• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013 Stefano Sabatini
3  * Copyright (c) 2008 Vitor Sessak
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * rotation filter, partially based on the tests/rotozoom.c program
25 */
26 
27 #include "libavutil/avstring.h"
28 #include "libavutil/eval.h"
29 #include "libavutil/opt.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/parseutils.h"
32 #include "libavutil/pixdesc.h"
33 
34 #include "avfilter.h"
35 #include "drawutils.h"
36 #include "internal.h"
37 #include "video.h"
38 
39 #include <float.h>
40 
41 static const char * const var_names[] = {
42     "in_w" , "iw",  ///< width of the input video
43     "in_h" , "ih",  ///< height of the input video
44     "out_w", "ow",  ///< width of the input video
45     "out_h", "oh",  ///< height of the input video
46     "hsub", "vsub",
47     "n",            ///< number of frame
48     "t",            ///< timestamp expressed in seconds
49     NULL
50 };
51 
52 enum var_name {
53     VAR_IN_W , VAR_IW,
54     VAR_IN_H , VAR_IH,
55     VAR_OUT_W, VAR_OW,
56     VAR_OUT_H, VAR_OH,
57     VAR_HSUB, VAR_VSUB,
58     VAR_N,
59     VAR_T,
60     VAR_VARS_NB
61 };
62 
63 typedef struct RotContext {
64     const AVClass *class;
65     double angle;
66     char *angle_expr_str;   ///< expression for the angle
67     AVExpr *angle_expr;     ///< parsed expression for the angle
68     char *outw_expr_str, *outh_expr_str;
69     int outh, outw;
70     uint8_t fillcolor[4];   ///< color expressed either in YUVA or RGBA colorspace for the padding area
71     char *fillcolor_str;
72     int fillcolor_enable;
73     int hsub, vsub;
74     int nb_planes;
75     int use_bilinear;
76     float sinx, cosx;
77     double var_values[VAR_VARS_NB];
78     FFDrawContext draw;
79     FFDrawColor color;
80     uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
81                                     const uint8_t *src, int src_linesize, int src_linestep,
82                                     int x, int y, int max_x, int max_y);
83 } RotContext;
84 
85 typedef struct ThreadData {
86     AVFrame *in, *out;
87     int inw,  inh;
88     int outw, outh;
89     int plane;
90     int xi, yi;
91     int xprime, yprime;
92     int c, s;
93 } ThreadData;
94 
95 #define OFFSET(x) offsetof(RotContext, x)
96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
97 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
98 
99 static const AVOption rotate_options[] = {
100     { "angle",     "set angle (in radians)",       OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
101     { "a",         "set angle (in radians)",       OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, 0, 0, .flags=TFLAGS },
102     { "out_w",     "set output width expression",  OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
103     { "ow",        "set output width expression",  OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, 0, 0, .flags=FLAGS },
104     { "out_h",     "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
105     { "oh",        "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, 0, 0, .flags=FLAGS },
106     { "fillcolor", "set background fill color",    OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
107     { "c",         "set background fill color",    OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, 0, 0, .flags=FLAGS },
108     { "bilinear",  "use bilinear interpolation",   OFFSET(use_bilinear),  AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
109     { NULL }
110 };
111 
112 AVFILTER_DEFINE_CLASS(rotate);
113 
init(AVFilterContext * ctx)114 static av_cold int init(AVFilterContext *ctx)
115 {
116     RotContext *rot = ctx->priv;
117 
118     if (!strcmp(rot->fillcolor_str, "none"))
119         rot->fillcolor_enable = 0;
120     else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
121         rot->fillcolor_enable = 1;
122     else
123         return AVERROR(EINVAL);
124     return 0;
125 }
126 
uninit(AVFilterContext * ctx)127 static av_cold void uninit(AVFilterContext *ctx)
128 {
129     RotContext *rot = ctx->priv;
130 
131     av_expr_free(rot->angle_expr);
132     rot->angle_expr = NULL;
133 }
134 
135 static const enum AVPixelFormat pix_fmts[] = {
136     AV_PIX_FMT_GBRP,   AV_PIX_FMT_GBRAP,
