• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2005, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // The Google C++ Testing and Mocking Framework (Google Test)
31 //
32 // This header file declares functions and macros used internally by
33 // Google Test.  They are subject to change without notice.
34 
35 // IWYU pragma: private, include "gtest/gtest.h"
36 // IWYU pragma: friend gtest/.*
37 // IWYU pragma: friend gmock/.*
38 
39 #ifndef GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
40 #define GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
41 
42 #include "gtest/internal/gtest-port.h"
43 
44 #ifdef GTEST_OS_LINUX
45 #include <stdlib.h>
46 #include <sys/types.h>
47 #include <sys/wait.h>
48 #include <unistd.h>
49 #endif  // GTEST_OS_LINUX
50 
51 #if GTEST_HAS_EXCEPTIONS
52 #include <stdexcept>
53 #endif
54 
55 #include <ctype.h>
56 #include <float.h>
57 #include <string.h>
58 
59 #include <cstdint>
60 #include <functional>
61 #include <limits>
62 #include <map>
63 #include <set>
64 #include <string>
65 #include <type_traits>
66 #include <utility>
67 #include <vector>
68 
69 #include "gtest/gtest-message.h"
70 #include "gtest/internal/gtest-filepath.h"
71 #include "gtest/internal/gtest-string.h"
72 #include "gtest/internal/gtest-type-util.h"
73 
74 // Due to C++ preprocessor weirdness, we need double indirection to
75 // concatenate two tokens when one of them is __LINE__.  Writing
76 //
77 //   foo ## __LINE__
78 //
79 // will result in the token foo__LINE__, instead of foo followed by
80 // the current line number.  For more details, see
81 // https://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
82 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
83 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo##bar
84 
85 // Stringifies its argument.
86 // Work around a bug in visual studio which doesn't accept code like this:
87 //
88 //   #define GTEST_STRINGIFY_(name) #name
89 //   #define MACRO(a, b, c) ... GTEST_STRINGIFY_(a) ...
90 //   MACRO(, x, y)
91 //
92 // Complaining about the argument to GTEST_STRINGIFY_ being empty.
93 // This is allowed by the spec.
94 #define GTEST_STRINGIFY_HELPER_(name, ...) #name
95 #define GTEST_STRINGIFY_(...) GTEST_STRINGIFY_HELPER_(__VA_ARGS__, )
96 
97 namespace proto2 {
98 class MessageLite;
99 }
100 
101 namespace testing {
102 
103 // Forward declarations.
104 
105 class AssertionResult;  // Result of an assertion.
106 class Message;          // Represents a failure message.
107 class Test;             // Represents a test.
108 class TestInfo;         // Information about a test.
109 class TestPartResult;   // Result of a test part.
110 class UnitTest;         // A collection of test suites.
111 
112 template <typename T>
113 ::std::string PrintToString(const T& value);
114 
115 namespace internal {
116 
117 struct TraceInfo;    // Information about a trace point.
118 class TestInfoImpl;  // Opaque implementation of TestInfo
119 class UnitTestImpl;  // Opaque implementation of UnitTest
120 
121 // The text used in failure messages to indicate the start of the
122 // stack trace.
123 GTEST_API_ extern const char kStackTraceMarker[];
124 
125 // An IgnoredValue object can be implicitly constructed from ANY value.
126 class IgnoredValue {
127   struct Sink {};
128 
129  public:
130   // This constructor template allows any value to be implicitly
131   // converted to IgnoredValue.  The object has no data member and
132   // doesn't try to remember anything about the argument.  We
133   // deliberately omit the 'explicit' keyword in order to allow the
134   // conversion to be implicit.
135   // Disable the conversion if T already has a magical conversion operator.
136   // Otherwise we get ambiguity.
137   template <typename T,
138             typename std::enable_if<!std::is_convertible<T, Sink>::value,
139                                     int>::type = 0>
IgnoredValue(const T &)140   IgnoredValue(const T& /* ignored */) {}  // NOLINT(runtime/explicit)
141 };
142 
143 // Appends the user-supplied message to the Google-Test-generated message.
