1 /*
2 * Copyright (c) 2003-2013 Loren Merritt
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110 USA
17 */
18 /*
19 * tiny_ssim.c
20 * Computes the Structural Similarity Metric between two rawYV12 video files.
21 * original algorithm:
22 * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
23 * "Image quality assessment: From error visibility to structural similarity,"
24 * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
25 *
26 * To improve speed, this implementation uses the standard approximation of
27 * overlapped 8x8 block sums, rather than the original gaussian weights.
28 */
29
30 #include <inttypes.h>
31 #include <limits.h>
32 #include <math.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35
36 #define FFSWAP(type,a,b) do{type SWAP_tmp= b; b= a; a= SWAP_tmp;}while(0)
37 #define FFMIN(a,b) ((a) > (b) ? (b) : (a))
38
39 #define BIT_DEPTH 8
40 #define PIXEL_MAX ((1 << BIT_DEPTH)-1)
41 typedef uint8_t pixel;
42
43 /****************************************************************************
44 * structural similarity metric
45 ****************************************************************************/
ssim_4x4x2_core(const pixel * pix1,intptr_t stride1,const pixel * pix2,intptr_t stride2,int sums[2][4])46 static void ssim_4x4x2_core( const pixel *pix1, intptr_t stride1,
47 const pixel *pix2, intptr_t stride2,
48 int sums[2][4] )
49 {
50 int x,y,z;
51
52 for( z = 0; z < 2; z++ )
53 {
54 uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0;
55 for( y = 0; y < 4; y++ )
56 for( x = 0; x < 4; x++ )
57 {
58 int a = pix1[x+y*stride1];
59 int b = pix2[x+y*stride2];
60 s1 += a;
61 s2 += b;
62 ss += a*a;
63 ss += b*b;
64 s12 += a*b;
65 }
66 sums[z][0] = s1;
67 sums[z][1] = s2;
68 sums[z][2] = ss;
69 sums[z][3] = s12;
70 pix1 += 4;
71 pix2 += 4;
72 }
73 }
74
ssim_end1(int s1,int s2,int ss,int s12)75 static float ssim_end1( int s1, int s2, int ss, int s12 )
76 {
77 /* Maximum value for 10-bit is: ss*64 = (2^10-1)^2*16*4*64 = 4286582784, which will overflow in some cases.
78 * s1*s1, s2*s2, and s1*s2 also obtain this value for edge cases: ((2^10-1)*16*4)^2 = 4286582784.
79 * Maximum value for 9-bit is: ss*64 = (2^9-1)^2*16*4*64 = 1069551616, which will not overflow. */
80 #if BIT_DEPTH > 9
81 typedef float type;
82 static const float ssim_c1 = .01*.01*PIXEL_MAX*PIXEL_MAX*64;
83 static const float ssim_c2 = .03*.03*PIXEL_MAX*PIXEL_MAX*64*63;
84 #else
85 typedef int type;
86 static const int ssim_c1 = (int)(.01*.01*PIXEL_MAX*PIXEL_MAX*64 + .5);
87 static const int ssim_c2 = (int)(.03*.03*PIXEL_MAX*PIXEL_MAX*64*63 + .5);
88 #endif
89 type fs1 = s1;
90 type fs2 = s2;
91 type fss = ss;
92 type fs12 = s12;
93 type vars = fss*64 - fs1*fs1 - fs2*fs2;
94 type covar = fs12*64 - fs1*fs2;
95 return (float)(2*fs1*fs2 + ssim_c1) * (float)(2*covar + ssim_c2)
96 / ((float)(fs1*fs1 + fs2*fs2 + ssim_c1) * (float)(vars + ssim_c2));
97 }
98
ssim_end4(int sum0[5][4],int sum1[5][4],int width)99 static float ssim_end4( int sum0[5][4], int sum1[5][4], int width )
100 {
101 float ssim = 0.0;
102 int i;
103
104 for( i = 0; i < width; i++ )
105 ssim += ssim_end1( sum0[i][0] + sum0[i+1][0] + sum1[i][0] + sum1[i+1][0],
106 sum0[i][1] + sum0[i+1][1] + sum1[i][1] + sum1[i+1][1],
107 sum0[i][2] + sum0[i+1][2] + sum1[i][2] + sum1[i+1][2],
108 sum0[i][3] + sum0[i+1][3] + sum1[i][3] + sum1[i+1][3] );
109 return ssim;
110 }
111
ssim_plane(pixel * pix1,intptr_t stride1,pixel * pix2,intptr_t stride2,int width,int height,void * buf,int * cnt)112 float ssim_plane(
113 pixel *pix1, intptr_t stride1,
114 pixel *pix2, intptr_t stride2,
115 int width, int height, void *buf, int *cnt )
116 {
117 int z = 0;
118 int x, y;
119 float ssim = 0.0;
