• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Parsing interface for parsing a token stream into a syntax tree node.
2 //!
3 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5 //! these parser functions is a lower level mechanism built around the
6 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7 //! tokens in a token stream.
8 //!
9 //! [`Result<T>`]: Result
10 //! [`Cursor`]: crate::buffer::Cursor
11 //!
12 //! # Example
13 //!
14 //! Here is a snippet of parsing code to get a feel for the style of the
15 //! library. We define data structures for a subset of Rust syntax including
16 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
17 //! trait to parse these syntax tree data structures from a token stream.
18 //!
19 //! Once `Parse` impls have been defined, they can be called conveniently from a
20 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21 //! the snippet. If the caller provides syntactically invalid input to the
22 //! procedural macro, they will receive a helpful compiler error message
23 //! pointing out the exact token that triggered the failure to parse.
24 //!
25 //! [`parse_macro_input!`]: crate::parse_macro_input!
26 //!
27 //! ```
28 //! # extern crate proc_macro;
29 //! #
30 //! use proc_macro::TokenStream;
31 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32 //! use syn::parse::{Parse, ParseStream};
33 //! use syn::punctuated::Punctuated;
34 //!
35 //! enum Item {
36 //!     Struct(ItemStruct),
37 //!     Enum(ItemEnum),
38 //! }
39 //!
40 //! struct ItemStruct {
41 //!     struct_token: Token![struct],
42 //!     ident: Ident,
43 //!     brace_token: token::Brace,
44 //!     fields: Punctuated<Field, Token![,]>,
45 //! }
46 //! #
47 //! # enum ItemEnum {}
48 //!
49 //! impl Parse for Item {
50 //!     fn parse(input: ParseStream) -> Result<Self> {
51 //!         let lookahead = input.lookahead1();
52 //!         if lookahead.peek(Token![struct]) {
53 //!             input.parse().map(Item::Struct)
54 //!         } else if lookahead.peek(Token![enum]) {
55 //!             input.parse().map(Item::Enum)
56 //!         } else {
57 //!             Err(lookahead.error())
58 //!         }
59 //!     }
60 //! }
61 //!
62 //! impl Parse for ItemStruct {
63 //!     fn parse(input: ParseStream) -> Result<Self> {
64 //!         let content;
65 //!         Ok(ItemStruct {
66 //!             struct_token: input.parse()?,
67 //!             ident: input.parse()?,
68 //!             brace_token: braced!(content in input),
69 //!             fields: content.parse_terminated(Field::parse_named, Token![,])?,
70 //!         })
71 //!     }
72 //! }
73 //! #
74 //! # impl Parse for ItemEnum {
75 //! #     fn parse(input: ParseStream) -> Result<Self> {
76 //! #         unimplemented!()
77 //! #     }
78 //! # }
79 //!
80 //! # const IGNORE: &str = stringify! {
81 //! #[proc_macro]
82 //! # };
83 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84 //!     let input = parse_macro_input!(tokens as Item);
85 //!
86 //!     /* ... */
87 //! #   TokenStream::new()
88 //! }
89 //! ```
90 //!
91 //! # The `syn::parse*` functions
92 //!
93 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94 //! as an entry point for parsing syntax tree nodes that can be parsed in an
95 //! obvious default way. These functions can return any syntax tree node that
96 //! implements the [`Parse`] trait, which includes most types in Syn.
97 //!
98 //! [`syn::parse`]: crate::parse()
99 //! [`syn::parse2`]: crate::parse2()
100 //! [`syn::parse_str`]: crate::parse_str()
101 //!
102 //! ```
103 //! use syn::Type;
104 //!
105 //! # fn run_parser() -> syn::Result<()> {
106 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
107 //! #     Ok(())
108 //! # }
109 //! #
110 //! # run_parser().unwrap();
111 //! ```
112 //!
113 //! The [`parse_quote!`] macro also uses this approach.
114 //!
115 //! [`parse_quote!`]: crate::parse_quote!
116 //!
117 //! # The `Parser` trait
118 //!
119 //! Some types can be parsed in several ways depending on context. For example
120 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122 //! may or may not allow trailing punctuation, and parsing it the wrong way
123 //! would either reject valid input or accept invalid input.
124 //!
125 //! [`Attribute`]: crate::Attribute
126 //! [`Punctuated`]: crate::punctuated
127 //!
128 //! The `Parse` trait is not implemented in these cases because there is no good
129 //! behavior to consider the default.
130 //!
131 //! ```compile_fail
132 //! # extern crate proc_macro;
133 //! #
134 //! # use syn::punctuated::Punctuated;
135 //! # use syn::{PathSegment, Result, Token};
136 //! #
137 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138 //! #
139 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
140 //! // should be allowed in this context.
141 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142 //! #
143 //! #     Ok(())
144 //! # }
145 //! ```
146 //!
147 //! In these cases the types provide a choice of parser functions rather than a
148 //! single `Parse` implementation, and those parser functions can be invoked
149 //! through the [`Parser`] trait.
150 //!
151 //!
152 //! ```
153 //! # extern crate proc_macro;
154 //! #
155 //! use proc_macro::TokenStream;
156 //! use syn::parse::Parser;
157 //! use syn::punctuated::Punctuated;
158 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
159 //!
160 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161 //!     // Parse a nonempty sequence of path segments separated by `::` punctuation
162 //!     // with no trailing punctuation.
163 //!     let tokens = input.clone();
164 //!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165 //!     let _path = parser.parse(tokens)?;
166 //!
167 //!     // Parse a possibly empty sequence of expressions terminated by commas with
168 //!     // an optional trailing punctuation.
169 //!     let tokens = input.clone();
170 //!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171 //!     let _args = parser.parse(tokens)?;
172 //!
173 //!     // Parse zero or more outer attributes but not inner attributes.
174 //!     let tokens = input.clone();
175 //!     let parser = Attribute::parse_outer;
176 //!     let _attrs = parser.parse(tokens)?;
177 //!
