• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19 
20 /**
21  * @brief Functions for finding best partition for a block.
22  *
23  * The partition search operates in two stages. The first pass uses kmeans clustering to group
24  * texels into an ideal partitioning for the requested partition count, and then compares that
25  * against the 1024 partitionings generated by the ASTC partition hash function. The generated
26  * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
27  * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
28  * partitionings that actually generate fewer than the requested partition count, but only the top
29  * N candidates are actually put through a more detailed search. N is determined by the compressor
30  * quality preset.
31  *
32  * For the detailed search, each candidate is checked against two possible encoding methods:
33  *
34  *   - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
35  *   - The best partitioning assuming same chroma colors (RGB + scale endpoints).
36  *
37  * This is implemented by computing the compute mean color and dominant direction for each
38  * partition. This defines two lines, both of which go through the mean color value.
39  *
40  * - One line has a direction defined by the dominant direction; this is used to assess the error
41  *   from using an uncorrelated color representation.
42  * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
43  *   (RGB + scale) color representation.
44  *
45  * The best candidate is selected by computing the squared-errors that result from using these
46  * lines for endpoint selection.
47  */
48 
49 #include <limits>
50 #include "astcenc_internal.h"
51 
52 /**
53  * @brief Pick some initial kmeans cluster centers.
54  *
55  * @param      blk               The image block color data to compress.
56  * @param      texel_count       The number of texels in the block.
57  * @param      partition_count   The number of partitions in the block.
58  * @param[out] cluster_centers   The initial partition cluster center colors.
59  */
kmeans_init(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS])60 static void kmeans_init(
61 	const image_block& blk,
62 	unsigned int texel_count,
63 	unsigned int partition_count,
64 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
65 ) {
66 	promise(texel_count > 0);
67 	promise(partition_count > 0);
68 
69 	unsigned int clusters_selected = 0;
70 	float distances[BLOCK_MAX_TEXELS];
71 
72 	// Pick a random sample as first cluster center; 145897 from random.org
73 	unsigned int sample = 145897 % texel_count;
74 	vfloat4 center_color = blk.texel(sample);
75 	cluster_centers[clusters_selected] = center_color;
76 	clusters_selected++;
77 
78 	// Compute the distance to the first cluster center
79 	float distance_sum = 0.0f;
80 	for (unsigned int i = 0; i < texel_count; i++)
81 	{
82 		vfloat4 color = blk.texel(i);
83 		vfloat4 diff = color - center_color;
84 		float distance = dot_s(diff * diff, blk.channel_weight);
85 		distance_sum += distance;
86 		distances[i] = distance;
87 	}
88 
89 	// More numbers from random.org for weighted-random center selection
90 	const float cluster_cutoffs[9] {
91 		0.626220f, 0.932770f, 0.275454f,
92 		0.318558f, 0.240113f, 0.009190f,
93 		0.347661f, 0.731960f, 0.156391f
94 	};
95 
96 	unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
97 
98 	// Pick the remaining samples as needed
99 	while (true)
100 	{
101 		// Pick the next center in a weighted-random fashion.
102 		float summa = 0.0f;
103 		float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
104 		for (sample = 0; sample < texel_count; sample++)
105 		{
106 			summa += distances[sample];
107 			if (summa >= distance_cutoff)
108 			{
109 				break;
110 			}
111 		}
112 
113 		// Clamp to a valid range and store the selected cluster center
114 		sample = astc::min(sample, texel_count - 1);
115 
116 		center_color = blk.texel(sample);
117 		cluster_centers[clusters_selected++] = center_color;
118 		if (clusters_selected >= partition_count)
119 		{
120 			break;
121 		}
122 
123 		// Compute the distance to the new cluster center, keep the min dist
124 		distance_sum = 0.0f;
125 		for (unsigned int i = 0; i < texel_count; i++)
126 		{
127 			vfloat4 color = blk.texel(i);
128 			vfloat4 diff = color - center_color;
129 			float distance = dot_s(diff * diff, blk.channel_weight);
130 			distance = astc::min(distance, distances[i]);
131 			distance_sum += distance;
132 			distances[i] = distance;
133 		}
134 	}
135 }
136 
137 /**
138  * @brief Assign texels to clusters, based on a set of chosen center points.
