1 //! Shared secret derivation. 2 //! 3 //! # Example 4 //! 5 //! The following example implements [ECDH] using `NIST P-384` keys: 6 //! 7 //! ``` 8 //! # fn main() -> Result<(), Box<dyn std::error::Error>> { 9 //! # use std::convert::TryInto; 10 //! use openssl::bn::BigNumContext; 11 //! use openssl::pkey::PKey; 12 //! use openssl::derive::Deriver; 13 //! use openssl::ec::{EcGroup, EcKey, EcPoint, PointConversionForm}; 14 //! use openssl::nid::Nid; 15 //! 16 //! let group = EcGroup::from_curve_name(Nid::SECP384R1)?; 17 //! 18 //! let first: PKey<_> = EcKey::generate(&group)?.try_into()?; 19 //! 20 //! // second party generates an ephemeral key and derives 21 //! // a shared secret using first party's public key 22 //! let shared_key = EcKey::generate(&group)?; 23 //! // shared_public is sent to first party 24 //! let mut ctx = BigNumContext::new()?; 25 //! let shared_public = shared_key.public_key().to_bytes( 26 //! &group, 27 //! PointConversionForm::COMPRESSED, 28 //! &mut ctx, 29 //! )?; 30 //! 31 //! let shared_key: PKey<_> = shared_key.try_into()?; 32 //! let mut deriver = Deriver::new(&shared_key)?; 33 //! deriver.set_peer(&first)?; 34 //! // secret can be used e.g. as a symmetric encryption key 35 //! let secret = deriver.derive_to_vec()?; 36 //! # drop(deriver); 37 //! 38 //! // first party derives the same shared secret using 39 //! // shared_public 40 //! let point = EcPoint::from_bytes(&group, &shared_public, &mut ctx)?; 41 //! let recipient_key: PKey<_> = EcKey::from_public_key(&group, &point)?.try_into()?; 42 //! let mut deriver = Deriver::new(&first)?; 43 //! deriver.set_peer(&recipient_key)?; 44 //! let first_secret = deriver.derive_to_vec()?; 45 //! 46 //! assert_eq!(secret, first_secret); 47 //! # Ok(()) } 48 //! ``` 49 //! 50 //! [ECDH]: https://wiki.openssl.org/index.php/Elliptic_Curve_Diffie_Hellman 51 52 use foreign_types::ForeignTypeRef; 53 use std::marker::PhantomData; 54 use std::ptr; 55 56 use crate::error::ErrorStack; 57 use crate::pkey::{HasPrivate, HasPublic, PKeyRef}; 58 use crate::{cvt, cvt_p}; 59 use openssl_macros::corresponds; 60 61 /// A type used to derive a shared secret between two keys. 62 pub struct Deriver<'a>(*mut ffi::EVP_PKEY_CTX, PhantomData<&'a ()>); 63 64 unsafe impl<'a> Sync for Deriver<'a> {} 65 unsafe impl<'a> Send for Deriver<'a> {} 66 67 #[allow(clippy::len_without_is_empty)] 68 impl<'a> Deriver<'a> { 69 /// Creates a new `Deriver` using the provided private key. 70 /// 71 /// This corresponds to [`EVP_PKEY_derive_init`]. 72 /// 73 /// [`EVP_PKEY_derive_init`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html new<T>(key: &'a PKeyRef<T>) -> Result<Deriver<'a>, ErrorStack> where T: HasPrivate,74 pub fn new<T>(key: &'a PKeyRef<T>) -> Result<Deriver<'a>, ErrorStack> 75 where 76 T: HasPrivate, 77 { 78 unsafe { 79 cvt_p(ffi::EVP_PKEY_CTX_new(key.as_ptr(), ptr::null_mut())) 80 .map(|p| Deriver(p, PhantomData)) 81 .and_then(|ctx| cvt(ffi::EVP_PKEY_derive_init(ctx.0)).map(|_| ctx)) 82 } 83 } 84 85 /// Sets the peer key used for secret derivation. 86 #[corresponds(EVP_PKEY_derive_set_peer)] set_peer<T>(&mut self, key: &'a PKeyRef<T>) -> Result<(), ErrorStack> where T: HasPublic,87 pub fn set_peer<T>(&mut self, key: &'a PKeyRef<T>) -> Result<(), ErrorStack> 88 where 89 T: HasPublic, 90 { 91 unsafe { cvt(ffi::EVP_PKEY_derive_set_peer(self.0, key.as_ptr())).map(|_| ()) } 92 } 93 94 /// Sets the peer key used for secret derivation along with optionally validating the peer public key. 95 /// 96 /// Requires OpenSSL 3.0.0 or newer. 