144 GTEST_API_ std::string AppendUserMessage(const std::string& gtest_msg,
145                                          const Message& user_msg);
146 
147 #if GTEST_HAS_EXCEPTIONS
148 
149 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
150     4275 /* an exported class was derived from a class that was not exported */)
151 
152 // This exception is thrown by (and only by) a failed Google Test
153 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
154 // are enabled).  We derive it from std::runtime_error, which is for
155 // errors presumably detectable only at run time.  Since
156 // std::runtime_error inherits from std::exception, many testing
157 // frameworks know how to extract and print the message inside it.
158 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
159  public:
160   explicit GoogleTestFailureException(const TestPartResult& failure);
161 };
162 
GTEST_DISABLE_MSC_WARNINGS_POP_()163 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4275
164 
165 #endif  // GTEST_HAS_EXCEPTIONS
166 
167 namespace edit_distance {
168 // Returns the optimal edits to go from 'left' to 'right'.
169 // All edits cost the same, with replace having lower priority than
170 // add/remove.
171 // Simple implementation of the Wagner-Fischer algorithm.
172 // See https://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
173 enum EditType { kMatch, kAdd, kRemove, kReplace };
174 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
175     const std::vector<size_t>& left, const std::vector<size_t>& right);
176 
177 // Same as above, but the input is represented as strings.
178 GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
179     const std::vector<std::string>& left,
180     const std::vector<std::string>& right);
181 
182 // Create a diff of the input strings in Unified diff format.
183 GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
184                                          const std::vector<std::string>& right,
185                                          size_t context = 2);
186 
187 }  // namespace edit_distance
188 
189 // Constructs and returns the message for an equality assertion
190 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
191 //
192 // The first four parameters are the expressions used in the assertion
193 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
194 // where foo is 5 and bar is 6, we have:
195 //
196 //   expected_expression: "foo"
197 //   actual_expression:   "bar"
198 //   expected_value:      "5"
199 //   actual_value:        "6"
200 //
201 // The ignoring_case parameter is true if and only if the assertion is a
202 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
203 // be inserted into the message.
204 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
205                                      const char* actual_expression,
206                                      const std::string& expected_value,
207                                      const std::string& actual_value,
208                                      bool ignoring_case);
209 
210 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
211 GTEST_API_ std::string GetBoolAssertionFailureMessage(
212     const AssertionResult& assertion_result, const char* expression_text,
213     const char* actual_predicate_value, const char* expected_predicate_value);
214 
215 // This template class represents an IEEE floating-point number
216 // (either single-precision or double-precision, depending on the
217 // template parameters).
218 //
219 // The purpose of this class is to do more sophisticated number
220 // comparison.  (Due to round-off error, etc, it's very unlikely that
221 // two floating-points will be equal exactly.  Hence a naive
222 // comparison by the == operation often doesn't work.)
223 //
224 // Format of IEEE floating-point:
225 //
226 //   The most-significant bit being the leftmost, an IEEE
227 //   floating-point looks like
228 //
229 //     sign_bit exponent_bits fraction_bits
230 //
231 //   Here, sign_bit is a single bit that designates the sign of the
232 //   number.
233 //
234 //   For float, there are 8 exponent bits and 23 fraction bits.
235 //
236 //   For double, there are 11 exponent bits and 52 fraction bits.
237 //
238 //   More details can be found at
239 //   https://en.wikipedia.org/wiki/IEEE_floating-point_standard.
240 //
241 // Template parameter:
242 //
243 //   RawType: the raw floating-point type (either float or double)
244 template <typename RawType>
245 class FloatingPoint {
246  public:
247   // Defines the unsigned integer type that has the same size as the
248   // floating point number.
249   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
250 
251   // Constants.
252 
253   // # of bits in a number.
254   static const size_t kBitCount = 8 * sizeof(RawType);
255 
256   // # of fraction bits in a number.
257   static const size_t kFractionBitCount =
258       std::numeric_limits<RawType>::digits - 1;
259 
260   // # of exponent bits in a number.
261   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
262 
263   // The mask for the sign bit.
264   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
265 
266   // The mask for the fraction bits.
267   static const Bits kFractionBitMask = ~static_cast<Bits>(0) >>
268                                        (kExponentBitCount + 1);
269 
270   // The mask for the exponent bits.
271   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
272 
273   // How many ULP's (Units in the Last Place) we want to tolerate when
274   // comparing two numbers.  The larger the value, the more error we
275   // allow.  A 0 value means that two numbers must be exactly the same
276   // to be considered equal.