178 //!     Ok(())
179 //! }
180 //! ```
181 
182 #[path = "discouraged.rs"]
183 pub mod discouraged;
184 
185 use crate::buffer::{Cursor, TokenBuffer};
186 use crate::error;
187 use crate::lookahead;
188 #[cfg(feature = "proc-macro")]
189 use crate::proc_macro;
190 use crate::punctuated::Punctuated;
191 use crate::token::Token;
192 use proc_macro2::{self, Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
193 use std::cell::Cell;
194 use std::fmt::{self, Debug, Display};
195 #[cfg(feature = "extra-traits")]
196 use std::hash::{Hash, Hasher};
197 use std::marker::PhantomData;
198 use std::mem;
199 use std::ops::Deref;
200 use std::rc::Rc;
201 use std::str::FromStr;
202 
203 pub use crate::error::{Error, Result};
204 pub use crate::lookahead::{Lookahead1, Peek};
205 
206 /// Parsing interface implemented by all types that can be parsed in a default
207 /// way from a token stream.
208 ///
209 /// Refer to the [module documentation] for details about implementing and using
210 /// the `Parse` trait.
211 ///
212 /// [module documentation]: self
213 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>214     fn parse(input: ParseStream) -> Result<Self>;
215 }
216 
217 /// Input to a Syn parser function.
218 ///
219 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
220 /// an overview of parsing in Syn, refer to the [module documentation].
221 ///
222 /// [module documentation]: self
223 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
224 
225 /// Cursor position within a buffered token stream.
226 ///
227 /// This type is more commonly used through the type alias [`ParseStream`] which
228 /// is an alias for `&ParseBuffer`.
229 ///
230 /// `ParseStream` is the input type for all parser functions in Syn. They have
231 /// the signature `fn(ParseStream) -> Result<T>`.
232 ///
233 /// ## Calling a parser function
234 ///
235 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
236 /// looking to invoke a parser function that requires `ParseStream` as input,
237 /// you will need to go through one of the public parsing entry points.
238 ///
239 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
240 /// - One of [the `syn::parse*` functions][syn-parse]; or
241 /// - A method of the [`Parser`] trait.
242 ///
243 /// [`parse_macro_input!`]: crate::parse_macro_input!
244 /// [syn-parse]: self#the-synparse-functions
245 pub struct ParseBuffer<'a> {
246     scope: Span,
247     // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
248     // The rest of the code in this module needs to be careful that only a
249     // cursor derived from this `cell` is ever assigned to this `cell`.
250     //
251     // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
252     // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
253     // than 'a, and then assign a Cursor<'short> into the Cell.
254     //
255     // By extension, it would not be safe to expose an API that accepts a
256     // Cursor<'a> and trusts that it lives as long as the cursor currently in
257     // the cell.
258     cell: Cell<Cursor<'static>>,
259     marker: PhantomData<Cursor<'a>>,
260     unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
261 }
262 
263 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)264     fn drop(&mut self) {
265         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
266             let (inner, old_span) = inner_unexpected(self);
267             if old_span.is_none() {
268                 inner.set(Unexpected::Some(unexpected_span));
269             }
270         }
271     }
272 }
273 
274 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result275     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
276         Display::fmt(&self.cursor().token_stream(), f)
277     }
278 }
279 
280 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result281     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
282         Debug::fmt(&self.cursor().token_stream(), f)
283     }
284 }
285 
286 /// Cursor state associated with speculative parsing.
287 ///
288 /// This type is the input of the closure provided to [`ParseStream::step`].
289 ///
290 /// [`ParseStream::step`]: ParseBuffer::step
291 ///
292 /// # Example
293 ///
294 /// ```
295 /// use proc_macro2::TokenTree;
296 /// use syn::Result;
297 /// use syn::parse::ParseStream;
298 ///
299 /// // This function advances the stream past the next occurrence of `@`. If
300 /// // no `@` is present in the stream, the stream position is unchanged and
301 /// // an error is returned.
302 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
303 ///     input.step(|cursor| {
304 ///         let mut rest = *cursor;
305 ///         while let Some((tt, next)) = rest.token_tree() {
306 ///             match &tt {
307 ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
308 ///                     return Ok(((), next));
309 ///                 }
310 ///                 _ => rest = next,
311 ///             }
312 ///         }
313 ///         Err(cursor.error("no `@` was found after this point"))
314 ///     })
315 /// }
316 /// #
317 /// # fn remainder_after_skipping_past_next_at(
318 /// #     input: ParseStream,
319 /// # ) -> Result<proc_macro2::TokenStream> {
320 /// #     skip_past_next_at(input)?;
321 /// #     input.parse()
322 /// # }
323 /// #
324 /// # use syn::parse::Parser;
325 /// # let remainder = remainder_after_skipping_past_next_at
326 /// #     .parse_str("a @ b c")
327 /// #     .unwrap();
328 /// # assert_eq!(remainder.to_string(), "b c");
329 /// ```
330 pub struct StepCursor<'c, 'a> {
331     scope: Span,
332     // This field is covariant in 'c.
333     cursor: Cursor<'c>,
334     // This field is contravariant in 'c. Together these make StepCursor
335     // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
336     // different lifetime but can upcast into a StepCursor with a shorter
337     // lifetime 'a.
338     //
339     // As long as we only ever construct a StepCursor for which 'c outlives 'a,
340     // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
341     // outlives 'a.
342     marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
343 }
344 
345 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
346     type Target = Cursor<'c>;
347 
deref(&self) -> &Self::Target348     fn deref(&self) -> &Self::Target {
349         &self.cursor
350     }
351 }
352 
353 impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
354 
355 impl<'c, 'a> Clone for StepCursor<'c, 'a> {
clone(&self) -> Self356     fn clone(&self) -> Self {
357         *self
358     }
359 }
360 
361 impl<'c, 'a> StepCursor<'c, 'a> {
362     /// Triggers an error at the current position of the parse stream.