139  *
140  * @param      blk                  The image block color data to compress.
141  * @param      texel_count          The number of texels in the block.
142  * @param      partition_count      The number of partitions in the block.
143  * @param      cluster_centers      The partition cluster center colors.
144  * @param[out] partition_of_texel   The partition assigned for each texel.
145  */
kmeans_assign(const image_block & blk,unsigned int texel_count,unsigned int partition_count,const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],uint8_t partition_of_texel[BLOCK_MAX_TEXELS])146 static void kmeans_assign(
147 	const image_block& blk,
148 	unsigned int texel_count,
149 	unsigned int partition_count,
150 	const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
151 	uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
152 ) {
153 	promise(texel_count > 0);
154 	promise(partition_count > 0);
155 
156 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
157 
158 	// Find the best partition for every texel
159 	for (unsigned int i = 0; i < texel_count; i++)
160 	{
161 		float best_distance = std::numeric_limits<float>::max();
162 		unsigned int best_partition = 0;
163 
164 		vfloat4 color = blk.texel(i);
165 		for (unsigned int j = 0; j < partition_count; j++)
166 		{
167 			vfloat4 diff = color - cluster_centers[j];
168 			float distance = dot_s(diff * diff, blk.channel_weight);
169 			if (distance < best_distance)
170 			{
171 				best_distance = distance;
172 				best_partition = j;
173 			}
174 		}
175 
176 		partition_of_texel[i] = static_cast<uint8_t>(best_partition);
177 		partition_texel_count[best_partition]++;
178 	}
179 
180 	// It is possible to get a situation where a partition ends up without any texels. In this case,
181 	// assign texel N to partition N. This is silly, but ensures that every partition retains at
182 	// least one texel. Reassigning a texel in this manner may cause another partition to go empty,
183 	// so if we actually did a reassignment, run the whole loop over again.
184 	bool problem_case;
185 	do
186 	{
187 		problem_case = false;
188 		for (unsigned int i = 0; i < partition_count; i++)
189 		{
190 			if (partition_texel_count[i] == 0)
191 			{
192 				partition_texel_count[partition_of_texel[i]]--;
193 				partition_texel_count[i]++;
194 				partition_of_texel[i] = static_cast<uint8_t>(i);
195 				problem_case = true;
196 			}
197 		}
198 	} while (problem_case);
199 }
200 
201 /**
202  * @brief Compute new cluster centers based on their center of gravity.
203  *
204  * @param       blk                  The image block color data to compress.
205  * @param       texel_count          The number of texels in the block.
206  * @param       partition_count      The number of partitions in the block.
207  * @param[out]  cluster_centers      The new cluster center colors.
208  * @param       partition_of_texel   The partition assigned for each texel.
209  */
kmeans_update(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],const uint8_t partition_of_texel[BLOCK_MAX_TEXELS])210 static void kmeans_update(
211 	const image_block& blk,
212 	unsigned int texel_count,
213 	unsigned int partition_count,
214 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
215 	const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
216 ) {
217 	promise(texel_count > 0);
218 	promise(partition_count > 0);
219 
220 	vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
221 		vfloat4::zero(),
222 		vfloat4::zero(),
223 		vfloat4::zero(),
224 		vfloat4::zero()
225 	};
226 
227 	uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
228 
229 	// Find the center-of-gravity in each cluster
230 	for (unsigned int i = 0; i < texel_count; i++)
231 	{
232 		uint8_t partition = partition_of_texel[i];
233 		color_sum[partition] += blk.texel(i);
234 		partition_texel_count[partition]++;
235 	}
236 
237 	// Set the center of gravity to be the new cluster center
238 	for (unsigned int i = 0; i < partition_count; i++)
239 	{
240 		float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
241 		cluster_centers[i] = color_sum[i] * scale;
242 	}
243 }
244 
245 /**
246  * @brief Compute bit-mismatch for partitioning in 2-partition mode.