97 #[corresponds(EVP_PKEY_derive_set_peer_ex)] 98 #[cfg(ossl300)] set_peer_ex<T>( &mut self, key: &'a PKeyRef<T>, validate_peer: bool, ) -> Result<(), ErrorStack> where T: HasPublic,99 pub fn set_peer_ex<T>( 100 &mut self, 101 key: &'a PKeyRef<T>, 102 validate_peer: bool, 103 ) -> Result<(), ErrorStack> 104 where 105 T: HasPublic, 106 { 107 unsafe { 108 cvt(ffi::EVP_PKEY_derive_set_peer_ex( 109 self.0, 110 key.as_ptr(), 111 validate_peer as i32, 112 )) 113 .map(|_| ()) 114 } 115 } 116 117 /// Returns the size of the shared secret. 118 /// 119 /// It can be used to size the buffer passed to [`Deriver::derive`]. 120 /// 121 /// This corresponds to [`EVP_PKEY_derive`]. 122 /// 123 /// [`Deriver::derive`]: #method.derive 124 /// [`EVP_PKEY_derive`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html len(&mut self) -> Result<usize, ErrorStack>125 pub fn len(&mut self) -> Result<usize, ErrorStack> { 126 unsafe { 127 let mut len = 0; 128 cvt(ffi::EVP_PKEY_derive(self.0, ptr::null_mut(), &mut len)).map(|_| len) 129 } 130 } 131 132 /// Derives a shared secret between the two keys, writing it into the buffer. 133 /// 134 /// Returns the number of bytes written. 135 /// 136 /// This corresponds to [`EVP_PKEY_derive`]. 137 /// 138 /// [`EVP_PKEY_derive`]: https://www.openssl.org/docs/manmaster/crypto/EVP_PKEY_derive_init.html derive(&mut self, buf: &mut [u8]) -> Result<usize, ErrorStack>139 pub fn derive(&mut self, buf: &mut [u8]) -> Result<usize, ErrorStack> { 140 let mut len = buf.len(); 141 unsafe { 142 cvt(ffi::EVP_PKEY_derive( 143 self.0, 144 buf.as_mut_ptr() as *mut _, 145 &mut len, 146 )) 147 .map(|_| len) 148 } 149 } 150 151 /// A convenience function which derives a shared secret and returns it in a new buffer. 152 /// 153 /// This simply wraps [`Deriver::len`] and [`Deriver::derive`]. 154 /// 155 /// [`Deriver::len`]: #method.len 156 /// [`Deriver::derive`]: #method.derive derive_to_vec(&mut self) -> Result<Vec<u8>, ErrorStack>157 pub fn derive_to_vec(&mut self) -> Result<Vec<u8>, ErrorStack> { 158 let len = self.len()?; 159 let mut buf = vec![0; len]; 160 let len = self.derive(&mut buf)?; 161 buf.truncate(len); 162 Ok(buf) 163 } 164 } 165 166 impl<'a> Drop for Deriver<'a> { drop(&mut self)167 fn drop(&mut self) { 168 unsafe { 169 ffi::EVP_PKEY_CTX_free(self.0); 170 } 171 } 172 } 173 174 #[cfg(test)] 175 mod test { 176 use super::*; 177 178 use crate::ec::{EcGroup, EcKey}; 179 use crate::nid::Nid; 180 use crate::pkey::PKey; 181 182 #[test] derive_without_peer()183 fn derive_without_peer() { 184 let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); 185 let ec_key = EcKey::generate(&group).unwrap(); 186 let pkey = PKey::from_ec_key(ec_key).unwrap(); 187 let mut deriver = Deriver::new(&pkey).unwrap(); 188 deriver.derive_to_vec().unwrap_err(); 189 } 190 191 #[test] test_ec_key_derive()192 fn test_ec_key_derive() { 193 let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); 194 let ec_key = EcKey::generate(&group).unwrap(); 195 let ec_key2 = EcKey::generate(&group).unwrap(); 196 let pkey = PKey::from_ec_key(ec_key).unwrap(); 197 let pkey2 = PKey::from_ec_key(ec_key2).unwrap(); 198 let mut deriver = Deriver::new(&pkey).unwrap(); 199 deriver.set_peer(&pkey2).unwrap(); 200 let shared = deriver.derive_to_vec().unwrap(); 201 assert!(!shared.is_empty()); 202 } 203 204 #[test] 205 #[cfg(ossl300)] test_ec_key_derive_ex()206 fn test_ec_key_derive_ex() { 207 let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap(); 208 let ec_key = EcKey::generate(&group).unwrap(); 209 let ec_key2 = EcKey::generate(&group).unwrap(); 210 let pkey = PKey::from_ec_key(ec_key).unwrap(); 211 let pkey2 = PKey::from_ec_key(ec_key2).unwrap(); 212 let mut deriver = Deriver::new(&pkey).unwrap(); 213 deriver.set_peer_ex(&pkey2, true).unwrap(); 214 let shared = deriver.derive_to_vec().unwrap(); 215 assert!(!shared.is_empty()); 216 } 217 } 218