363     ///
364     /// The `ParseStream::step` invocation will return this same error without
365     /// advancing the stream state.
error<T: Display>(self, message: T) -> Error366     pub fn error<T: Display>(self, message: T) -> Error {
367         error::new_at(self.scope, self.cursor, message)
368     }
369 }
370 
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>371 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
372     // Refer to the comments within the StepCursor definition. We use the
373     // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
374     // Cursor is covariant in its lifetime parameter so we can cast a
375     // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
376     let _ = proof;
377     unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
378 }
379 
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer380 pub(crate) fn new_parse_buffer(
381     scope: Span,
382     cursor: Cursor,
383     unexpected: Rc<Cell<Unexpected>>,
384 ) -> ParseBuffer {
385     ParseBuffer {
386         scope,
387         // See comment on `cell` in the struct definition.
388         cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
389         marker: PhantomData,
390         unexpected: Cell::new(Some(unexpected)),
391     }
392 }
393 
394 pub(crate) enum Unexpected {
395     None,
396     Some(Span),
397     Chain(Rc<Cell<Unexpected>>),
398 }
399 
400 impl Default for Unexpected {
default() -> Self401     fn default() -> Self {
402         Unexpected::None
403     }
404 }
405 
406 impl Clone for Unexpected {
clone(&self) -> Self407     fn clone(&self) -> Self {
408         match self {
409             Unexpected::None => Unexpected::None,
410             Unexpected::Some(span) => Unexpected::Some(*span),
411             Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
412         }
413     }
414 }
415 
416 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
417 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T418 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
419     let prev = cell.take();
420     let ret = prev.clone();
421     cell.set(prev);
422     ret
423 }
424 
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>)425 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
426     let mut unexpected = get_unexpected(buffer);
427     loop {
428         match cell_clone(&unexpected) {
429             Unexpected::None => return (unexpected, None),
430             Unexpected::Some(span) => return (unexpected, Some(span)),
431             Unexpected::Chain(next) => unexpected = next,
432         }
433     }
434 }
435 
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>436 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
437     cell_clone(&buffer.unexpected).unwrap()
438 }
439 
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span>440 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
441     if cursor.eof() {
442         return None;
443     }
444     while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
445         if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
446             return Some(unexpected);
447         }
448         cursor = rest;
449     }
450     if cursor.eof() {
451         None
452     } else {
453         Some(cursor.span())
454     }
455 }
456 
457 impl<'a> ParseBuffer<'a> {
458     /// Parses a syntax tree node of type `T`, advancing the position of our
459     /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>460     pub fn parse<T: Parse>(&self) -> Result<T> {
461         T::parse(self)
462     }
463 
464     /// Calls the given parser function to parse a syntax tree node of type `T`
465     /// from this stream.
466     ///
467     /// # Example
468     ///
469     /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
470     /// zero or more outer attributes.
471     ///
472     /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
473     ///
474     /// ```
475     /// use syn::{Attribute, Ident, Result, Token};
476     /// use syn::parse::{Parse, ParseStream};
477     ///
478     /// // Parses a unit struct with attributes.
479     /// //
480     /// //     #[path = "s.tmpl"]
481     /// //     struct S;
482     /// struct UnitStruct {
483     ///     attrs: Vec<Attribute>,
484     ///     struct_token: Token![struct],
485     ///     name: Ident,
486     ///     semi_token: Token![;],
487     /// }
488     ///
489     /// impl Parse for UnitStruct {
490     ///     fn parse(input: ParseStream) -> Result<Self> {
491     ///         Ok(UnitStruct {
492     ///             attrs: input.call(Attribute::parse_outer)?,
493     ///             struct_token: input.parse()?,
494     ///             name: input.parse()?,
495     ///             semi_token: input.parse()?,
496     ///         })
497     ///     }
498     /// }
499     /// ```
call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T>500     pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
501         function(self)
502     }
503 
504     /// Looks at the next token in the parse stream to determine whether it
505     /// matches the requested type of token.
506     ///
507     /// Does not advance the position of the parse stream.
508     ///
509     /// # Syntax
510     ///
511     /// Note that this method does not use turbofish syntax. Pass the peek type
512     /// inside of parentheses.
513     ///
514     /// - `input.peek(Token![struct])`
515     /// - `input.peek(Token![==])`
516     /// - `input.peek(syn::Ident)`&emsp;*(does not accept keywords)*
517     /// - `input.peek(syn::Ident::peek_any)`
518     /// - `input.peek(Lifetime)`
519     /// - `input.peek(token::Brace)`
520     ///
521     /// # Example
522     ///
523     /// In this example we finish parsing the list of supertraits when the next
524     /// token in the input is either `where` or an opening curly brace.
525     ///
526     /// ```
527     /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
528     /// use syn::parse::{Parse, ParseStream};
529     /// use syn::punctuated::Punctuated;
530     ///
531     /// // Parses a trait definition containing no associated items.
532     /// //
533     /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
534     /// struct MarkerTrait {
535     ///     trait_token: Token![trait],
536     ///     ident: Ident,
537     ///     generics: Generics,
538     ///     colon_token: Option<Token![:]>,
539     ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
540     ///     brace_token: token::Brace,
541     /// }
542     ///
543     /// impl Parse for MarkerTrait {
544     ///     fn parse(input: ParseStream) -> Result<Self> {
545     ///         let trait_token: Token![trait] = input.parse()?;
546     ///         let ident: Ident = input.parse()?;
547     ///         let mut generics: Generics = input.parse()?;
548     ///         let colon_token: Option<Token![:]> = input.parse()?;
549     ///
550     ///         let mut supertraits = Punctuated::new();
551     ///         if colon_token.is_some() {
552     ///             loop {
553     ///                 supertraits.push_value(input.parse()?);
554     ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
555     ///                     break;
556     ///                 }
557     ///                 supertraits.push_punct(input.parse()?);
558     ///             }
559     ///         }
560     ///
561     ///         generics.where_clause = input.parse()?;
562     ///         let content;
563     ///         let empty_brace_token = braced!(content in input);
564     ///
565     ///         Ok(MarkerTrait {
566     ///             trait_token,
567     ///             ident,
568     ///             generics,
569     ///             colon_token,
570     ///             supertraits,
571     ///             brace_token: empty_brace_token,
572     ///         })
573     ///     }
574     /// }
575     /// ```
peek<T: Peek>(&self, token: T) -> bool576     pub fn peek<T: Peek>(&self, token: T) -> bool {
577         let _ = token;
578         T::Token::peek(self.cursor())
579     }
580 
581     /// Looks at the second-next token in the parse stream.