247  *
248  * @param a   The texel assignment bitvector for the block.
249  * @param b   The texel assignment bitvector for the partition table.
250  *
251  * @return    The number of bit mismatches.
252  */
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])253 static inline uint8_t partition_mismatch2(
254 	const uint64_t a[2],
255 	const uint64_t b[2]
256 ) {
257 	int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
258 	int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
259 
260 	// Divide by 2 because XOR always counts errors twice, once when missing
261 	// in the expected position, and again when present in the wrong partition
262 	return static_cast<uint8_t>(astc::min(v1, v2) / 2);
263 }
264 
265 /**
266  * @brief Compute bit-mismatch for partitioning in 3-partition mode.
267  *
268  * @param a   The texel assignment bitvector for the block.
269  * @param b   The texel assignment bitvector for the partition table.
270  *
271  * @return    The number of bit mismatches.
272  */
partition_mismatch3(const uint64_t a[3],const uint64_t b[3])273 static inline uint8_t partition_mismatch3(
274 	const uint64_t a[3],
275 	const uint64_t b[3]
276 ) {
277 	int p00 = popcount(a[0] ^ b[0]);
278 	int p01 = popcount(a[0] ^ b[1]);
279 	int p02 = popcount(a[0] ^ b[2]);
280 
281 	int p10 = popcount(a[1] ^ b[0]);
282 	int p11 = popcount(a[1] ^ b[1]);
283 	int p12 = popcount(a[1] ^ b[2]);
284 
285 	int p20 = popcount(a[2] ^ b[0]);
286 	int p21 = popcount(a[2] ^ b[1]);
287 	int p22 = popcount(a[2] ^ b[2]);
288 
289 	int s0 = p11 + p22;
290 	int s1 = p12 + p21;
291 	int v0 = astc::min(s0, s1) + p00;
292 
293 	int s2 = p10 + p22;
294 	int s3 = p12 + p20;
295 	int v1 = astc::min(s2, s3) + p01;
296 
297 	int s4 = p10 + p21;
298 	int s5 = p11 + p20;
299 	int v2 = astc::min(s4, s5) + p02;
300 
301 	// Divide by 2 because XOR always counts errors twice, once when missing
302 	// in the expected position, and again when present in the wrong partition
303 	return static_cast<uint8_t>(astc::min(v0, v1, v2) / 2);
304 }
305 
306 /**
307  * @brief Compute bit-mismatch for partitioning in 4-partition mode.
308  *
309  * @param a   The texel assignment bitvector for the block.
310  * @param b   The texel assignment bitvector for the partition table.
311  *
312  * @return    The number of bit mismatches.
313  */
partition_mismatch4(const uint64_t a[4],const uint64_t b[4])314 static inline uint8_t partition_mismatch4(
315 	const uint64_t a[4],
316 	const uint64_t b[4]
317 ) {
318 	int p00 = popcount(a[0] ^ b[0]);
319 	int p01 = popcount(a[0] ^ b[1]);
320 	int p02 = popcount(a[0] ^ b[2]);
321 	int p03 = popcount(a[0] ^ b[3]);
322 
323 	int p10 = popcount(a[1] ^ b[0]);
324 	int p11 = popcount(a[1] ^ b[1]);
325 	int p12 = popcount(a[1] ^ b[2]);
326 	int p13 = popcount(a[1] ^ b[3]);
327 
328 	int p20 = popcount(a[2] ^ b[0]);
329 	int p21 = popcount(a[2] ^ b[1]);
330 	int p22 = popcount(a[2] ^ b[2]);
331 	int p23 = popcount(a[2] ^ b[3]);
332 
333 	int p30 = popcount(a[3] ^ b[0]);
334 	int p31 = popcount(a[3] ^ b[1]);
335 	int p32 = popcount(a[3] ^ b[2]);
336 	int p33 = popcount(a[3] ^ b[3]);
337 
338 	int mx23 = astc::min(p22 + p33, p23 + p32);
339 	int mx13 = astc::min(p21 + p33, p23 + p31);
340 	int mx12 = astc::min(p21 + p32, p22 + p31);
341 	int mx03 = astc::min(p20 + p33, p23 + p30);
342 	int mx02 = astc::min(p20 + p32, p22 + p30);
343 	int mx01 = astc::min(p21 + p30, p20 + p31);
344 
345 	int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
346 	int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
347 	int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
348 	int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
349 
350 	// Divide by 2 because XOR always counts errors twice, once when missing
351 	// in the expected position, and again when present in the wrong partition
352 	return static_cast<uint8_t>(astc::min(v0, v1, v2, v3) / 2);
353 }
354 
355 using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
356 
357 /**
358  * @brief Count the partition table mismatches vs the data clustering.
