if_same_then_else)]
182 #![deny(missing_docs)]
183 
184 // We can never be truly no_std, but we could be alloc-only some day, so
185 // require the std feature for now.
186 #[cfg(not(feature = "std"))]
187 compile_error!("`std` feature is currently required to build this crate");
188 
189 // #[cfg(doctest)]
190 // #[macro_use]
191 // extern crate doc_comment;
192 
193 // #[cfg(doctest)]
194 // doctest!("../README.md");
195 
196 pub use crate::ahocorasick::{
197     AhoCorasick, AhoCorasickBuilder, FindIter, FindOverlappingIter, MatchKind,
198     StreamFindIter,
199 };
200 pub use crate::error::{Error, ErrorKind};
201 pub use crate::state_id::StateID;
202 
203 mod ahocorasick;
204 mod automaton;
205 mod buffer;
206 mod byte_frequencies;
207 mod classes;
208 mod dfa;
209 mod error;
210 mod nfa;
211 pub mod packed;
212 mod prefilter;
213 mod state_id;
214 #[cfg(test)]
215 mod tests;
216 
217 /// A representation of a match reported by an Aho-Corasick automaton.
218 ///
219 /// A match has two essential pieces of information: the identifier of the
220 /// pattern that matched, along with the start and end offsets of the match
221 /// in the haystack.
222 ///
223 /// # Examples
224 ///
225 /// Basic usage:
226 ///
227 /// ```
228 /// use aho_corasick::AhoCorasick;
229 ///
230 /// let ac = AhoCorasick::new(&[
231 ///     "foo", "bar", "baz",
232 /// ]);
233 /// let mat = ac.find("xxx bar xxx").expect("should have a match");
234 /// assert_eq!(1, mat.pattern());
235 /// assert_eq!(4, mat.start());
236 /// assert_eq!(7, mat.end());
237 /// ```
238 #[derive(Clone, Debug, Eq, Hash, PartialEq)]
239 pub struct Match {
240     /// The pattern id.
241     pattern: usize,
242     /// The length of this match, such that the starting position of the match
243     /// is `end - len`.
244     ///
245     /// We use length here because, other than the pattern id, the only
246     /// information about each pattern that the automaton stores is its length.
247     /// So using the length here is just a bit more natural. But it isn't
248     /// technically required.
249     len: usize,
250     /// The end offset of the match, exclusive.
251     end: usize,
252 }
253 
254 impl Match {
255     /// Returns the identifier of the pattern that matched.
256     ///
257     /// The identifier of a pattern is derived from the position in which it
258     /// was originally inserted into the corresponding automaton. The first
259     /// pattern has identifier `0`, and each subsequent pattern is `1`, `2`
260     /// and so on.
261     #[inline]
pattern(&self) -> usize262     pub fn pattern(&self) -> usize {
263         self.pattern
264     }
265 
266     /// The starting position of the match.
267     #[inline]
start(&self) -> usize268     pub fn start(&self) -> usize {
269         self.end - self.len
270     }
271 
272     /// The ending position of the match.
273     #[inline]
end(&self) -> usize274     pub fn end(&self) -> usize {
275         self.end
276     }
277 
278     /// The length, in bytes, of the match.
279     #[inline]
len(&self) -> usize280     pub fn len(&self) -> usize {
281         self.len
282     }
283 
284     /// Returns true if and only if this match is empty. That is, when
285     /// `start() == end()`.
286     ///
287     /// An empty match can only be returned when the empty string was among
288     /// the patterns used to build the Aho-Corasick automaton.
289     #[inline]
is_empty(&self) -> bool290     pub fn is_empty(&self) -> bool {
291         self.len == 0
292     }
293 
294     #[inline]
increment(&self, by: usize) -> Match295     fn increment(&self, by: usize) -> Match {
296         Match { pattern: self.pattern, len: self.len, end: self.end + by }
297     }
298 
299     #[inline]
from_span(id: usize, start: usize, end: usize) -> Match300     fn from_span(id: usize, start: usize, end: usize) -> Match {
301         Match { pattern: id, len: end - start, end }
302     }
303 }
304