582     ///
583     /// This is commonly useful as a way to implement contextual keywords.
584     ///
585     /// # Example
586     ///
587     /// This example needs to use `peek2` because the symbol `union` is not a
588     /// keyword in Rust. We can't use just `peek` and decide to parse a union if
589     /// the very next token is `union`, because someone is free to write a `mod
590     /// union` and a macro invocation that looks like `union::some_macro! { ...
591     /// }`. In other words `union` is a contextual keyword.
592     ///
593     /// ```
594     /// use syn::{Ident, ItemUnion, Macro, Result, Token};
595     /// use syn::parse::{Parse, ParseStream};
596     ///
597     /// // Parses either a union or a macro invocation.
598     /// enum UnionOrMacro {
599     ///     // union MaybeUninit<T> { uninit: (), value: T }
600     ///     Union(ItemUnion),
601     ///     // lazy_static! { ... }
602     ///     Macro(Macro),
603     /// }
604     ///
605     /// impl Parse for UnionOrMacro {
606     ///     fn parse(input: ParseStream) -> Result<Self> {
607     ///         if input.peek(Token![union]) && input.peek2(Ident) {
608     ///             input.parse().map(UnionOrMacro::Union)
609     ///         } else {
610     ///             input.parse().map(UnionOrMacro::Macro)
611     ///         }
612     ///     }
613     /// }
614     /// ```
peek2<T: Peek>(&self, token: T) -> bool615     pub fn peek2<T: Peek>(&self, token: T) -> bool {
616         fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
617             if let Some(group) = buffer.cursor().group(Delimiter::None) {
618                 if group.0.skip().map_or(false, peek) {
619                     return true;
620                 }
621             }
622             buffer.cursor().skip().map_or(false, peek)
623         }
624 
625         let _ = token;
626         peek2(self, T::Token::peek)
627     }
628 
629     /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool630     pub fn peek3<T: Peek>(&self, token: T) -> bool {
631         fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
632             if let Some(group) = buffer.cursor().group(Delimiter::None) {
633                 if group.0.skip().and_then(Cursor::skip).map_or(false, peek) {
634                     return true;
635                 }
636             }
637             buffer
638                 .cursor()
639                 .skip()
640                 .and_then(Cursor::skip)
641                 .map_or(false, peek)
642         }
643 
644         let _ = token;
645         peek3(self, T::Token::peek)
646     }
647 
648     /// Parses zero or more occurrences of `T` separated by punctuation of type
649     /// `P`, with optional trailing punctuation.
650     ///
651     /// Parsing continues until the end of this parse stream. The entire content
652     /// of this parse stream must consist of `T` and `P`.
653     ///
654     /// # Example
655     ///
656     /// ```
657     /// # use quote::quote;
658     /// #
659     /// use syn::{parenthesized, token, Ident, Result, Token, Type};
660     /// use syn::parse::{Parse, ParseStream};
661     /// use syn::punctuated::Punctuated;
662     ///
663     /// // Parse a simplified tuple struct syntax like:
664     /// //
665     /// //     struct S(A, B);
666     /// struct TupleStruct {
667     ///     struct_token: Token![struct],
668     ///     ident: Ident,
669     ///     paren_token: token::Paren,
670     ///     fields: Punctuated<Type, Token![,]>,
671     ///     semi_token: Token![;],
672     /// }
673     ///
674     /// impl Parse for TupleStruct {
675     ///     fn parse(input: ParseStream) -> Result<Self> {
676     ///         let content;
677     ///         Ok(TupleStruct {
678     ///             struct_token: input.parse()?,
679     ///             ident: input.parse()?,
680     ///             paren_token: parenthesized!(content in input),
681     ///             fields: content.parse_terminated(Type::parse, Token![,])?,
682     ///             semi_token: input.parse()?,
683     ///         })
684     ///     }
685     /// }
686     /// #
687     /// # let input = quote! {
688     /// #     struct S(A, B);
689     /// # };
690     /// # syn::parse2::<TupleStruct>(input).unwrap();
691     /// ```
692     ///
693     /// # See also
694     ///
695     /// If your separator is anything more complicated than an invocation of the
696     /// `Token!` macro, this method won't be applicable and you can instead
697     /// directly use `Punctuated`'s parser functions: [`parse_terminated`],
698     /// [`parse_separated_nonempty`] etc.
699     ///
700     /// [`parse_terminated`]: Punctuated::parse_terminated
701     /// [`parse_separated_nonempty`]: Punctuated::parse_separated_nonempty
702     ///
703     /// ```
704     /// use syn::{custom_keyword, Expr, Result, Token};
705     /// use syn::parse::{Parse, ParseStream};
706     /// use syn::punctuated::Punctuated;
707     ///
708     /// mod kw {
709     ///     syn::custom_keyword!(fin);
710     /// }
711     ///
712     /// struct Fin(kw::fin, Token![;]);
713     ///
714     /// impl Parse for Fin {
715     ///     fn parse(input: ParseStream) -> Result<Self> {
716     ///         Ok(Self(input.parse()?, input.parse()?))
