• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesMipmapSparseResidency.cpp
21  * \brief Sparse partially resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesMipmapSparseResidency.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 class MipmapSparseResidencyCase : public TestCase
59 {
60 public:
61 	MipmapSparseResidencyCase		(tcu::TestContext&	testCtx,
62 									 const std::string&	name,
63 									 const std::string&	description,
64 									 const ImageType	imageType,
65 									 const tcu::UVec3&	imageSize,
66 									 const VkFormat		format,
67 									 const bool			useDeviceGroups);
68 
69 	TestInstance*	createInstance				(Context&					context) const;
70 	virtual void	checkSupport				(Context&					context) const;
71 
72 private:
73 	const bool			m_useDeviceGroups;
74 	const ImageType		m_imageType;
75 	const tcu::UVec3	m_imageSize;
76 	const VkFormat		m_format;
77 };
78 
MipmapSparseResidencyCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)79 MipmapSparseResidencyCase::MipmapSparseResidencyCase	(tcu::TestContext&	testCtx,
80 														 const std::string&	name,
81 														 const std::string&	description,
82 														 const ImageType	imageType,
83 														 const tcu::UVec3&	imageSize,
84 														 const VkFormat		format,
85 														 const bool			useDeviceGroups)
86 	: TestCase			(testCtx, name, description)
87 	, m_useDeviceGroups	(useDeviceGroups)
88 	, m_imageType		(imageType)
89 	, m_imageSize		(imageSize)
90 	, m_format			(format)
91 {
92 }
93 
checkSupport(Context & context) const94 void MipmapSparseResidencyCase::checkSupport (Context& context) const
95 {
96 	const InstanceInterface&	instance		= context.getInstanceInterface();
97 	const VkPhysicalDevice		physicalDevice	= context.getPhysicalDevice();
98 
99 	// Check if image size does not exceed device limits
100 	if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
101 		TCU_THROW(NotSupportedError, "Image size not supported for device");
102 
103 	// Check if device supports sparse operations for image type
104 	if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
105 		TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
106 
107 	if (formatIsR64(m_format))
108 	 {
109 		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
110 
111 		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
112 		{
113 			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
114 		}
115 	}
116 }
117 
118 class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance
119 {
120 public:
121 	MipmapSparseResidencyInstance	(Context&			context,
122 									 const ImageType	imageType,
123 									 const tcu::UVec3&	imageSize,
124 									 const VkFormat		format,
125 									 const bool			useDeviceGroups);
126 
127 
128 	tcu::TestStatus	iterate			(void);
129 
130 private:
131 	const bool			m_useDeviceGroups;
132 	const ImageType		m_imageType;
133 	const tcu::UVec3	m_imageSize;
134 	const VkFormat		m_format;
135 };
136 
MipmapSparseResidencyInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)137 MipmapSparseResidencyInstance::MipmapSparseResidencyInstance	(Context&			context,
138 																 const ImageType	imageType,
139 																 const tcu::UVec3&	imageSize,
140 																 const VkFormat		format,
141 																 const bool			useDeviceGroups)
142 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
143 	, m_useDeviceGroups				(useDeviceGroups)
144 	, m_imageType					(imageType)
145 	, m_imageSize					(imageSize)
146 	, m_format						(format)
147 {
148 }
149 
iterate(void)150 tcu::TestStatus MipmapSparseResidencyInstance::iterate (void)
151 {
152 	const InstanceInterface&	instance		= m_context.getInstanceInterface();
153 	{
154 		// Create logical device supporting both sparse and compute operations
155 		QueueRequirementsVec queueRequirements;
156 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
157 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
158 
159 		createDeviceSupportingQueues(queueRequirements);
160 	}
161 
162 	const VkPhysicalDevice		physicalDevice	= getPhysicalDevice();
163 	VkImageCreateInfo			imageSparseInfo;
164 	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
165 
166 	const DeviceInterface&			deviceInterface		= getDeviceInterface();
167 	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
168 	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
169 	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
170 
171 	// Go through all physical devices
172 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
173 	{
174 		const deUint32	firstDeviceID			= physDevID;
175 		const deUint32	secondDeviceID			= (firstDeviceID + 1) % m_numPhysicalDevices;
176 
177 		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
178 		imageSparseInfo.pNext					= DE_NULL;
179 		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
180 		imageSparseInfo.imageType				= mapImageType(m_imageType);
181 		imageSparseInfo.format					= m_format;
182 		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
183 		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);
184 		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;
185 		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;
186 		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
187 		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_DST_BIT |
188 												  VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
189 		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
190 		imageSparseInfo.queueFamilyIndexCount	= 0u;
191 		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;
192 
193 		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