277   //
278   // The maximum error of a single floating-point operation is 0.5
279   // units in the last place.  On Intel CPU's, all floating-point
280   // calculations are done with 80-bit precision, while double has 64
281   // bits.  Therefore, 4 should be enough for ordinary use.
282   //
283   // See the following article for more details on ULP:
284   // https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
285   static const uint32_t kMaxUlps = 4;
286 
287   // Constructs a FloatingPoint from a raw floating-point number.
288   //
289   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
290   // around may change its bits, although the new value is guaranteed
291   // to be also a NAN.  Therefore, don't expect this constructor to
292   // preserve the bits in x when x is a NAN.
FloatingPoint(const RawType & x)293   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
294 
295   // Static methods
296 
297   // Reinterprets a bit pattern as a floating-point number.
298   //
299   // This function is needed to test the AlmostEquals() method.
ReinterpretBits(const Bits bits)300   static RawType ReinterpretBits(const Bits bits) {
301     FloatingPoint fp(0);
302     fp.u_.bits_ = bits;
303     return fp.u_.value_;
304   }
305 
306   // Returns the floating-point number that represent positive infinity.
Infinity()307   static RawType Infinity() { return ReinterpretBits(kExponentBitMask); }
308 
309   // Non-static methods
310 
311   // Returns the bits that represents this number.
bits()312   const Bits& bits() const { return u_.bits_; }
313 
314   // Returns the exponent bits of this number.
exponent_bits()315   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
316 
317   // Returns the fraction bits of this number.
fraction_bits()318   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
319 
320   // Returns the sign bit of this number.
sign_bit()321   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
322 
323   // Returns true if and only if this is NAN (not a number).
is_nan()324   bool is_nan() const {
325     // It's a NAN if the exponent bits are all ones and the fraction
326     // bits are not entirely zeros.
327     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
328   }
329 
330   // Returns true if and only if this number is at most kMaxUlps ULP's away
331   // from rhs.  In particular, this function:
332   //
333   //   - returns false if either number is (or both are) NAN.
334   //   - treats really large numbers as almost equal to infinity.
335   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
AlmostEquals(const FloatingPoint & rhs)336   bool AlmostEquals(const FloatingPoint& rhs) const {
337     // The IEEE standard says that any comparison operation involving
338     // a NAN must return false.
339     if (is_nan() || rhs.is_nan()) return false;
340 
341     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <=
342            kMaxUlps;
343   }
344 
345  private:
346   // The data type used to store the actual floating-point number.
347   union FloatingPointUnion {
348     RawType value_;  // The raw floating-point number.
349     Bits bits_;      // The bits that represent the number.
350   };
351 
352   // Converts an integer from the sign-and-magnitude representation to
353   // the biased representation.  More precisely, let N be 2 to the
354   // power of (kBitCount - 1), an integer x is represented by the
355   // unsigned number x + N.
356   //
357   // For instance,
358   //
359   //   -N + 1 (the most negative number representable using
360   //          sign-and-magnitude) is represented by 1;
361   //   0      is represented by N; and
362   //   N - 1  (the biggest number representable using
363   //          sign-and-magnitude) is represented by 2N - 1.
364   //
365   // Read https://en.wikipedia.org/wiki/Signed_number_representations
366   // for more details on signed number representations.
SignAndMagnitudeToBiased(const Bits & sam)367   static Bits SignAndMagnitudeToBiased(const Bits& sam) {
368     if (kSignBitMask & sam) {
369       // sam represents a negative number.
370       return ~sam + 1;
371     } else {
372       // sam represents a positive number.
373       return kSignBitMask | sam;
374     }
375   }
376 
377   // Given two numbers in the sign-and-magnitude representation,
378   // returns the distance between them as an unsigned number.
DistanceBetweenSignAndMagnitudeNumbers(const Bits & sam1,const Bits & sam2)379   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits& sam1,
380                                                      const Bits& sam2) {
381     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
382     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
383     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
384   }
385 
386   FloatingPointUnion u_;
387 };
388 
389 // Typedefs the instances of the FloatingPoint template class that we
390 // care to use.