717     ///     }
718     /// }
719     ///
720     /// struct Thing {
721     ///     steps: Punctuated<Expr, Fin>,
722     /// }
723     ///
724     /// impl Parse for Thing {
725     ///     fn parse(input: ParseStream) -> Result<Self> {
726     /// # if true {
727     ///         Ok(Thing {
728     ///             steps: Punctuated::parse_terminated(input)?,
729     ///         })
730     /// # } else {
731     ///         // or equivalently, this means the same thing:
732     /// #       Ok(Thing {
733     ///             steps: input.call(Punctuated::parse_terminated)?,
734     /// #       })
735     /// # }
736     ///     }
737     /// }
738     /// ```
parse_terminated<T, P>( &self, parser: fn(ParseStream) -> Result<T>, separator: P, ) -> Result<Punctuated<T, P::Token>> where P: Peek, P::Token: Parse,739     pub fn parse_terminated<T, P>(
740         &self,
741         parser: fn(ParseStream) -> Result<T>,
742         separator: P,
743     ) -> Result<Punctuated<T, P::Token>>
744     where
745         P: Peek,
746         P::Token: Parse,
747     {
748         let _ = separator;
749         Punctuated::parse_terminated_with(self, parser)
750     }
751 
752     /// Returns whether there are tokens remaining in this stream.
753     ///
754     /// This method returns true at the end of the content of a set of
755     /// delimiters, as well as at the very end of the complete macro input.
756     ///
757     /// # Example
758     ///
759     /// ```
760     /// use syn::{braced, token, Ident, Item, Result, Token};
761     /// use syn::parse::{Parse, ParseStream};
762     ///
763     /// // Parses a Rust `mod m { ... }` containing zero or more items.
764     /// struct Mod {
765     ///     mod_token: Token![mod],
766     ///     name: Ident,
767     ///     brace_token: token::Brace,
768     ///     items: Vec<Item>,
769     /// }
770     ///
771     /// impl Parse for Mod {
772     ///     fn parse(input: ParseStream) -> Result<Self> {
773     ///         let content;
774     ///         Ok(Mod {
775     ///             mod_token: input.parse()?,
776     ///             name: input.parse()?,
777     ///             brace_token: braced!(content in input),
778     ///             items: {
779     ///                 let mut items = Vec::new();
780     ///                 while !content.is_empty() {
781     ///                     items.push(content.parse()?);
782     ///                 }
783     ///                 items
784     ///             },
785     ///         })
786     ///     }
787     /// }
788     /// ```
is_empty(&self) -> bool789     pub fn is_empty(&self) -> bool {
790         self.cursor().eof()
791     }
792 
793     /// Constructs a helper for peeking at the next token in this stream and
794     /// building an error message if it is not one of a set of expected tokens.
795     ///
796     /// # Example
797     ///
798     /// ```
799     /// use syn::{ConstParam, Ident, Lifetime, LifetimeParam, Result, Token, TypeParam};
800     /// use syn::parse::{Parse, ParseStream};
801     ///
802     /// // A generic parameter, a single one of the comma-separated elements inside
803     /// // angle brackets in:
804     /// //
805     /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
806     /// //
807     /// // On invalid input, lookahead gives us a reasonable error message.
808     /// //
809     /// //     error: expected one of: identifier, lifetime, `const`
810     /// //       |
811     /// //     5 |     fn f<!Sized>() {}
812     /// //       |          ^
813     /// enum GenericParam {
814     ///     Type(TypeParam),
815     ///     Lifetime(LifetimeParam),
816     ///     Const(ConstParam),
817     /// }
818     ///
819     /// impl Parse for GenericParam {
820     ///     fn parse(input: ParseStream) -> Result<Self> {
821     ///         let lookahead = input.lookahead1();
822     ///         if lookahead.peek(Ident) {
823     ///             input.parse().map(GenericParam::Type)
824     ///         } else if lookahead.peek(Lifetime) {
825     ///             input.parse().map(GenericParam::Lifetime)
826     ///         } else if lookahead.peek(Token![const]) {
827     ///             input.parse().map(GenericParam::Const)
828     ///         } else {
829     ///             Err(lookahead.error())
830     ///         }
831     ///     }
832     /// }
833     /// ```
lookahead1(&self) -> Lookahead1<'a>834     pub fn lookahead1(&self) -> Lookahead1<'a> {
835         lookahead::new(self.scope, self.cursor())
836     }
837 
838     /// Forks a parse stream so that parsing tokens out of either the original
839     /// or the fork does not advance the position of the other.
840     ///
841     /// # Performance
842     ///
843     /// Forking a parse stream is a cheap fixed amount of work and does not
844     /// involve copying token buffers. Where you might hit performance problems
845     /// is if your macro ends up parsing a large amount of content more than
846     /// once.
847     ///
848     /// ```
849     /// # use syn::{Expr, Result};
850     /// # use syn::parse::ParseStream;
851     /// #
852     /// # fn bad(input: ParseStream) -> Result<Expr> {
853     /// // Do not do this.
854     /// if input.fork().parse::<Expr>().is_ok() {
855     ///     return input.parse::<Expr>();
856     /// }
857     /// # unimplemented!()
858     /// # }
859     /// ```
860     ///
861     /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
862     /// parse stream. Only use a fork when the amount of work performed against
863     /// the fork is small and bounded.
864     ///
865     /// When complex speculative parsing against the forked stream is
866     /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
867     /// original stream once the fork's parse is determined to have been
868     /// successful.
869     ///
870     /// For a lower level way to perform speculative parsing at the token level,
871     /// consider using [`ParseStream::step`] instead.
872     ///
873     /// [`parse::discouraged::Speculative`]: discouraged::Speculative
874     /// [`ParseStream::step`]: ParseBuffer::step
875     ///
876     /// # Example
877     ///
878     /// The parse implementation shown here parses possibly restricted `pub`
879     /// visibilities.