194 		{
195 			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
196 		}
197 
198 		// Check if device supports sparse operations for image format
199 		if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
200 			TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
201 
202 		{
203 			VkImageFormatProperties imageFormatProperties;
204 			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
205 				imageSparseInfo.format,
206 				imageSparseInfo.imageType,
207 				imageSparseInfo.tiling,
208 				imageSparseInfo.usage,
209 				imageSparseInfo.flags,
210 				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
211 			{
212 				TCU_THROW(NotSupportedError, "Image format does not support sparse operations");
213 			}
214 
215 			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
216 		}
217 
218 		// Create sparse image
219 		const Unique<VkImage>							imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
220 
221 		// Create sparse image memory bind semaphore
222 		const Unique<VkSemaphore>						imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
223 
224 		std::vector<VkSparseImageMemoryRequirements>	sparseMemoryRequirements;
225 
226 		{
227 			// Get sparse image general memory requirements
228 			const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
229 
230 			// Check if required image memory size does not exceed device limits
231 			if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
232 				TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
233 
234 			DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
235 
236 			const deUint32							memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
237 
238 			if (memoryType == NO_MATCH_FOUND)
239 				return tcu::TestStatus::fail("No matching memory type found");
240 
241 			if (firstDeviceID != secondDeviceID)
242 			{
243 				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
244 				const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
245 				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
246 
247 				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
248 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
249 				{
250 					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
251 				}
252 			}
253 
254 			// Get sparse image sparse memory requirements
255 			sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
256 			DE_ASSERT(sparseMemoryRequirements.size() != 0);
257 
258 			const deUint32 metadataAspectIndex	= getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT);
259 
260 			std::vector<VkSparseImageMemoryBind>	imageResidencyMemoryBinds;
261 			std::vector<VkSparseMemoryBind>			imageMipTailMemoryBinds;
262 
263 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
264 			{
265 				const VkImageAspectFlags		aspect				= (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
266 				const deUint32					aspectIndex			= getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
267 
268 				if (aspectIndex == NO_MATCH_FOUND)
269 					TCU_THROW(NotSupportedError, "Not supported image aspect");
270 
271 				VkSparseImageMemoryRequirements	aspectRequirements	= sparseMemoryRequirements[aspectIndex];
272 
273 				DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
274 
275 				VkExtent3D						imageGranularity	= aspectRequirements.formatProperties.imageGranularity;
276 
277 				// Bind memory for each layer
278 				for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
279 				{
280 					for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
281 					{
282 						const VkExtent3D			mipExtent			= getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx);
283 						const tcu::UVec3			sparseBlocks		= alignedDivide(mipExtent, imageGranularity);
284 						const deUint32				numSparseBlocks		= sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
285 						const VkImageSubresource	subresource			= { aspect, mipLevelNdx, layerNdx };
286 
287 						const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
288 							imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
289 
290 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
291 
292 						imageResidencyMemoryBinds.push_back(imageMemoryBind);
293 					}
294 
295 					if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
296 					{
297 						const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
298 							aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
299 
300 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
301 
302 						imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
303 					}
304 
305 					// Metadata
306 					if (metadataAspectIndex != NO_MATCH_FOUND)
307 					{
308 						const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
309 
310 						if (!(metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT))
311 						{
312 							const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
313 								metadataAspectRequirements.imageMipTailSize, memoryType,
314 								metadataAspectRequirements.imageMipTailOffset + layerNdx * metadataAspectRequirements.imageMipTailStride,
315 								VK_SPARSE_MEMORY_BIND_METADATA_BIT);
316 
317 							deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
318 
319 							imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
320 						}
321 					}
322 				}
323 
324 				if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
325 				{
326 					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
327 						aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
328 
329 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
330 
331 					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
332 				}
333 			}
334 
335 			// Metadata