391 typedef FloatingPoint<float> Float;
392 typedef FloatingPoint<double> Double;
393 
394 // In order to catch the mistake of putting tests that use different
395 // test fixture classes in the same test suite, we need to assign
396 // unique IDs to fixture classes and compare them.  The TypeId type is
397 // used to hold such IDs.  The user should treat TypeId as an opaque
398 // type: the only operation allowed on TypeId values is to compare
399 // them for equality using the == operator.
400 typedef const void* TypeId;
401 
402 template <typename T>
403 class TypeIdHelper {
404  public:
405   // dummy_ must not have a const type.  Otherwise an overly eager
406   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
407   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
408   static bool dummy_;
409 };
410 
411 template <typename T>
412 bool TypeIdHelper<T>::dummy_ = false;
413 
414 // GetTypeId<T>() returns the ID of type T.  Different values will be
415 // returned for different types.  Calling the function twice with the
416 // same type argument is guaranteed to return the same ID.
417 template <typename T>
GetTypeId()418 TypeId GetTypeId() {
419   // The compiler is required to allocate a different
420   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
421   // the template.  Therefore, the address of dummy_ is guaranteed to
422   // be unique.
423   return &(TypeIdHelper<T>::dummy_);
424 }
425 
426 // Returns the type ID of ::testing::Test.  Always call this instead
427 // of GetTypeId< ::testing::Test>() to get the type ID of
428 // ::testing::Test, as the latter may give the wrong result due to a
429 // suspected linker bug when compiling Google Test as a Mac OS X
430 // framework.
431 GTEST_API_ TypeId GetTestTypeId();
432 
433 // Defines the abstract factory interface that creates instances
434 // of a Test object.
435 class TestFactoryBase {
436  public:
437   virtual ~TestFactoryBase() = default;
438 
439   // Creates a test instance to run. The instance is both created and destroyed
440   // within TestInfoImpl::Run()
441   virtual Test* CreateTest() = 0;
442 
443  protected:
TestFactoryBase()444   TestFactoryBase() {}
445 
446  private:
447   TestFactoryBase(const TestFactoryBase&) = delete;
448   TestFactoryBase& operator=(const TestFactoryBase&) = delete;
449 };
450 
451 // This class provides implementation of TestFactoryBase interface.
452 // It is used in TEST and TEST_F macros.
453 template <class TestClass>
454 class TestFactoryImpl : public TestFactoryBase {
455  public:
CreateTest()456   Test* CreateTest() override { return new TestClass; }
457 };
458 
459 #ifdef GTEST_OS_WINDOWS
460 
461 // Predicate-formatters for implementing the HRESULT checking macros
462 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
463 // We pass a long instead of HRESULT to avoid causing an
464 // include dependency for the HRESULT type.
465 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
466                                             long hr);  // NOLINT
467 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
468                                             long hr);  // NOLINT
469 
470 #endif  // GTEST_OS_WINDOWS
471 
472 // Types of SetUpTestSuite() and TearDownTestSuite() functions.
473 using SetUpTestSuiteFunc = void (*)();
474 using TearDownTestSuiteFunc = void (*)();
475 
476 struct CodeLocation {
CodeLocationCodeLocation477   CodeLocation(const std::string& a_file, int a_line)
478       : file(a_file), line(a_line) {}
479 
480   std::string file;
481   int line;
482 };
483 
484 //  Helper to identify which setup function for TestCase / TestSuite to call.
485 //  Only one function is allowed, either TestCase or TestSute but not both.
486 
487 // Utility functions to help SuiteApiResolver
488 using SetUpTearDownSuiteFuncType = void (*)();
489 
GetNotDefaultOrNull(SetUpTearDownSuiteFuncType a,SetUpTearDownSuiteFuncType def)490 inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull(
491     SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) {
492   return a == def ? nullptr : a;
493 }
494 
495 template <typename T>
496 //  Note that SuiteApiResolver inherits from T because
497 //  SetUpTestSuite()/TearDownTestSuite() could be protected. This way
498 //  SuiteApiResolver can access them.
499 struct SuiteApiResolver : T {
500   // testing::Test is only forward declared at this point. So we make it a
501   // dependent class for the compiler to be OK with it.
