1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 #if !defined(ASTCENC_DECOMPRESS_ONLY)
19
20 /**
21 * @brief Functions for finding best partition for a block.
22 *
23 * The partition search operates in two stages. The first pass uses kmeans clustering to group
24 * texels into an ideal partitioning for the requested partition count, and then compares that
25 * against the 1024 partitionings generated by the ASTC partition hash function. The generated
26 * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
27 * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
28 * partitionings that actually generate fewer than the requested partition count, but only the top
29 * N candidates are actually put through a more detailed search. N is determined by the compressor
30 * quality preset.
31 *
32 * For the detailed search, each candidate is checked against two possible encoding methods:
33 *
34 * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
35 * - The best partitioning assuming same chroma colors (RGB + scale endpoints).
36 *
37 * This is implemented by computing the compute mean color and dominant direction for each
38 * partition. This defines two lines, both of which go through the mean color value.
39 *
40 * - One line has a direction defined by the dominant direction; this is used to assess the error
41 * from using an uncorrelated color representation.
42 * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
43 * (RGB + scale) color representation.
44 *
45 * The best candidate is selected by computing the squared-errors that result from using these
46 * lines for endpoint selection.
47 */
48
49 #include <limits>
50 #include "astcenc_internal.h"
51
52 /**
53 * @brief Pick some initial kmeans cluster centers.
54 *
55 * @param blk The image block color data to compress.
56 * @param texel_count The number of texels in the block.
57 * @param partition_count The number of partitions in the block.
58 * @param[out] cluster_centers The initial partition cluster center colors.
59 */
kmeans_init(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS])60 static void kmeans_init(
61 const image_block& blk,
62 unsigned int texel_count,
63 unsigned int partition_count,
64 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
65 ) {
66 promise(texel_count > 0);
67 promise(partition_count > 0);
68
69 unsigned int clusters_selected = 0;
70 float distances[BLOCK_MAX_TEXELS];
71
72 // Pick a random sample as first cluster center; 145897 from random.org
73 unsigned int sample = 145897 % texel_count;
74 vfloat4 center_color = blk.texel(sample);
75 cluster_centers[clusters_selected] = center_color;
76 clusters_selected++;
77
78 // Compute the distance to the first cluster center
79 float distance_sum = 0.0f;
80 for (unsigned int i = 0; i < texel_count; i++)
81 {
82 vfloat4 color = blk.texel(i);
83 vfloat4 diff = color - center_color;
84 float distance = dot_s(diff * diff, blk.channel_weight);
85 distance_sum += distance;
86 distances[i] = distance;
87 }
88
89 // More numbers from random.org for weighted-random center selection
90 const float cluster_cutoffs[9] {
91 0.626220f, 0.932770f, 0.275454f,
92 0.318558f, 0.240113f, 0.009190f,
93 0.347661f, 0.731960f, 0.156391f
94 };
95
96 unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
97
98 // Pick the remaining samples as needed
99 while (true)
100 {
101 // Pick the next center in a weighted-random fashion.
102 float summa = 0.0f;
103 float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
104 for (sample = 0; sample < texel_count; sample++)
105 {
106 summa += distances[sample];
107 if (summa >= distance_cutoff)
108 {
109 break;
110 }
111 }
112
113 // Clamp to a valid range and store the selected cluster center
114 sample = astc::min(sample, texel_count - 1);
115
116 center_color = blk.texel(sample);
117 cluster_centers[clusters_selected++] = center_color;
118 if (clusters_selected >= partition_count)
119 {
120 break;
121 }
122
123 // Compute the distance to the new cluster center, keep the min dist
124 distance_sum = 0.0f;
125 for (unsigned int i = 0; i < texel_count; i++)
126 {
127 vfloat4 color = blk.texel(i);
128 vfloat4 diff = color - center_color;
129 float distance = dot_s(diff * diff, blk.channel_weight);
130 distance = astc::min(distance, distances[i]);
131 distance_sum += distance;
132 distances[i] = distance;
133 }
134 }
135 }
136
137 /**
138 * @brief Assign texels to clusters, based on a set of chosen center points.
139 *
140 * @param blk The image block color data to compress.
141 * @param texel_count The number of texels in the block.
142 * @param partition_count The number of partitions in the block.
143 * @param cluster_centers The partition cluster center colors.
144 * @param[out] partition_of_texel The partition assigned for each texel.