359  *
360  * @param      bsd               The block size information.
361  * @param      partition_count   The number of partitions in the block.
362  * @param      bitmaps           The block texel partition assignment patterns.
363  * @param[out] mismatch_counts   The array storing per partitioning mismatch counts.
364  */
count_partition_mismatch_bits(const block_size_descriptor & bsd,unsigned int partition_count,const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS])365 static void count_partition_mismatch_bits(
366 	const block_size_descriptor& bsd,
367 	unsigned int partition_count,
368 	const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
369 	uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS]
370 ) {
371 	unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
372 	promise(active_count > 0);
373 
374 	if (partition_count == 2)
375 	{
376 		for (unsigned int i = 0; i < active_count; i++)
377 		{
378 			mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
379 			assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
380 			assert(mismatch_counts[i] < bsd.texel_count);
381 		}
382 	}
383 	else if (partition_count == 3)
384 	{
385 		for (unsigned int i = 0; i < active_count; i++)
386 		{
387 			mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
388 			assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
389 			assert(mismatch_counts[i] < bsd.texel_count);
390 		}
391 	}
392 	else
393 	{
394 		for (unsigned int i = 0; i < active_count; i++)
395 		{
396 			mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
397 			assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
398 			assert(mismatch_counts[i] < bsd.texel_count);
399 		}
400 	}
401 }
402 
403 /**
404  * @brief Use counting sort on the mismatch array to sort partition candidates.
405  *
406  * @param      partitioning_count   The number of packed partitionings.
407  * @param      mismatch_count       Partitioning mismatch counts, in index order.
408  * @param[out] partition_ordering   Partition index values, in mismatch order.
409  *
410  * @return The number of active partitions in this selection.
411  */
get_partition_ordering_by_mismatch_bits(unsigned int texel_count,unsigned int partitioning_count,const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])412 static unsigned int get_partition_ordering_by_mismatch_bits(
413 	unsigned int texel_count,
414 	unsigned int partitioning_count,
415 	const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],
416 	uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
417 ) {
418 	promise(partitioning_count > 0);
419 	uint16_t mscount[BLOCK_MAX_KMEANS_TEXELS] { 0 };
420 
421 	// Create the histogram of mismatch counts
422 	for (unsigned int i = 0; i < partitioning_count; i++)
423 	{
424 		mscount[mismatch_count[i]]++;
425 	}
426 
427 	// Create a running sum from the histogram array
428 	// Cells store previous values only; i.e. exclude self after sum
429 	unsigned int sum = 0;
430 	for (unsigned int i = 0; i < texel_count; i++)
431 	{
432 		uint16_t cnt = mscount[i];
433 		mscount[i] = sum;
434 		sum += cnt;
435 	}
436 
437 	// Use the running sum as the index, incrementing after read to allow
438 	// sequential entries with the same count
439 	for (unsigned int i = 0; i < partitioning_count; i++)
440 	{
441 		unsigned int idx = mscount[mismatch_count[i]]++;
442 		partition_ordering[idx] = static_cast<uint16_t>(i);
443 	}
444 
445 	return partitioning_count;
446 }
447 
448 /**
449  * @brief Use k-means clustering to compute a partition ordering for a block..