880     ///
881     /// - `pub`
882     /// - `pub(crate)`
883     /// - `pub(self)`
884     /// - `pub(super)`
885     /// - `pub(in some::path)`
886     ///
887     /// To handle the case of visibilities inside of tuple structs, the parser
888     /// needs to distinguish parentheses that specify visibility restrictions
889     /// from parentheses that form part of a tuple type.
890     ///
891     /// ```
892     /// # struct A;
893     /// # struct B;
894     /// # struct C;
895     /// #
896     /// struct S(pub(crate) A, pub (B, C));
897     /// ```
898     ///
899     /// In this example input the first tuple struct element of `S` has
900     /// `pub(crate)` visibility while the second tuple struct element has `pub`
901     /// visibility; the parentheses around `(B, C)` are part of the type rather
902     /// than part of a visibility restriction.
903     ///
904     /// The parser uses a forked parse stream to check the first token inside of
905     /// parentheses after the `pub` keyword. This is a small bounded amount of
906     /// work performed against the forked parse stream.
907     ///
908     /// ```
909     /// use syn::{parenthesized, token, Ident, Path, Result, Token};
910     /// use syn::ext::IdentExt;
911     /// use syn::parse::{Parse, ParseStream};
912     ///
913     /// struct PubVisibility {
914     ///     pub_token: Token![pub],
915     ///     restricted: Option<Restricted>,
916     /// }
917     ///
918     /// struct Restricted {
919     ///     paren_token: token::Paren,
920     ///     in_token: Option<Token![in]>,
921     ///     path: Path,
922     /// }
923     ///
924     /// impl Parse for PubVisibility {
925     ///     fn parse(input: ParseStream) -> Result<Self> {
926     ///         let pub_token: Token![pub] = input.parse()?;
927     ///
928     ///         if input.peek(token::Paren) {
929     ///             let ahead = input.fork();
930     ///             let mut content;
931     ///             parenthesized!(content in ahead);
932     ///
933     ///             if content.peek(Token![crate])
934     ///                 || content.peek(Token![self])
935     ///                 || content.peek(Token![super])
936     ///             {
937     ///                 return Ok(PubVisibility {
938     ///                     pub_token,
939     ///                     restricted: Some(Restricted {
940     ///                         paren_token: parenthesized!(content in input),
941     ///                         in_token: None,
942     ///                         path: Path::from(content.call(Ident::parse_any)?),
943     ///                     }),
944     ///                 });
945     ///             } else if content.peek(Token![in]) {
946     ///                 return Ok(PubVisibility {
947     ///                     pub_token,
948     ///                     restricted: Some(Restricted {
949     ///                         paren_token: parenthesized!(content in input),
950     ///                         in_token: Some(content.parse()?),
951     ///                         path: content.call(Path::parse_mod_style)?,
952     ///                     }),
953     ///                 });
954     ///             }
955     ///         }
956     ///
957     ///         Ok(PubVisibility {
958     ///             pub_token,
959     ///             restricted: None,
960     ///         })
961     ///     }
962     /// }
963     /// ```
fork(&self) -> Self964     pub fn fork(&self) -> Self {
965         ParseBuffer {
966             scope: self.scope,
967             cell: self.cell.clone(),
968             marker: PhantomData,
969             // Not the parent's unexpected. Nothing cares whether the clone
970             // parses all the way unless we `advance_to`.
971             unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
972         }
973     }
974 
975     /// Triggers an error at the current position of the parse stream.
976     ///
977     /// # Example
978     ///
979     /// ```
980     /// use syn::{Expr, Result, Token};
981     /// use syn::parse::{Parse, ParseStream};
982     ///
983     /// // Some kind of loop: `while` or `for` or `loop`.
984     /// struct Loop {
985     ///     expr: Expr,
986     /// }
987     ///
988     /// impl Parse for Loop {
989     ///     fn parse(input: ParseStream) -> Result<Self> {
990     ///         if input.peek(Token![while])
991     ///             || input.peek(Token![for])
992     ///             || input.peek(Token![loop])
993     ///         {
994     ///             Ok(Loop {
995     ///                 expr: input.parse()?,
996     ///             })
997     ///         } else {
998     ///             Err(input.error("expected some kind of loop"))
999     ///         }
1000     ///     }
1001     /// }
1002     /// ```
error<T: Display>(&self, message: T) -> Error1003     pub fn error<T: Display>(&self, message: T) -> Error {
1004         error::new_at(self.scope, self.cursor(), message)
1005     }
1006 
1007     /// Speculatively parses tokens from this parse stream, advancing the
1008     /// position of this stream only if parsing succeeds.
1009     ///
1010     /// This is a powerful low-level API used for defining the `Parse` impls of
1011     /// the basic built-in token types. It is not something that will be used
1012     /// widely outside of the Syn codebase.
1013     ///
1014     /// # Example
1015     ///
1016     /// ```
1017     /// use proc_macro2::TokenTree;
1018     /// use syn::Result;
1019     /// use syn::parse::ParseStream;
1020     ///
1021     /// // This function advances the stream past the next occurrence of `@`. If
1022     /// // no `@` is present in the stream, the stream position is unchanged and
1023     /// // an error is returned.