145 */
kmeans_assign(const image_block & blk,unsigned int texel_count,unsigned int partition_count,const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],uint8_t partition_of_texel[BLOCK_MAX_TEXELS])146 static void kmeans_assign(
147 const image_block& blk,
148 unsigned int texel_count,
149 unsigned int partition_count,
150 const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
151 uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
152 ) {
153 promise(texel_count > 0);
154 promise(partition_count > 0);
155
156 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
157
158 // Find the best partition for every texel
159 for (unsigned int i = 0; i < texel_count; i++)
160 {
161 float best_distance = std::numeric_limits<float>::max();
162 unsigned int best_partition = 0;
163
164 vfloat4 color = blk.texel(i);
165 for (unsigned int j = 0; j < partition_count; j++)
166 {
167 vfloat4 diff = color - cluster_centers[j];
168 float distance = dot_s(diff * diff, blk.channel_weight);
169 if (distance < best_distance)
170 {
171 best_distance = distance;
172 best_partition = j;
173 }
174 }
175
176 partition_of_texel[i] = static_cast<uint8_t>(best_partition);
177 partition_texel_count[best_partition]++;
178 }
179
180 // It is possible to get a situation where a partition ends up without any texels. In this case,
181 // assign texel N to partition N. This is silly, but ensures that every partition retains at
182 // least one texel. Reassigning a texel in this manner may cause another partition to go empty,
183 // so if we actually did a reassignment, run the whole loop over again.
184 bool problem_case;
185 do
186 {
187 problem_case = false;
188 for (unsigned int i = 0; i < partition_count; i++)
189 {
190 if (partition_texel_count[i] == 0)
191 {
192 partition_texel_count[partition_of_texel[i]]--;
193 partition_texel_count[i]++;
194 partition_of_texel[i] = static_cast<uint8_t>(i);
195 problem_case = true;
196 }
197 }
198 } while (problem_case);
199 }
200
201 /**
202 * @brief Compute new cluster centers based on their center of gravity.
203 *
204 * @param blk The image block color data to compress.
205 * @param texel_count The number of texels in the block.
206 * @param partition_count The number of partitions in the block.
207 * @param[out] cluster_centers The new cluster center colors.
208 * @param partition_of_texel The partition assigned for each texel.
209 */
kmeans_update(const image_block & blk,unsigned int texel_count,unsigned int partition_count,vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],const uint8_t partition_of_texel[BLOCK_MAX_TEXELS])210 static void kmeans_update(
211 const image_block& blk,
212 unsigned int texel_count,
213 unsigned int partition_count,
214 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
215 const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
216 ) {
217 promise(texel_count > 0);
218 promise(partition_count > 0);
219
220 vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
221 vfloat4::zero(),
222 vfloat4::zero(),
223 vfloat4::zero(),
224 vfloat4::zero()
225 };
226
227 uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
228
229 // Find the center-of-gravity in each cluster
230 for (unsigned int i = 0; i < texel_count; i++)
231 {
232 uint8_t partition = partition_of_texel[i];
233 color_sum[partition] += blk.texel(i);
234 partition_texel_count[partition]++;
235 }
236
237 // Set the center of gravity to be the new cluster center
238 for (unsigned int i = 0; i < partition_count; i++)
239 {
240 float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
241 cluster_centers[i] = color_sum[i] * scale;
242 }
243 }
244
245 /**
246 * @brief Compute bit-mismatch for partitioning in 2-partition mode.
247 *
248 * @param a The texel assignment bitvector for the block.
249 * @param b The texel assignment bitvector for the partition table.
250 *
251 * @return The number of bit mismatches.
252 */
partition_mismatch2(const uint64_t a[2],const uint64_t b[2])253 static inline uint8_t partition_mismatch2(
254 const uint64_t a[2],
255 const uint64_t b[2]
256 ) {
257 int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
258 int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
259
260 // Divide by 2 because XOR always counts errors twice, once when missing
261 // in the expected position, and again when present in the wrong partition
262 return static_cast<uint8_t>(astc::min(v1, v2) / 2);
263 }
264
265 /**
266 * @brief Compute bit-mismatch for partitioning in 3-partition mode.
267 *
268 * @param a The texel assignment bitvector for the block.
269 * @param b The texel assignment bitvector for the partition table.
270 *
271 * @return The number of bit mismatches.