450  *
451  * @param      bsd                  The block size information.
452  * @param      blk                  The image block color data to compress.
453  * @param      partition_count      The desired number of partitions in the block.
454  * @param[out] partition_ordering   The list of recommended partition indices, in priority order.
455  *
456  * @return The number of active partitionings in this selection.
457  */
compute_kmeans_partition_ordering(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])458 static unsigned int compute_kmeans_partition_ordering(
459 	const block_size_descriptor& bsd,
460 	const image_block& blk,
461 	unsigned int partition_count,
462 	uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
463 ) {
464 	vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
465 	uint8_t texel_partitions[BLOCK_MAX_TEXELS];
466 
467 	// Use three passes of k-means clustering to partition the block data
468 	for (unsigned int i = 0; i < 3; i++)
469 	{
470 		if (i == 0)
471 		{
472 			kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
473 		}
474 		else
475 		{
476 			kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
477 		}
478 
479 		kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
480 	}
481 
482 	// Construct the block bitmaps of texel assignments to each partition
483 	uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
484 	unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
485 	promise(texels_to_process > 0);
486 	for (unsigned int i = 0; i < texels_to_process; i++)
487 	{
488 		unsigned int idx = bsd.kmeans_texels[i];
489 		bitmaps[texel_partitions[idx]] |= 1ULL << i;
490 	}
491 
492 	// Count the mismatch between the block and the format's partition tables
493 	uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS];
494 	count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
495 
496 	// Sort the partitions based on the number of mismatched bits
497 	return get_partition_ordering_by_mismatch_bits(
498 	    texels_to_process,
499 	    bsd.partitioning_count_selected[partition_count - 1],
500 	    mismatch_counts, partition_ordering);
501 }
502 
503 /**
504  * @brief Insert a partitioning into an order list of results, sorted by error.
505  *
506  * @param      max_values      The max number of entries in the best result arrays.
507  * @param      this_error      The error of the new entry.
508  * @param      this_partition  The partition ID of the new entry.
509  * @param[out] best_errors     The array of best error values.
510  * @param[out] best_partitions The array of best partition values.
511  */
insert_result(unsigned int max_values,float this_error,unsigned int this_partition,float * best_errors,unsigned int * best_partitions)512 static void insert_result(
513 	unsigned int max_values,
514 	float this_error,
515 	unsigned int this_partition,
516 	float* best_errors,
517 	unsigned int* best_partitions)
518 {
519 	promise(max_values > 0);
520 
521 	// Don't bother searching if the current worst error beats the new error
522 	if (this_error >= best_errors[max_values - 1])
523 	{
524 		return;
525 	}
526 
527 	// Else insert into the list in error-order
528 	for (unsigned int i = 0; i < max_values; i++)
529 	{
530 		// Existing result is better - move on ...
531 		if (this_error > best_errors[i])
532 		{
533 			continue;
534 		}
535 
536 		// Move existing results down one
537 		for (unsigned int j = max_values - 1; j > i; j--)
538 		{
539 			best_errors[j] = best_errors[j - 1];
540 			best_partitions[j] = best_partitions[j - 1];
541 		}
542 
543 		// Insert new result
544 		best_errors[i] = this_error;
545 		best_partitions[i] = this_partition;
546 		break;
547 	}
548 }
549 
550 /* See header for documentation. */
find_best_partition_candidates(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_search_limit,unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],unsigned int requested_candidates)551 unsigned int find_best_partition_candidates(
552 	const block_size_descriptor& bsd,
553 	const image_block& blk,
554 	unsigned int partition_count,
555 	unsigned int partition_search_limit,
556 	unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
557 	unsigned int requested_candidates
558 ) {
559 	// Constant used to estimate quantization error for a given partitioning; the optimal value for
560 	// this depends on bitrate. These values have been determined empirically.