1024     /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
1025     ///     input.step(|cursor| {
1026     ///         let mut rest = *cursor;
1027     ///         while let Some((tt, next)) = rest.token_tree() {
1028     ///             match &tt {
1029     ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
1030     ///                     return Ok(((), next));
1031     ///                 }
1032     ///                 _ => rest = next,
1033     ///             }
1034     ///         }
1035     ///         Err(cursor.error("no `@` was found after this point"))
1036     ///     })
1037     /// }
1038     /// #
1039     /// # fn remainder_after_skipping_past_next_at(
1040     /// #     input: ParseStream,
1041     /// # ) -> Result<proc_macro2::TokenStream> {
1042     /// #     skip_past_next_at(input)?;
1043     /// #     input.parse()
1044     /// # }
1045     /// #
1046     /// # use syn::parse::Parser;
1047     /// # let remainder = remainder_after_skipping_past_next_at
1048     /// #     .parse_str("a @ b c")
1049     /// #     .unwrap();
1050     /// # assert_eq!(remainder.to_string(), "b c");
1051     /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,1052     pub fn step<F, R>(&self, function: F) -> Result<R>
1053     where
1054         F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1055     {
1056         // Since the user's function is required to work for any 'c, we know
1057         // that the Cursor<'c> they return is either derived from the input
1058         // StepCursor<'c, 'a> or from a Cursor<'static>.
1059         //
1060         // It would not be legal to write this function without the invariant
1061         // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1062         // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1063         // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1064         // `step` on their ParseBuffer<'short> with a closure that returns
1065         // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1066         // the Cell intended to hold Cursor<'a>.
1067         //
1068         // In some cases it may be necessary for R to contain a Cursor<'a>.
1069         // Within Syn we solve this using `advance_step_cursor` which uses the
1070         // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1071         // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1072         // safe to expose that API as a method on StepCursor.
1073         let (node, rest) = function(StepCursor {
1074             scope: self.scope,
1075             cursor: self.cell.get(),
1076             marker: PhantomData,
1077         })?;
1078         self.cell.set(rest);
1079         Ok(node)
1080     }
1081 
1082     /// Returns the `Span` of the next token in the parse stream, or
1083     /// `Span::call_site()` if this parse stream has completely exhausted its
1084     /// input `TokenStream`.
span(&self) -> Span1085     pub fn span(&self) -> Span {
1086         let cursor = self.cursor();
1087         if cursor.eof() {
1088             self.scope
1089         } else {
1090             crate::buffer::open_span_of_group(cursor)
1091         }
1092     }
1093 
1094     /// Provides low-level access to the token representation underlying this
1095     /// parse stream.
1096     ///
1097     /// Cursors are immutable so no operations you perform against the cursor
1098     /// will affect the state of this parse stream.
1099     ///
1100     /// # Example
1101     ///
1102     /// ```
1103     /// use proc_macro2::TokenStream;
1104     /// use syn::buffer::Cursor;
1105     /// use syn::parse::{ParseStream, Result};
1106     ///
1107     /// // Run a parser that returns T, but get its output as TokenStream instead of T.
1108     /// // This works without T needing to implement ToTokens.
1109     /// fn recognize_token_stream<T>(
1110     ///     recognizer: fn(ParseStream) -> Result<T>,
1111     /// ) -> impl Fn(ParseStream) -> Result<TokenStream> {
1112     ///     move |input| {
1113     ///         let begin = input.cursor();
1114     ///         recognizer(input)?;
1115     ///         let end = input.cursor();
1116     ///         Ok(tokens_between(begin, end))
1117     ///     }
1118     /// }
1119     ///
1120     /// // Collect tokens between two cursors as a TokenStream.
1121     /// fn tokens_between(begin: Cursor, end: Cursor) -> TokenStream {
1122     ///     assert!(begin <= end);
1123     ///
1124     ///     let mut cursor = begin;
1125     ///     let mut tokens = TokenStream::new();
1126     ///     while cursor < end {
1127     ///         let (token, next) = cursor.token_tree().unwrap();
1128     ///         tokens.extend(std::iter::once(token));
1129     ///         cursor = next;
1130     ///     }
1131     ///     tokens
1132     /// }
1133     ///
1134     /// fn main() {
1135     ///     use quote::quote;
1136     ///     use syn::parse::{Parse, Parser};
1137     ///     use syn::Token;
1138     ///
1139     ///     // Parse syn::Type as a TokenStream, surrounded by angle brackets.
1140     ///     fn example(input: ParseStream) -> Result<TokenStream> {
1141     ///         let _langle: Token![<] = input.parse()?;
1142     ///         let ty = recognize_token_stream(syn::Type::parse)(input)?;
1143     ///         let _rangle: Token![>] = input.parse()?;
1144     ///         Ok(ty)
1145     ///     }
1146     ///
1147     ///     let tokens = quote! { <fn() -> u8> };
1148     ///     println!("{}", example.parse2(tokens).unwrap());
1149     /// }
1150     /// ```
cursor(&self) -> Cursor<'a>1151     pub fn cursor(&self) -> Cursor<'a> {
1152         self.cell.get()
1153     }
1154 
check_unexpected(&self) -> Result<()>1155     fn check_unexpected(&self) -> Result<()> {
1156         match inner_unexpected(self).1 {
1157             Some(span) => Err(Error::new(span, "unexpected token")),
1158             None => Ok(()),
1159         }
1160     }
1161 }
1162 
1163 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1164 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1165     fn parse(input: ParseStream) -> Result<Self> {
1166         input.parse().map(Box::new)
1167     }
1168 }
1169 
1170 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1171 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1172     fn parse(input: ParseStream) -> Result<Self> {
1173         if T::peek(input.cursor()) {
1174             Ok(Some(input.parse()?))
1175         } else {
1176             Ok(None)
1177         }
1178     }
1179 }
1180 
1181 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1182 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1183     fn parse(input: ParseStream) -> Result<Self> {
1184         input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1185     }
1186 }
1187 
1188 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1189 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1190     fn parse(input: ParseStream) -> Result<Self> {
1191         input.step(|cursor| match cursor.token_tree() {
1192             Some((tt, rest)) => Ok((tt, rest)),
1193             None => Err(cursor.error("expected token tree")),
1194         })
1195     }
1196 }
1197 
1198 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1199 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1200     fn parse(input: ParseStream) -> Result<Self> {
1201         input.step(|cursor| {
1202             if let Some((group, rest)) = cursor.any_group_token() {
1203                 if group.delimiter() != Delimiter::None {
1204                     return Ok((group, rest));
1205                 }
1206             }
1207             Err(cursor.error("expected group token"))
1208         })
1209     }
1210 }
1211 
1212 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1213 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1214     fn parse(input: ParseStream) -> Result<Self> {
1215         input.step(|cursor| match cursor.punct() {
1216             Some((punct, rest)) => Ok((punct, rest)),
1217             None => Err(cursor.error("expected punctuation token")),
1218         })
1219     }
1220 }
1221 
1222 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1223 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1224     fn parse(input: ParseStream) -> Result<Self> {
1225         input.step(|cursor| match cursor.literal() {
1226             Some((literal, rest)) => Ok((literal, rest)),
1227             None => Err(cursor.error("expected literal token")),
1228         })
1229     }
1230 }
1231 
1232 /// Parser that can parse Rust tokens into a particular syntax tree node.