120 int (*sum0)[4] = buf;
121 int (*sum1)[4] = sum0 + (width >> 2) + 3;
122 width >>= 2;
123 height >>= 2;
124 for( y = 1; y < height; y++ )
125 {
126 for( ; z <= y; z++ )
127 {
128 FFSWAP( void*, sum0, sum1 );
129 for( x = 0; x < width; x+=2 )
130 ssim_4x4x2_core( &pix1[4*(x+z*stride1)], stride1, &pix2[4*(x+z*stride2)], stride2, &sum0[x] );
131 }
132 for( x = 0; x < width-1; x += 4 )
133 ssim += ssim_end4( sum0+x, sum1+x, FFMIN(4,width-x-1) );
134 }
135 // *cnt = (height-1) * (width-1);
136 return ssim / ((height-1) * (width-1));
137 }
138
139
ssd_plane(const uint8_t * pix1,const uint8_t * pix2,int size)140 uint64_t ssd_plane( const uint8_t *pix1, const uint8_t *pix2, int size )
141 {
142 uint64_t ssd = 0;
143 int i;
144 for( i=0; i<size; i++ )
145 {
146 int d = pix1[i] - pix2[i];
147 ssd += d*d;
148 }
149 return ssd;
150 }
151
ssd_to_psnr(uint64_t ssd,uint64_t denom)152 static double ssd_to_psnr( uint64_t ssd, uint64_t denom )
153 {
154 return -10*log((double)ssd/(denom*255*255))/log(10);
155 }
156
ssim_db(double ssim,double weight)157 static double ssim_db( double ssim, double weight )
158 {
159 return 10*(log(weight)/log(10)-log(weight-ssim)/log(10));
160 }
161
print_results(uint64_t ssd[3],double ssim[3],int frames,int w,int h)162 static void print_results(uint64_t ssd[3], double ssim[3], int frames, int w, int h)
163 {
164 printf( "PSNR Y:%.3f U:%.3f V:%.3f All:%.3f | ",
165 ssd_to_psnr( ssd[0], (uint64_t)frames*w*h ),
166 ssd_to_psnr( ssd[1], (uint64_t)frames*w*h/4 ),
167 ssd_to_psnr( ssd[2], (uint64_t)frames*w*h/4 ),
168 ssd_to_psnr( ssd[0] + ssd[1] + ssd[2], (uint64_t)frames*w*h*3/2 ) );
169 printf( "SSIM Y:%.5f U:%.5f V:%.5f All:%.5f (%.5f)",
170 ssim[0] / frames,
171 ssim[1] / frames,
172 ssim[2] / frames,
173 (ssim[0]*4 + ssim[1] + ssim[2]) / (frames*6),
174 ssim_db(ssim[0] * 4 + ssim[1] + ssim[2], frames*6));
175 }
176
main(int argc,char * argv[])177 int main(int argc, char* argv[])
178 {
179 FILE *f[2];
180 uint8_t *buf[2], *plane[2][3];
181 int *temp;
182 uint64_t ssd[3] = {0,0,0};
183 double ssim[3] = {0,0,0};
184 int frame_size, w, h;
185 int frames, seek;
186 int i;
187
188 if( argc<4 || 2 != sscanf(argv[3], "%dx%d", &w, &h) )
189 {
190 printf("tiny_ssim <file1.yuv> <file2.yuv> <width>x<height> [<seek>]\n");
191 return -1;
192 }
193
194 f[0] = fopen(argv[1], "rb");
195 f[1] = fopen(argv[2], "rb");
196 sscanf(argv[3], "%dx%d", &w, &h);
197
198 if (w<=0 || h<=0 || w*(int64_t)h >= INT_MAX/3 || 2LL*w+12 >= INT_MAX / sizeof(*temp)) {
199 fprintf(stderr, "Dimensions are too large, or invalid\n");
200 return -2;
201 }
202
203 frame_size = w*h*3LL/2;
204 for( i=0; i<2; i++ )
205 {
206 buf[i] = malloc(frame_size);
207 plane[i][0] = buf[i];
208 plane[i][1] = plane[i][0] + w*h;
209 plane[i][2] = plane[i][1] + w*h/4;
210 }
211 temp = malloc((2*w+12)*sizeof(*temp));
212 seek = argc<5 ? 0 : atoi(argv[4]);
213 fseek(f[seek<0], seek < 0 ? -seek : seek, SEEK_SET);
214
215 for( frames=0;; frames++ )
216 {
217 uint64_t ssd_one[3];
218 double ssim_one[3];
219 if( fread(buf[0], frame_size, 1, f[0]) != 1) break;
220 if( fread(buf[1], frame_size, 1, f[1]) != 1) break;
221 for( i=0; i<3; i++ )
222 {
223 ssd_one[i] = ssd_plane ( plane[0][i], plane[1][i], w*h>>2*!!i );
224 ssim_one[i] = ssim_plane( plane[0][i], w>>!!i,
225 plane[1][i], w>>!!i,
226 w>>!!i, h>>!!i, temp, NULL );
227 ssd[i] += ssd_one[i];
228 ssim[i] += ssim_one[i];
229 }
230
231 printf("Frame %d | ", frames);
232 print_results(ssd_one, ssim_one, 1, w, h);
233 printf(" \r");
234 fflush(stdout);
235 }
236
237 if( !frames ) return 0;
238
239 printf("Total %d frames | ", frames);
240 print_results(ssd, ssim, frames, w, h);
241 printf("\n");
242
243 return 0;
244 }
245