561 	unsigned int texels_per_block = bsd.texel_count;
562 	float weight_imprecision_estim = 0.055f;
563 	if (texels_per_block <= 20)
564 	{
565 		weight_imprecision_estim = 0.03f;
566 	}
567 	else if (texels_per_block <= 31)
568 	{
569 		weight_imprecision_estim = 0.04f;
570 	}
571 	else if (texels_per_block <= 41)
572 	{
573 		weight_imprecision_estim = 0.05f;
574 	}
575 
576 	promise(partition_count > 0);
577 	promise(partition_search_limit > 0);
578 
579 	weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
580 
581 	uint16_t partition_sequence[BLOCK_MAX_PARTITIONINGS];
582 	unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
583 	partition_search_limit = astc::min(partition_search_limit, sequence_len);
584 	requested_candidates = astc::min(partition_search_limit, requested_candidates);
585 
586 	bool uses_alpha = !blk.is_constant_channel(3);
587 
588 	// Partitioning errors assuming uncorrelated-chrominance endpoints
589 	float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
590 	unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
591 
592 	// Partitioning errors assuming same-chrominance endpoints
593 	float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
594 	unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
595 
596 	for (unsigned int i = 0; i < requested_candidates; i++)
597 	{
598 		uncor_best_errors[i] = ERROR_CALC_DEFAULT;
599 		samec_best_errors[i] = ERROR_CALC_DEFAULT;
600 	}
601 
602 	if (uses_alpha)
603 	{
604 		for (unsigned int i = 0; i < partition_search_limit; i++)
605 		{
606 			unsigned int partition = partition_sequence[i];
607 			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
608 
609 			// Compute weighting to give to each component in each partition
610 			partition_metrics pms[BLOCK_MAX_PARTITIONS];
611 
612 			compute_avgs_and_dirs_4_comp(pi, blk, pms);
613 
614 			line4 uncor_lines[BLOCK_MAX_PARTITIONS];
615 			line4 samec_lines[BLOCK_MAX_PARTITIONS];
616 
617 			processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
618 			processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
619 
620 			float line_lengths[BLOCK_MAX_PARTITIONS];
621 
622 			for (unsigned int j = 0; j < partition_count; j++)
623 			{
624 				partition_metrics& pm = pms[j];
625 
626 				uncor_lines[j].a = pm.avg;
627 				uncor_lines[j].b = normalize_safe(pm.dir, unit4());
628 
629 				uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
630 				uncor_plines[j].bs = uncor_lines[j].b;
631 
632 				samec_lines[j].a = vfloat4::zero();
633 				samec_lines[j].b = normalize_safe(pm.avg, unit4());
634 
635 				samec_plines[j].amod = vfloat4::zero();
636 				samec_plines[j].bs = samec_lines[j].b;
637 			}
638 
639 			float uncor_error = 0.0f;
640 			float samec_error = 0.0f;
641 
642 			compute_error_squared_rgba(pi,
643 			                           blk,
644 			                           uncor_plines,
645 			                           samec_plines,
646 			                           line_lengths,
647 			                           uncor_error,
648 			                           samec_error);
649 
650 			// Compute an estimate of error introduced by weight quantization imprecision.
651 			// This error is computed as follows, for each partition
652 			//     1: compute the principal-axis vector (full length) in error-space
653 			//     2: convert the principal-axis vector to regular RGB-space
654 			//     3: scale the vector by a constant that estimates average quantization error
655 			//     4: for each texel, square the vector, then do a dot-product with the texel's
656 			//        error weight; sum up the results across all texels.
657 			//     4(optimized): square the vector once, then do a dot-product with the average
658 			//        texel error, then multiply by the number of texels.