502   using Test =
503       typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type;
504 
GetSetUpCaseOrSuiteSuiteApiResolver505   static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename,
506                                                         int line_num) {
507 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
508     SetUpTearDownSuiteFuncType test_case_fp =
509         GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase);
510     SetUpTearDownSuiteFuncType test_suite_fp =
511         GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite);
512 
513     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
514         << "Test can not provide both SetUpTestSuite and SetUpTestCase, please "
515            "make sure there is only one present at "
516         << filename << ":" << line_num;
517 
518     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
519 #else
520     (void)(filename);
521     (void)(line_num);
522     return &T::SetUpTestSuite;
523 #endif
524   }
525 
GetTearDownCaseOrSuiteSuiteApiResolver526   static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename,
527                                                            int line_num) {
528 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
529     SetUpTearDownSuiteFuncType test_case_fp =
530         GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase);
531     SetUpTearDownSuiteFuncType test_suite_fp =
532         GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite);
533 
534     GTEST_CHECK_(!test_case_fp || !test_suite_fp)
535         << "Test can not provide both TearDownTestSuite and TearDownTestCase,"
536            " please make sure there is only one present at"
537         << filename << ":" << line_num;
538 
539     return test_case_fp != nullptr ? test_case_fp : test_suite_fp;
540 #else
541     (void)(filename);
542     (void)(line_num);
543     return &T::TearDownTestSuite;
544 #endif
545   }
546 };
547 
548 // Creates a new TestInfo object and registers it with Google Test;
549 // returns the created object.
550 //
551 // Arguments:
552 //
553 //   test_suite_name:  name of the test suite
554 //   name:             name of the test
555 //   type_param:       the name of the test's type parameter, or NULL if
556 //                     this is not a typed or a type-parameterized test.
557 //   value_param:      text representation of the test's value parameter,
558 //                     or NULL if this is not a type-parameterized test.
559 //   code_location:    code location where the test is defined
560 //   fixture_class_id: ID of the test fixture class
561 //   set_up_tc:        pointer to the function that sets up the test suite
562 //   tear_down_tc:     pointer to the function that tears down the test suite
563 //   factory:          pointer to the factory that creates a test object.
564 //                     The newly created TestInfo instance will assume
565 //                     ownership of the factory object.
566 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
567     const char* test_suite_name, const char* name, const char* type_param,
568     const char* value_param, CodeLocation code_location,
569     TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc,
570     TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory);
571 
572 // If *pstr starts with the given prefix, modifies *pstr to be right
573 // past the prefix and returns true; otherwise leaves *pstr unchanged
574 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
575 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
576 
577 GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
578 /* class A needs to have dll-interface to be used by clients of class B */)
579 
580 // State of the definition of a type-parameterized test suite.
581 class GTEST_API_ TypedTestSuitePState {
582  public:
TypedTestSuitePState()583   TypedTestSuitePState() : registered_(false) {}
584 
585   // Adds the given test name to defined_test_names_ and return true
586   // if the test suite hasn't been registered; otherwise aborts the
587   // program.
AddTestName(const char * file,int line,const char * case_name,const char * test_name)588   bool AddTestName(const char* file, int line, const char* case_name,
589                    const char* test_name) {
590     if (registered_) {
591       fprintf(stderr,
592               "%s Test %s must be defined before "
593               "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n",
594               FormatFileLocation(file, line).c_str(), test_name, case_name);
595       fflush(stderr);
596       posix::Abort();
597     }
598     registered_tests_.insert(
599         ::std::make_pair(test_name, CodeLocation(file, line)));
600     return true;
601   }
602 
TestExists(const std::string & test_name)603   bool TestExists(const std::string& test_name) const {
604     return registered_tests_.count(test_name) > 0;
605   }
606 
GetCodeLocation(const std::string & test_name)607   const CodeLocation& GetCodeLocation(const std::string& test_name) const {
608     RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name);
609     GTEST_CHECK_(it != registered_tests_.end());
610     return it->second;
611   }
612 
613   // Verifies that registered_tests match the test names in
614   // defined_test_names_; returns registered_tests if successful, or
615   // aborts the program otherwise.
616   const char* VerifyRegisteredTestNames(const char* test_suite_name,
617                                         const char* file, int line,
618                                         const char* registered_tests);
619 
620  private:
621   typedef ::std::map<std::string, CodeLocation, std::less<>> RegisteredTestsMap;
622 
623   bool registered_;
624   RegisteredTestsMap registered_tests_;
625 };
626 
627 //  Legacy API is deprecated but still available
628 #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_
629 using TypedTestCasePState = TypedTestSuitePState;
630 #endif  //  GTEST_REMOVE_LEGACY_TEST_CASEAPI_
631 
GTEST_DISABLE_MSC_WARNINGS_POP_()632 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251
633 
634 // Skips to the first non-space char after the first comma in 'str';
635 // returns NULL if no comma is found in 'str'.