336 			if (metadataAspectIndex != NO_MATCH_FOUND)
337 			{
338 				const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
339 
340 				if (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
341 				{
342 					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
343 						metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset,
344 						VK_SPARSE_MEMORY_BIND_METADATA_BIT);
345 
346 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
347 
348 					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
349 				}
350 			}
351 
352 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
353 			{
354 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
355 				DE_NULL,												//const void*								pNext;
356 				firstDeviceID,											//deUint32									resourceDeviceIndex;
357 				secondDeviceID,											//deUint32									memoryDeviceIndex;
358 			};
359 
360 			VkBindSparseInfo bindSparseInfo =
361 			{
362 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
363 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
364 				0u,														//deUint32									waitSemaphoreCount;
365 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
366 				0u,														//deUint32									bufferBindCount;
367 				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
368 				0u,														//deUint32									imageOpaqueBindCount;
369 				DE_NULL,												//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
370 				0u,														//deUint32									imageBindCount;
371 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
372 				1u,														//deUint32									signalSemaphoreCount;
373 				&imageMemoryBindSemaphore.get()							//const VkSemaphore*						pSignalSemaphores;
374 			};
375 
376 			VkSparseImageMemoryBindInfo			imageResidencyBindInfo;
377 			VkSparseImageOpaqueMemoryBindInfo	imageMipTailBindInfo;
378 
379 			if (imageResidencyMemoryBinds.size() > 0)
380 			{
381 				imageResidencyBindInfo.image		= *imageSparse;
382 				imageResidencyBindInfo.bindCount	= static_cast<deUint32>(imageResidencyMemoryBinds.size());
383 				imageResidencyBindInfo.pBinds		= imageResidencyMemoryBinds.data();
384 
385 				bindSparseInfo.imageBindCount		= 1u;
386 				bindSparseInfo.pImageBinds			= &imageResidencyBindInfo;
387 			}
388 
389 			if (imageMipTailMemoryBinds.size() > 0)
390 			{
391 				imageMipTailBindInfo.image			= *imageSparse;
392 				imageMipTailBindInfo.bindCount		= static_cast<deUint32>(imageMipTailMemoryBinds.size());
393 				imageMipTailBindInfo.pBinds			= imageMipTailMemoryBinds.data();
394 
395 				bindSparseInfo.imageOpaqueBindCount	= 1u;
396 				bindSparseInfo.pImageOpaqueBinds	= &imageMipTailBindInfo;
397 			}
398 
399 			// Submit sparse bind commands for execution
400 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
401 		}
402 
403 		deUint32 imageSizeInBytes = 0;
404 
405 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
406 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
407 				imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
408 
409 		std::vector <VkBufferImageCopy>	bufferImageCopy(formatDescription.numPlanes*imageSparseInfo.mipLevels);
410 		{
411 			deUint32 bufferOffset = 0;
412 
413 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
414 			{
415 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
416 
417 				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
418 				{
419 					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
420 					{
421 						bufferOffset,																		//	VkDeviceSize				bufferOffset;
422 						0u,																					//	deUint32					bufferRowLength;
423 						0u,																					//	deUint32					bufferImageHeight;
424 						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
425 						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
426 						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
427 					};
428 					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
429 				}
430 			}
431 		}
432 
433 		// Create command buffer for compute and transfer operations
434 		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
435 		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
436 
437 		// Start recording commands
438 		beginCommandBuffer(deviceInterface, *commandBuffer);
439 
440 		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
441 		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
442 		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
443 
444 		std::vector<deUint8> referenceData(imageSizeInBytes);
445 
446 		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
447 
448 		for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
449 		{
450 			referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
451 		}
452 
453 		{
454 			deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
455 			flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
456 
457 			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
458 			(
459 				VK_ACCESS_HOST_WRITE_BIT,
460 				VK_ACCESS_TRANSFER_READ_BIT,
461 				*inputBuffer,
462 				0u,
463 				imageSizeInBytes
464 			);
465 
466 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
467 		}
468 
469 		{
470 			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
471 
472 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
473 			{
474 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
475 
476 				imageSparseTransferDstBarriers.emplace_back ( makeImageMemoryBarrier
477 				(
478 					0u,
479 					VK_ACCESS_TRANSFER_WRITE_BIT,
480 					VK_IMAGE_LAYOUT_UNDEFINED,
481 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
482 					*imageSparse,