659 
660 			for (unsigned int j = 0; j < partition_count; j++)
661 			{
662 				float tpp = static_cast<float>(pi.partition_texel_count[j]);
663 				vfloat4 error_weights(tpp * weight_imprecision_estim);
664 
665 				vfloat4 uncor_vector = uncor_lines[j].b * line_lengths[j];
666 				vfloat4 samec_vector = samec_lines[j].b * line_lengths[j];
667 
668 				uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
669 				samec_error += dot_s(samec_vector * samec_vector, error_weights);
670 			}
671 
672 			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
673 			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
674 		}
675 	}
676 	else
677 	{
678 		for (unsigned int i = 0; i < partition_search_limit; i++)
679 		{
680 			unsigned int partition = partition_sequence[i];
681 			const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
682 
683 			// Compute weighting to give to each component in each partition
684 			partition_metrics pms[BLOCK_MAX_PARTITIONS];
685 			compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
686 
687 			partition_lines3 plines[BLOCK_MAX_PARTITIONS];
688 
689 			for (unsigned int j = 0; j < partition_count; j++)
690 			{
691 				partition_metrics& pm = pms[j];
692 				partition_lines3& pl = plines[j];
693 
694 				pl.uncor_line.a = pm.avg;
695 				pl.uncor_line.b = normalize_safe(pm.dir, unit3());
696 
697 				pl.samec_line.a = vfloat4::zero();
698 				pl.samec_line.b = normalize_safe(pm.avg, unit3());
699 
700 				pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
701 				pl.uncor_pline.bs   = pl.uncor_line.b;
702 
703 				pl.samec_pline.amod = vfloat4::zero();
704 				pl.samec_pline.bs   = pl.samec_line.b;
705 			}
706 
707 			float uncor_error = 0.0f;
708 			float samec_error = 0.0f;
709 
710 			compute_error_squared_rgb(pi,
711 			                          blk,
712 			                          plines,
713 			                          uncor_error,
714 			                          samec_error);
715 
716 			// Compute an estimate of error introduced by weight quantization imprecision.
717 			// This error is computed as follows, for each partition
718 			//     1: compute the principal-axis vector (full length) in error-space
719 			//     2: convert the principal-axis vector to regular RGB-space
720 			//     3: scale the vector by a constant that estimates average quantization error
721 			//     4: for each texel, square the vector, then do a dot-product with the texel's
722 			//        error weight; sum up the results across all texels.
723 			//     4(optimized): square the vector once, then do a dot-product with the average
724 			//        texel error, then multiply by the number of texels.
725 
726 			for (unsigned int j = 0; j < partition_count; j++)
727 			{
728 				partition_lines3& pl = plines[j];
729 
730 				float tpp = static_cast<float>(pi.partition_texel_count[j]);
731 				vfloat4 error_weights(tpp * weight_imprecision_estim);
732 
733 				vfloat4 uncor_vector = pl.uncor_line.b * pl.line_length;
734 				vfloat4 samec_vector = pl.samec_line.b * pl.line_length;
735 
736 				uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
737 				samec_error += dot3_s(samec_vector * samec_vector, error_weights);
738 			}
739 
740 			insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
741 			insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
742 		}
743 	}
744 
745 	unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
746 	for (unsigned int i = 0; i < requested_candidates; i++)
747 	{
748 		interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
749 		interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
750 	}
751 
752 	uint64_t bitmasks[1024/64] { 0 };
753 	unsigned int emitted = 0;
754 
755 	// Deduplicate the first "requested" entries
756 	for (unsigned int i = 0; i < requested_candidates * 2;  i++)
757 	{
758 		unsigned int partition = interleave[i];
759 
760 		unsigned int word = partition / 64;
761 		unsigned int bit = partition % 64;
762 
763 		bool written = bitmasks[word] & (1ull << bit);
764 
765 		if (!written)
766 		{
767 			best_partitions[emitted] = partition;
768 			bitmasks[word] |= 1ull << bit;
769 			emitted++;
770 
771 			if (emitted == requested_candidates)
772 			{
773 				break;
774 			}
775 		}
776 	}
777 
778 	return emitted;
779 }
780 
781 #endif
782