272 */
partition_mismatch3(const uint64_t a[3],const uint64_t b[3])273 static inline uint8_t partition_mismatch3(
274 const uint64_t a[3],
275 const uint64_t b[3]
276 ) {
277 int p00 = popcount(a[0] ^ b[0]);
278 int p01 = popcount(a[0] ^ b[1]);
279 int p02 = popcount(a[0] ^ b[2]);
280
281 int p10 = popcount(a[1] ^ b[0]);
282 int p11 = popcount(a[1] ^ b[1]);
283 int p12 = popcount(a[1] ^ b[2]);
284
285 int p20 = popcount(a[2] ^ b[0]);
286 int p21 = popcount(a[2] ^ b[1]);
287 int p22 = popcount(a[2] ^ b[2]);
288
289 int s0 = p11 + p22;
290 int s1 = p12 + p21;
291 int v0 = astc::min(s0, s1) + p00;
292
293 int s2 = p10 + p22;
294 int s3 = p12 + p20;
295 int v1 = astc::min(s2, s3) + p01;
296
297 int s4 = p10 + p21;
298 int s5 = p11 + p20;
299 int v2 = astc::min(s4, s5) + p02;
300
301 // Divide by 2 because XOR always counts errors twice, once when missing
302 // in the expected position, and again when present in the wrong partition
303 return static_cast<uint8_t>(astc::min(v0, v1, v2) / 2);
304 }
305
306 /**
307 * @brief Compute bit-mismatch for partitioning in 4-partition mode.
308 *
309 * @param a The texel assignment bitvector for the block.
310 * @param b The texel assignment bitvector for the partition table.
311 *
312 * @return The number of bit mismatches.
313 */
partition_mismatch4(const uint64_t a[4],const uint64_t b[4])314 static inline uint8_t partition_mismatch4(
315 const uint64_t a[4],
316 const uint64_t b[4]
317 ) {
318 int p00 = popcount(a[0] ^ b[0]);
319 int p01 = popcount(a[0] ^ b[1]);
320 int p02 = popcount(a[0] ^ b[2]);
321 int p03 = popcount(a[0] ^ b[3]);
322
323 int p10 = popcount(a[1] ^ b[0]);
324 int p11 = popcount(a[1] ^ b[1]);
325 int p12 = popcount(a[1] ^ b[2]);
326 int p13 = popcount(a[1] ^ b[3]);
327
328 int p20 = popcount(a[2] ^ b[0]);
329 int p21 = popcount(a[2] ^ b[1]);
330 int p22 = popcount(a[2] ^ b[2]);
331 int p23 = popcount(a[2] ^ b[3]);
332
333 int p30 = popcount(a[3] ^ b[0]);
334 int p31 = popcount(a[3] ^ b[1]);
335 int p32 = popcount(a[3] ^ b[2]);
336 int p33 = popcount(a[3] ^ b[3]);
337
338 int mx23 = astc::min(p22 + p33, p23 + p32);
339 int mx13 = astc::min(p21 + p33, p23 + p31);
340 int mx12 = astc::min(p21 + p32, p22 + p31);
341 int mx03 = astc::min(p20 + p33, p23 + p30);
342 int mx02 = astc::min(p20 + p32, p22 + p30);
343 int mx01 = astc::min(p21 + p30, p20 + p31);
344
345 int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
346 int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
347 int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
348 int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
349
350 // Divide by 2 because XOR always counts errors twice, once when missing
351 // in the expected position, and again when present in the wrong partition
352 return static_cast<uint8_t>(astc::min(v0, v1, v2, v3) / 2);
353 }
354
355 using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
356
357 /**
358 * @brief Count the partition table mismatches vs the data clustering.
359 *
360 * @param bsd The block size information.
361 * @param partition_count The number of partitions in the block.
362 * @param bitmaps The block texel partition assignment patterns.
363 * @param[out] mismatch_counts The array storing per partitioning mismatch counts.