137     AV_PIX_FMT_ARGB,   AV_PIX_FMT_RGBA,
138     AV_PIX_FMT_ABGR,   AV_PIX_FMT_BGRA,
139     AV_PIX_FMT_0RGB,   AV_PIX_FMT_RGB0,
140     AV_PIX_FMT_0BGR,   AV_PIX_FMT_BGR0,
141     AV_PIX_FMT_RGB24,  AV_PIX_FMT_BGR24,
142     AV_PIX_FMT_GRAY8,
143     AV_PIX_FMT_YUV410P,
144     AV_PIX_FMT_YUV444P,  AV_PIX_FMT_YUVJ444P,
145     AV_PIX_FMT_YUV420P,  AV_PIX_FMT_YUVJ420P,
146     AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
147     AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE,
148     AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE,
149     AV_PIX_FMT_YUV420P12LE,
150     AV_PIX_FMT_YUV444P12LE,
151     AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE,
152     AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE,
153     AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE,
154     AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE,
155     AV_PIX_FMT_NONE
156 };
157 
get_rotated_w(void * opaque,double angle)158 static double get_rotated_w(void *opaque, double angle)
159 {
160     RotContext *rot = opaque;
161     double inw = rot->var_values[VAR_IN_W];
162     double inh = rot->var_values[VAR_IN_H];
163     float sinx = sin(angle);
164     float cosx = cos(angle);
165 
166     return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
167            FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
168 }
169 
get_rotated_h(void * opaque,double angle)170 static double get_rotated_h(void *opaque, double angle)
171 {
172     RotContext *rot = opaque;
173     double inw = rot->var_values[VAR_IN_W];
174     double inh = rot->var_values[VAR_IN_H];
175     float sinx = sin(angle);
176     float cosx = cos(angle);
177 
178     return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
179            FFMAX(0,  inh * cosx) + FFMAX(0,  inw * sinx);
180 }
181 
182 static double (* const func1[])(void *, double) = {
183     get_rotated_w,
184     get_rotated_h,
185     NULL
186 };
187 
188 static const char * const func1_names[] = {
189     "rotw",
190     "roth",
191     NULL
192 };
193 
194 #define FIXP (1<<16)
195 #define FIXP2 (1<<20)
196 #define INT_PI 3294199 //(M_PI * FIXP2)
197 
198 /**
199  * Compute the sin of a using integer values.
200  * Input is scaled by FIXP2 and output values are scaled by FIXP.
201  */
int_sin(int64_t a)202 static int64_t int_sin(int64_t a)
203 {
204     int64_t a2, res = 0;
205     int i;
206     if (a < 0) a = INT_PI-a; // 0..inf
207     a %= 2 * INT_PI;         // 0..2PI
208 
209     if (a >= INT_PI*3/2) a -= 2*INT_PI;  // -PI/2 .. 3PI/2
210     if (a >= INT_PI/2  ) a = INT_PI - a; // -PI/2 ..  PI/2
211 
212     /* compute sin using Taylor series approximated to the fifth term */
213     a2 = (a*a)/(FIXP2);
214     for (i = 2; i < 11; i += 2) {
215         res += a;
216         a = -a*a2 / (FIXP2*i*(i+1));
217     }
218     return (res + 8)>>4;
219 }
220 
221 /**
222  * Interpolate the color in src at position x and y using bilinear
223  * interpolation.
224  */
interpolate_bilinear8(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)225 static uint8_t *interpolate_bilinear8(uint8_t *dst_color,
226                                       const uint8_t *src, int src_linesize, int src_linestep,
227                                       int x, int y, int max_x, int max_y)
228 {
229     int int_x = av_clip(x>>16, 0, max_x);
230     int int_y = av_clip(y>>16, 0, max_y);
231     int frac_x = x&0xFFFF;
232     int frac_y = y&0xFFFF;
233     int i;
234     int int_x1 = FFMIN(int_x+1, max_x);
235     int int_y1 = FFMIN(int_y+1, max_y);
236 
237     for (i = 0; i < src_linestep; i++) {
238         int s00 = src[src_linestep * int_x  + i + src_linesize * int_y ];
239         int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
240         int s10 = src[src_linestep * int_x  + i + src_linesize * int_y1];
241         int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
242         int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
243         int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
244 
245         dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
246     }
247 
248     return dst_color;
249 }
250 
251 /**
252  * Interpolate the color in src at position x and y using bilinear
253  * interpolation.