1233 ///
1234 /// Refer to the [module documentation] for details about parsing in Syn.
1235 ///
1236 /// [module documentation]: self
1237 pub trait Parser: Sized {
1238     type Output;
1239 
1240     /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1241     ///
1242     /// This function will check that the input is fully parsed. If there are
1243     /// any unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1244     fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1245 
1246     /// Parse tokens of source code into the chosen syntax tree node.
1247     ///
1248     /// This function will check that the input is fully parsed. If there are
1249     /// any unparsed tokens at the end of the stream, an error is returned.
1250     #[cfg(feature = "proc-macro")]
1251     #[cfg_attr(doc_cfg, doc(cfg(feature = "proc-macro")))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1252     fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1253         self.parse2(proc_macro2::TokenStream::from(tokens))
1254     }
1255 
1256     /// Parse a string of Rust code into the chosen syntax tree node.
1257     ///
1258     /// This function will check that the input is fully parsed. If there are
1259     /// any unparsed tokens at the end of the string, an error is returned.
1260     ///
1261     /// # Hygiene
1262     ///
1263     /// Every span in the resulting syntax tree will be set to resolve at the
1264     /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1265     fn parse_str(self, s: &str) -> Result<Self::Output> {
1266         self.parse2(proc_macro2::TokenStream::from_str(s)?)
1267     }
1268 
1269     // Not public API.
1270     #[doc(hidden)]
1271     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1272     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1273         let _ = scope;
1274         self.parse2(tokens)
1275     }
1276 }
1277 
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1278 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1279     let scope = Span::call_site();
1280     let cursor = tokens.begin();
1281     let unexpected = Rc::new(Cell::new(Unexpected::None));
1282     new_parse_buffer(scope, cursor, unexpected)
1283 }
1284 
1285 impl<F, T> Parser for F
1286 where
1287     F: FnOnce(ParseStream) -> Result<T>,
1288 {
1289     type Output = T;
1290 
parse2(self, tokens: TokenStream) -> Result<T>1291     fn parse2(self, tokens: TokenStream) -> Result<T> {
1292         let buf = TokenBuffer::new2(tokens);
1293         let state = tokens_to_parse_buffer(&buf);
1294         let node = self(&state)?;
1295         state.check_unexpected()?;
1296         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1297             Err(Error::new(unexpected_span, "unexpected token"))
1298         } else {
1299             Ok(node)
1300         }
1301     }
1302 
1303     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1304     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1305         let buf = TokenBuffer::new2(tokens);
1306         let cursor = buf.begin();
1307         let unexpected = Rc::new(Cell::new(Unexpected::None));
1308         let state = new_parse_buffer(scope, cursor, unexpected);
1309         let node = self(&state)?;
1310         state.check_unexpected()?;
1311         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1312             Err(Error::new(unexpected_span, "unexpected token"))
1313         } else {
1314             Ok(node)
1315         }
1316     }
1317 }
1318 
1319 #[cfg(any(feature = "full", feature = "derive"))]
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1320 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1321     f.__parse_scoped(scope, tokens)
1322 }
1323 
1324 /// An empty syntax tree node that consumes no tokens when parsed.
1325 ///
1326 /// This is useful for attribute macros that want to ensure they are not
1327 /// provided any attribute args.
1328 ///
1329 /// ```
1330 /// # extern crate proc_macro;
1331 /// #
1332 /// use proc_macro::TokenStream;
1333 /// use syn::parse_macro_input;
1334 /// use syn::parse::Nothing;
1335 ///
1336 /// # const IGNORE: &str = stringify! {
1337 /// #[proc_macro_attribute]
1338 /// # };
1339 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1340 ///     parse_macro_input!(args as Nothing);
1341 ///
1342 ///     /* ... */
1343 /// #   TokenStream::new()
1344 /// }
1345 /// ```
1346 ///
1347 /// ```text
1348 /// error: unexpected token
1349 ///  --> src/main.rs:3:19
1350 ///   |
1351 /// 3 | #[my_attr(asdf)]
1352 ///   |           ^^^^
1353 /// ```
1354 pub struct Nothing;
1355 
1356 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1357     fn parse(_input: ParseStream) -> Result<Self> {
1358         Ok(Nothing)
1359     }
1360 }
1361 
1362 #[cfg(feature = "extra-traits")]
1363 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1364 impl Debug for Nothing {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1365     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1366         f.write_str("Nothing")
1367     }
1368 }
1369 
1370 #[cfg(feature = "extra-traits")]
1371 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1372 impl Eq for Nothing {}
1373 
1374 #[cfg(feature = "extra-traits")]
1375 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1376 impl PartialEq for Nothing {
eq(&self, _other: &Self) -> bool1377     fn eq(&self, _other: &Self) -> bool {
1378         true
1379     }
1380 }
1381 
1382 #[cfg(feature = "extra-traits")]
1383 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1384 impl Hash for Nothing {
hash<H: Hasher>(&self, _state: &mut H)1385     fn hash<H: Hasher>(&self, _state: &mut H) {}
1386 }
1387