364 */
count_partition_mismatch_bits(const block_size_descriptor & bsd,unsigned int partition_count,const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS])365 static void count_partition_mismatch_bits(
366 const block_size_descriptor& bsd,
367 unsigned int partition_count,
368 const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
369 uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS]
370 ) {
371 unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
372 promise(active_count > 0);
373
374 if (partition_count == 2)
375 {
376 for (unsigned int i = 0; i < active_count; i++)
377 {
378 mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
379 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
380 assert(mismatch_counts[i] < bsd.texel_count);
381 }
382 }
383 else if (partition_count == 3)
384 {
385 for (unsigned int i = 0; i < active_count; i++)
386 {
387 mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
388 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
389 assert(mismatch_counts[i] < bsd.texel_count);
390 }
391 }
392 else
393 {
394 for (unsigned int i = 0; i < active_count; i++)
395 {
396 mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
397 assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
398 assert(mismatch_counts[i] < bsd.texel_count);
399 }
400 }
401 }
402
403 /**
404 * @brief Use counting sort on the mismatch array to sort partition candidates.
405 *
406 * @param partitioning_count The number of packed partitionings.
407 * @param mismatch_count Partitioning mismatch counts, in index order.
408 * @param[out] partition_ordering Partition index values, in mismatch order.
409 *
410 * @return The number of active partitions in this selection.
411 */
get_partition_ordering_by_mismatch_bits(unsigned int texel_count,unsigned int partitioning_count,const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])412 static unsigned int get_partition_ordering_by_mismatch_bits(
413 unsigned int texel_count,
414 unsigned int partitioning_count,
415 const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],
416 uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
417 ) {
418 promise(partitioning_count > 0);
419 uint16_t mscount[BLOCK_MAX_KMEANS_TEXELS] { 0 };
420
421 // Create the histogram of mismatch counts
422 for (unsigned int i = 0; i < partitioning_count; i++)
423 {
424 mscount[mismatch_count[i]]++;
425 }
426
427 // Create a running sum from the histogram array
428 // Cells store previous values only; i.e. exclude self after sum
429 unsigned int sum = 0;
430 for (unsigned int i = 0; i < texel_count; i++)
431 {
432 uint16_t cnt = mscount[i];
433 mscount[i] = sum;
434 sum += cnt;
435 }
436
437 // Use the running sum as the index, incrementing after read to allow
438 // sequential entries with the same count
439 for (unsigned int i = 0; i < partitioning_count; i++)
440 {
441 unsigned int idx = mscount[mismatch_count[i]]++;
442 partition_ordering[idx] = static_cast<uint16_t>(i);
443 }
444
445 return partitioning_count;
446 }
447
448 /**
449 * @brief Use k-means clustering to compute a partition ordering for a block..
450 *
451 * @param bsd The block size information.
452 * @param blk The image block color data to compress.
453 * @param partition_count The desired number of partitions in the block.
454 * @param[out] partition_ordering The list of recommended partition indices, in priority order.
455 *
456 * @return The number of active partitionings in this selection.
457 */
compute_kmeans_partition_ordering(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS])458 static unsigned int compute_kmeans_partition_ordering(
459 const block_size_descriptor& bsd,
460 const image_block& blk,
461 unsigned int partition_count,
462 uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
463 ) {
464 vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
465 uint8_t texel_partitions[BLOCK_MAX_TEXELS];
466
467 // Use three passes of k-means clustering to partition the block data
468 for (unsigned int i = 0; i < 3; i++)
469 {
470 if (i == 0)
471 {
472 kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
473 }
474 else
475 {
476 kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
477 }
478
479 kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
480 }
481
482 // Construct the block bitmaps of texel assignments to each partition
483 uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
484 unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
485 promise(texels_to_process > 0);
486 for (unsigned int i = 0; i < texels_to_process; i++)
487 {
488 unsigned int idx = bsd.kmeans_texels[i];
489 bitmaps[texel_partitions[idx]] |= 1ULL << i;
490 }
491
492 // Count the mismatch between the block and the format's partition tables
493 uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS];
494 count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
495
496 // Sort the partitions based on the number of mismatched bits
497 return get_partition_ordering_by_mismatch_bits(
498 texels_to_process,
499 bsd.partitioning_count_selected[partition_count - 1],
500 mismatch_counts, partition_ordering);
501 }
502
503 /**
504 * @brief Insert a partitioning into an order list of results, sorted by error.
505 *
506 * @param max_values The max number of entries in the best result arrays.
507 * @param this_error The error of the new entry.
508 * @param this_partition The partition ID of the new entry.
509 * @param[out] best_errors The array of best error values.
510 * @param[out] best_partitions The array of best partition values.