254  */
interpolate_bilinear16(uint8_t * dst_color,const uint8_t * src,int src_linesize,int src_linestep,int x,int y,int max_x,int max_y)255 static uint8_t *interpolate_bilinear16(uint8_t *dst_color,
256                                        const uint8_t *src, int src_linesize, int src_linestep,
257                                        int x, int y, int max_x, int max_y)
258 {
259     int int_x = av_clip(x>>16, 0, max_x);
260     int int_y = av_clip(y>>16, 0, max_y);
261     int frac_x = x&0xFFFF;
262     int frac_y = y&0xFFFF;
263     int i;
264     int int_x1 = FFMIN(int_x+1, max_x);
265     int int_y1 = FFMIN(int_y+1, max_y);
266 
267     for (i = 0; i < src_linestep; i+=2) {
268         int s00 = AV_RL16(&src[src_linestep * int_x  + i + src_linesize * int_y ]);
269         int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]);
270         int s10 = AV_RL16(&src[src_linestep * int_x  + i + src_linesize * int_y1]);
271         int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]);
272         int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
273         int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
274 
275         AV_WL16(&dst_color[i], ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32);
276     }
277 
278     return dst_color;
279 }
280 
config_props(AVFilterLink * outlink)281 static int config_props(AVFilterLink *outlink)
282 {
283     AVFilterContext *ctx = outlink->src;
284     RotContext *rot = ctx->priv;
285     AVFilterLink *inlink = ctx->inputs[0];
286     const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
287     int ret;
288     double res;
289     char *expr;
290 
291     ret = ff_draw_init(&rot->draw, inlink->format, 0);
292     if (ret < 0)
293         return ret;
294     ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
295 
296     rot->hsub = pixdesc->log2_chroma_w;
297     rot->vsub = pixdesc->log2_chroma_h;
298 
299     if (pixdesc->comp[0].depth == 8)
300         rot->interpolate_bilinear = interpolate_bilinear8;
301     else
302         rot->interpolate_bilinear = interpolate_bilinear16;
303 
304     rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
305     rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
306     rot->var_values[VAR_HSUB] = 1<<rot->hsub;
307     rot->var_values[VAR_VSUB] = 1<<rot->vsub;
308     rot->var_values[VAR_N] = NAN;
309     rot->var_values[VAR_T] = NAN;
310     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
311     rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
312 
313     av_expr_free(rot->angle_expr);
314     rot->angle_expr = NULL;
315     if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
316                              func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
317         av_log(ctx, AV_LOG_ERROR,
318                "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
319         return ret;
320     }
321 
322 #define SET_SIZE_EXPR(name, opt_name) do {                                         \
323     ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str,                \
324                                  var_names, rot->var_values,                       \
325                                  func1_names, func1, NULL, NULL, rot, 0, ctx);     \
326     if (ret < 0 || isnan(res) || isinf(res) || res <= 0) {                         \
327         av_log(ctx, AV_LOG_ERROR,                                                  \
328                "Error parsing or evaluating expression for option %s: "            \
329                "invalid expression '%s' or non-positive or indefinite value %f\n", \
330                opt_name, expr, res);                                               \
331         return ret;                                                                \
332     }                                                                              \
333 } while (0)
334 
335     /* evaluate width and height */
336     av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
337                            func1_names, func1, NULL, NULL, rot, 0, ctx);
338     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
339     rot->outw = res + 0.5;
340     SET_SIZE_EXPR(outh, "out_h");
341     rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
342     rot->outh = res + 0.5;
343 
344     /* evaluate the width again, as it may depend on the evaluated output height */
345     SET_SIZE_EXPR(outw, "out_w");
346     rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
347     rot->outw = res + 0.5;
348 
349     /* compute number of planes */
350     rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
351     outlink->w = rot->outw;
352     outlink->h = rot->outh;
353     return 0;
354 }
355 
copy_elem(uint8_t * pout,const uint8_t * pin,int elem_size)356 static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
357 {
358     int v;
359     switch (elem_size) {
360     case 1:
361         *pout = *pin;
362         break;
363     case 2:
364         *((uint16_t *)pout) = *((uint16_t *)pin);
365         break;
366     case 3:
367         v = AV_RB24(pin);
368         AV_WB24(pout, v);
369         break;
370     case 4:
371         *((uint32_t *)pout) = *((uint32_t *)pin);
372         break;
373     default:
374         memcpy(pout, pin, elem_size);
375         break;
376     }
377 }
378 
simple_rotate_internal(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)379 static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
380 {
381     int i;
382     switch(angle) {
383     case 0:
384         memcpy(dst, src, elem_size * len);
385         break;
386     case 1:
387         for (i = 0; i<len; i++)
388             copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
389         break;
390     case 2:
391         for (i = 0; i<len; i++)
392             copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
393         break;
394     case 3:
395         for (i = 0; i<len; i++)
396             copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
397         break;
398     }
399 }
400 
simple_rotate(uint8_t * dst,const uint8_t * src,int src_linesize,int angle,int elem_size,int len)401 static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
402 {
403     switch(elem_size) {
404     case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
405     case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
406     case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
407     case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
408     default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
409     }
410 }
411 
filter_slice(AVFilterContext * ctx,void * arg,int job,int nb_jobs)412 static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
413 {
414     ThreadData *td = arg;
415     AVFrame *in = td->in;
416     AVFrame *out = td->out;
417     RotContext *rot = ctx->priv;
418     const int outw = td->outw, outh = td->outh;
419     const int inw = td->inw, inh = td->inh;
420     const int plane = td->plane;
421     const int xi = td->xi, yi = td->yi;
422     const int c = td->c, s = td->s;
423     const int start = (outh *  job   ) / nb_jobs;
424     const int end   = (outh * (job+1)) / nb_jobs;
425     int xprime = td->xprime + start * s;
426     int yprime = td->yprime + start * c;
427     int i, j, x, y;
428 
429     for (j = start; j < end; j++) {
430         x = xprime + xi + FIXP*(inw-1)/2;
431         y = yprime + yi + FIXP*(inh-1)/2;
432 
433         if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
434             simple_rotate(out->data[plane] + j * out->linesize[plane],
435                            in->data[plane] + j *  in->linesize[plane],
436                           in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
437         } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
438             simple_rotate(out->data[plane] + j * out->linesize[plane],
439                            in->data[plane] + j * rot->draw.pixelstep[plane],
440                           in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
441         } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
442             simple_rotate(out->data[plane] + j * out->linesize[plane],
443                            in->data[plane] + (outh-j-1) *  in->linesize[plane],
444                           in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
445         } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
446             simple_rotate(out->data[plane] + j * out->linesize[plane],
447                            in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
448                           in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
449         } else {
450 
451         for (i = 0; i < outw; i++) {
452             int32_t v;
453             int x1, y1;
454             uint8_t *pin, *pout;
455             x1 = x>>16;
456             y1 = y>>16;
457 
458             /* the out-of-range values avoid border artifacts */
459             if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
460                 uint8_t inp_inv[4]; /* interpolated input value */
461                 pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
462                 if (rot->use_bilinear) {
463                     pin = rot->interpolate_bilinear(inp_inv,
464                                                     in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
465                                                     x, y, inw-1, inh-1);
466                 } else {
467                     int x2 = av_clip(x1, 0, inw-1);
468                     int y2 = av_clip(y1, 0, inh-1);
469                     pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
470                 }
471                 switch (rot->draw.pixelstep[plane]) {
472                 case 1:
473                     *pout = *pin;