483 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
484 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
485 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
486 				));
487 			}
488 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
489 		}
490 
491 		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
492 
493 		{
494 			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
495 
496 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
497 			{
498 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
499 
500 				imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier
501 				(
502 					VK_ACCESS_TRANSFER_WRITE_BIT,
503 					VK_ACCESS_TRANSFER_READ_BIT,
504 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
505 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
506 					*imageSparse,
507 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
508 				));
509 			}
510 
511 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
512 		}
513 
514 		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
515 		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
516 		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
517 
518 		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
519 
520 		{
521 			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
522 			(
523 				VK_ACCESS_TRANSFER_WRITE_BIT,
524 				VK_ACCESS_HOST_READ_BIT,
525 				*outputBuffer,
526 				0u,
527 				imageSizeInBytes
528 			);
529 
530 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
531 		}
532 
533 		// End recording commands
534 		endCommandBuffer(deviceInterface, *commandBuffer);
535 
536 		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
537 
538 		// Submit commands for execution and wait for completion
539 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
540 			0, DE_NULL, m_useDeviceGroups, firstDeviceID);
541 
542 		// Retrieve data from buffer to host memory
543 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
544 
545 		const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
546 
547 		// Wait for sparse queue to become idle
548 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
549 
550 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
551 		{
552 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
553 			{
554 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
555 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
556 
557 				if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
558 					return tcu::TestStatus::fail("Failed");
559 			}
560 		}
561 	}
562 	return tcu::TestStatus::pass("Passed");
563 }
564 
createInstance(Context & context) const565 TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const
566 {
567 	return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
568 }
569 
570 } // anonymous ns
571 
createMipmapSparseResidencyTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)572 tcu::TestCaseGroup* createMipmapSparseResidencyTestsCommon (tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
573 {
574 	const std::vector<TestImageParameters> imageParameters
575 	{
576 		{ IMAGE_TYPE_2D,			{ tcu::UVec3(512u, 256u, 1u),	tcu::UVec3(1024u, 128u, 1u),	tcu::UVec3(11u,  137u, 1u) },	getTestFormats(IMAGE_TYPE_2D) },
577 		{ IMAGE_TYPE_2D_ARRAY,		{ tcu::UVec3(512u, 256u, 6u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_2D_ARRAY) },
578 		{ IMAGE_TYPE_CUBE,			{ tcu::UVec3(256u, 256u, 1u),	tcu::UVec3(128u,  128u, 1u),	tcu::UVec3(137u, 137u, 1u) },	getTestFormats(IMAGE_TYPE_CUBE) },
579 		{ IMAGE_TYPE_CUBE_ARRAY,	{ tcu::UVec3(256u, 256u, 6u),	tcu::UVec3(128u,  128u, 8u),	tcu::UVec3(137u, 137u, 3u) },	getTestFormats(IMAGE_TYPE_CUBE_ARRAY) },
580 		{ IMAGE_TYPE_3D,			{ tcu::UVec3(256u, 256u, 16u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_3D) }
581 	};
582 
583 	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
584 	{
585 		const ImageType					imageType = imageParameters[imageTypeNdx].imageType;
586 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
587 
588 		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
589 		{
590 			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
591 			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
592 			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), ""));
593 
594 			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
595 			{
596 				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
597 
598 				// skip test for images with odd sizes for some YCbCr formats
599 				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
600 					continue;
601 				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
602 					continue;
603 
604 				std::ostringstream stream;
605 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
606 
607 				formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup));
608 			}
609 			imageTypeGroup->addChild(formatGroup.release());
610 		}
611 		testGroup->addChild(imageTypeGroup.release());
612 	}
613 
614 	return testGroup.release();
615 }
616 
createMipmapSparseResidencyTests(tcu::TestContext & testCtx)617 tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx)
618 {
619 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency", "Mipmap Sparse Residency"));
620 	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup);
621 }
622 
createDeviceGroupMipmapSparseResidencyTests(tcu::TestContext & testCtx)623 tcu::TestCaseGroup* createDeviceGroupMipmapSparseResidencyTests (tcu::TestContext& testCtx)
624 {
625 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_mipmap_sparse_residency", "Mipmap Sparse Residency"));
626 	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup, true);
627 }
628 
629 } // sparse
630 } // vkt
631