511 */
insert_result(unsigned int max_values,float this_error,unsigned int this_partition,float * best_errors,unsigned int * best_partitions)512 static void insert_result(
513 unsigned int max_values,
514 float this_error,
515 unsigned int this_partition,
516 float* best_errors,
517 unsigned int* best_partitions)
518 {
519 promise(max_values > 0);
520
521 // Don't bother searching if the current worst error beats the new error
522 if (this_error >= best_errors[max_values - 1])
523 {
524 return;
525 }
526
527 // Else insert into the list in error-order
528 for (unsigned int i = 0; i < max_values; i++)
529 {
530 // Existing result is better - move on ...
531 if (this_error > best_errors[i])
532 {
533 continue;
534 }
535
536 // Move existing results down one
537 for (unsigned int j = max_values - 1; j > i; j--)
538 {
539 best_errors[j] = best_errors[j - 1];
540 best_partitions[j] = best_partitions[j - 1];
541 }
542
543 // Insert new result
544 best_errors[i] = this_error;
545 best_partitions[i] = this_partition;
546 break;
547 }
548 }
549
550 /* See header for documentation. */
find_best_partition_candidates(const block_size_descriptor & bsd,const image_block & blk,unsigned int partition_count,unsigned int partition_search_limit,unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],unsigned int requested_candidates)551 unsigned int find_best_partition_candidates(
552 const block_size_descriptor& bsd,
553 const image_block& blk,
554 unsigned int partition_count,
555 unsigned int partition_search_limit,
556 unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
557 unsigned int requested_candidates
558 ) {
559 // Constant used to estimate quantization error for a given partitioning; the optimal value for
560 // this depends on bitrate. These values have been determined empirically.
561 unsigned int texels_per_block = bsd.texel_count;
562 float weight_imprecision_estim = 0.055f;
563 if (texels_per_block <= 20)
564 {
565 weight_imprecision_estim = 0.03f;
566 }
567 else if (texels_per_block <= 31)
568 {
569 weight_imprecision_estim = 0.04f;
570 }
571 else if (texels_per_block <= 41)
572 {
573 weight_imprecision_estim = 0.05f;
574 }
575
576 promise(partition_count > 0);
577 promise(partition_search_limit > 0);
578
579 weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
580
581 uint16_t partition_sequence[BLOCK_MAX_PARTITIONINGS];
582 unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
583 partition_search_limit = astc::min(partition_search_limit, sequence_len);
584 requested_candidates = astc::min(partition_search_limit, requested_candidates);
585
586 bool uses_alpha = !blk.is_constant_channel(3);
587
588 // Partitioning errors assuming uncorrelated-chrominance endpoints
589 float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
590 unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
591
592 // Partitioning errors assuming same-chrominance endpoints
593 float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
594 unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
595
596 for (unsigned int i = 0; i < requested_candidates; i++)
597 {
598 uncor_best_errors[i] = ERROR_CALC_DEFAULT;
599 samec_best_errors[i] = ERROR_CALC_DEFAULT;
600 }
601
602 if (uses_alpha)
603 {
604 for (unsigned int i = 0; i < partition_search_limit; i++)
605 {
606 unsigned int partition = partition_sequence[i];
607 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
608
609 // Compute weighting to give to each component in each partition
610 partition_metrics pms[BLOCK_MAX_PARTITIONS];
611
612 compute_avgs_and_dirs_4_comp(pi, blk, pms);
613
614 line4 uncor_lines[BLOCK_MAX_PARTITIONS];
615 line4 samec_lines[BLOCK_MAX_PARTITIONS];
616
617 processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
618 processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
619
620 float line_lengths[BLOCK_MAX_PARTITIONS];
621
622 for (unsigned int j = 0; j < partition_count; j++)
623 {
624 partition_metrics& pm = pms[j];
625
626 uncor_lines[j].a = pm.avg;
627 uncor_lines[j].b = normalize_safe(pm.dir, unit4());
628
629 uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
630 uncor_plines[j].bs = uncor_lines[j].b;
631
632 samec_lines[j].a = vfloat4::zero();
633 samec_lines[j].b = normalize_safe(pm.avg, unit4());
634
635 samec_plines[j].amod = vfloat4::zero();
636 samec_plines[j].bs = samec_lines[j].b;
637 }
638
639 float uncor_error = 0.0f;
640 float samec_error = 0.0f;
641
642 compute_error_squared_rgba(pi,
643 blk,
644 uncor_plines,
645 samec_plines,
646 line_lengths,
647 uncor_error,
648 samec_error);
649
650 // Compute an estimate of error introduced by weight quantization imprecision.