474                     break;
475                 case 2:
476                     v = AV_RL16(pin);
477                     AV_WL16(pout, v);
478                     break;
479                 case 3:
480                     v = AV_RB24(pin);
481                     AV_WB24(pout, v);
482                     break;
483                 case 4:
484                     *((uint32_t *)pout) = *((uint32_t *)pin);
485                     break;
486                 default:
487                     memcpy(pout, pin, rot->draw.pixelstep[plane]);
488                     break;
489                 }
490             }
491             x += c;
492             y -= s;
493         }
494         }
495         xprime += s;
496         yprime += c;
497     }
498 
499     return 0;
500 }
501 
filter_frame(AVFilterLink * inlink,AVFrame * in)502 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
503 {
504     AVFilterContext *ctx = inlink->dst;
505     AVFilterLink *outlink = ctx->outputs[0];
506     AVFrame *out;
507     RotContext *rot = ctx->priv;
508     int angle_int, s, c, plane;
509     double res;
510 
511     out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
512     if (!out) {
513         av_frame_free(&in);
514         return AVERROR(ENOMEM);
515     }
516     av_frame_copy_props(out, in);
517 
518     rot->var_values[VAR_N] = inlink->frame_count_out;
519     rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
520     rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
521 
522     av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
523            rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
524 
525     angle_int = res * FIXP * 16;
526     s = int_sin(angle_int);
527     c = int_sin(angle_int + INT_PI/2);
528 
529     /* fill background */
530     if (rot->fillcolor_enable)
531         ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
532                           0, 0, outlink->w, outlink->h);
533 
534     for (plane = 0; plane < rot->nb_planes; plane++) {
535         int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
536         int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
537         const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
538         const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
539         ThreadData td = { .in = in,   .out  = out,
540                           .inw  = AV_CEIL_RSHIFT(inlink->w, hsub),
541                           .inh  = AV_CEIL_RSHIFT(inlink->h, vsub),
542                           .outh = outh, .outw = outw,
543                           .xi = -(outw-1) * c / 2, .yi =  (outw-1) * s / 2,
544                           .xprime = -(outh-1) * s / 2,
545                           .yprime = -(outh-1) * c / 2,
546                           .plane = plane, .c = c, .s = s };
547 
548         ff_filter_execute(ctx, filter_slice, &td, NULL,
549                           FFMIN(outh, ff_filter_get_nb_threads(ctx)));
550     }
551 
552     av_frame_free(&in);
553     return ff_filter_frame(outlink, out);
554 }
555 
process_command(AVFilterContext * ctx,const char * cmd,const char * args,char * res,int res_len,int flags)556 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
557                            char *res, int res_len, int flags)
558 {
559     RotContext *rot = ctx->priv;
560     int ret;
561 
562     if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
563         AVExpr *old = rot->angle_expr;
564         ret = av_expr_parse(&rot->angle_expr, args, var_names,
565                             NULL, NULL, NULL, NULL, 0, ctx);
566         if (ret < 0) {
567             av_log(ctx, AV_LOG_ERROR,
568                    "Error when parsing the expression '%s' for angle command\n", args);
569             rot->angle_expr = old;
570             return ret;
571         }
572         av_expr_free(old);
573     } else
574         ret = AVERROR(ENOSYS);
575 
576     return ret;
577 }
578 
579 static const AVFilterPad rotate_inputs[] = {
580     {
581         .name         = "default",
582         .type         = AVMEDIA_TYPE_VIDEO,
583         .filter_frame = filter_frame,
584     },
585 };
586 
587 static const AVFilterPad rotate_outputs[] = {
588     {
589         .name         = "default",
590         .type         = AVMEDIA_TYPE_VIDEO,
591         .config_props = config_props,
592     },
593 };
594 
595 const AVFilter ff_vf_rotate = {
596     .name          = "rotate",
597     .description   = NULL_IF_CONFIG_SMALL("Rotate the input image."),
598     .priv_size     = sizeof(RotContext),
599     .init          = init,
600     .uninit        = uninit,
601     .process_command = process_command,
602     FILTER_INPUTS(rotate_inputs),
603     FILTER_OUTPUTS(rotate_outputs),
604     FILTER_PIXFMTS_ARRAY(pix_fmts),
605     .priv_class    = &rotate_class,
606     .flags         = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
607 };
608