651 // This error is computed as follows, for each partition
652 // 1: compute the principal-axis vector (full length) in error-space
653 // 2: convert the principal-axis vector to regular RGB-space
654 // 3: scale the vector by a constant that estimates average quantization error
655 // 4: for each texel, square the vector, then do a dot-product with the texel's
656 // error weight; sum up the results across all texels.
657 // 4(optimized): square the vector once, then do a dot-product with the average
658 // texel error, then multiply by the number of texels.
659
660 for (unsigned int j = 0; j < partition_count; j++)
661 {
662 float tpp = static_cast<float>(pi.partition_texel_count[j]);
663 vfloat4 error_weights(tpp * weight_imprecision_estim);
664
665 vfloat4 uncor_vector = uncor_lines[j].b * line_lengths[j];
666 vfloat4 samec_vector = samec_lines[j].b * line_lengths[j];
667
668 uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
669 samec_error += dot_s(samec_vector * samec_vector, error_weights);
670 }
671
672 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
673 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
674 }
675 }
676 else
677 {
678 for (unsigned int i = 0; i < partition_search_limit; i++)
679 {
680 unsigned int partition = partition_sequence[i];
681 const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
682
683 // Compute weighting to give to each component in each partition
684 partition_metrics pms[BLOCK_MAX_PARTITIONS];
685 compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
686
687 partition_lines3 plines[BLOCK_MAX_PARTITIONS];
688
689 for (unsigned int j = 0; j < partition_count; j++)
690 {
691 partition_metrics& pm = pms[j];
692 partition_lines3& pl = plines[j];
693
694 pl.uncor_line.a = pm.avg;
695 pl.uncor_line.b = normalize_safe(pm.dir, unit3());
696
697 pl.samec_line.a = vfloat4::zero();
698 pl.samec_line.b = normalize_safe(pm.avg, unit3());
699
700 pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
701 pl.uncor_pline.bs = pl.uncor_line.b;
702
703 pl.samec_pline.amod = vfloat4::zero();
704 pl.samec_pline.bs = pl.samec_line.b;
705 }
706
707 float uncor_error = 0.0f;
708 float samec_error = 0.0f;
709
710 compute_error_squared_rgb(pi,
711 blk,
712 plines,
713 uncor_error,
714 samec_error);
715
716 // Compute an estimate of error introduced by weight quantization imprecision.
717 // This error is computed as follows, for each partition
718 // 1: compute the principal-axis vector (full length) in error-space
719 // 2: convert the principal-axis vector to regular RGB-space
720 // 3: scale the vector by a constant that estimates average quantization error
721 // 4: for each texel, square the vector, then do a dot-product with the texel's
722 // error weight; sum up the results across all texels.
723 // 4(optimized): square the vector once, then do a dot-product with the average
724 // texel error, then multiply by the number of texels.
725
726 for (unsigned int j = 0; j < partition_count; j++)
727 {
728 partition_lines3& pl = plines[j];
729
730 float tpp = static_cast<float>(pi.partition_texel_count[j]);
731 vfloat4 error_weights(tpp * weight_imprecision_estim);
732
733 vfloat4 uncor_vector = pl.uncor_line.b * pl.line_length;
734 vfloat4 samec_vector = pl.samec_line.b * pl.line_length;
735
736 uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
737 samec_error += dot3_s(samec_vector * samec_vector, error_weights);
738 }
739
740 insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
741 insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
742 }
743 }
744
745 unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
746 for (unsigned int i = 0; i < requested_candidates; i++)
747 {
748 interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
749 interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
750 }
751
752 uint64_t bitmasks[1024/64] { 0 };
753 unsigned int emitted = 0;
754
755 // Deduplicate the first "requested" entries
756 for (unsigned int i = 0; i < requested_candidates * 2; i++)
757 {
758 unsigned int partition = interleave[i];
759
760 unsigned int word = partition / 64;
761 unsigned int bit = partition % 64;
762
763 bool written = bitmasks[word] & (1ull << bit);
764
765 if (!written)
766 {
767 best_partitions[emitted] = partition;
768 bitmasks[word] |= 1ull << bit;
769 emitted++;
770
771 if (emitted == requested_candidates)
772 {
773 break;
774 }
775 }
776 }
777
778 return emitted;
779 }
780
781 #endif
782