636 inline const char* SkipComma(const char* str) {
637   const char* comma = strchr(str, ',');
638   if (comma == nullptr) {
639     return nullptr;
640   }
641   while (IsSpace(*(++comma))) {
642   }
643   return comma;
644 }
645 
646 // Returns the prefix of 'str' before the first comma in it; returns
647 // the entire string if it contains no comma.
GetPrefixUntilComma(const char * str)648 inline std::string GetPrefixUntilComma(const char* str) {
649   const char* comma = strchr(str, ',');
650   return comma == nullptr ? str : std::string(str, comma);
651 }
652 
653 // Splits a given string on a given delimiter, populating a given
654 // vector with the fields.
655 void SplitString(const ::std::string& str, char delimiter,
656                  ::std::vector<::std::string>* dest);
657 
658 // The default argument to the template below for the case when the user does
659 // not provide a name generator.
660 struct DefaultNameGenerator {
661   template <typename T>
GetNameDefaultNameGenerator662   static std::string GetName(int i) {
663     return StreamableToString(i);
664   }
665 };
666 
667 template <typename Provided = DefaultNameGenerator>
668 struct NameGeneratorSelector {
669   typedef Provided type;
670 };
671 
672 template <typename NameGenerator>
GenerateNamesRecursively(internal::None,std::vector<std::string> *,int)673 void GenerateNamesRecursively(internal::None, std::vector<std::string>*, int) {}
674 
675 template <typename NameGenerator, typename Types>
GenerateNamesRecursively(Types,std::vector<std::string> * result,int i)676 void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) {
677   result->push_back(NameGenerator::template GetName<typename Types::Head>(i));
678   GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result,
679                                           i + 1);
680 }
681 
682 template <typename NameGenerator, typename Types>
GenerateNames()683 std::vector<std::string> GenerateNames() {
684   std::vector<std::string> result;
685   GenerateNamesRecursively<NameGenerator>(Types(), &result, 0);
686   return result;
687 }
688 
689 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
690 // registers a list of type-parameterized tests with Google Test.  The
691 // return value is insignificant - we just need to return something
692 // such that we can call this function in a namespace scope.
693 //
694 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
695 // template parameter.  It's defined in gtest-type-util.h.
696 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
697 class TypeParameterizedTest {
698  public:
699   // 'index' is the index of the test in the type list 'Types'
700   // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite,
701   // Types).  Valid values for 'index' are [0, N - 1] where N is the
702   // length of Types.
703   static bool Register(const char* prefix, const CodeLocation& code_location,
704                        const char* case_name, const char* test_names, int index,
705                        const std::vector<std::string>& type_names =
706                            GenerateNames<DefaultNameGenerator, Types>()) {
707     typedef typename Types::Head Type;
708     typedef Fixture<Type> FixtureClass;
709     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
710 
711     // First, registers the first type-parameterized test in the type
712     // list.
713     MakeAndRegisterTestInfo(
714         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name +
715          "/" + type_names[static_cast<size_t>(index)])
716             .c_str(),
717         StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
718         GetTypeName<Type>().c_str(),
719         nullptr,  // No value parameter.
720         code_location, GetTypeId<FixtureClass>(),
721         SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite(
722             code_location.file.c_str(), code_location.line),
723         SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite(
724             code_location.file.c_str(), code_location.line),
725         new TestFactoryImpl<TestClass>);
726 
727     // Next, recurses (at compile time) with the tail of the type list.
728     return TypeParameterizedTest<Fixture, TestSel,
729                                  typename Types::Tail>::Register(prefix,
730                                                                  code_location,
731                                                                  case_name,
732                                                                  test_names,
733                                                                  index + 1,
734                                                                  type_names);
735   }
736 };
737 
738 // The base case for the compile time recursion.
739 template <GTEST_TEMPLATE_ Fixture, class TestSel>
740 class TypeParameterizedTest<Fixture, TestSel, internal::None> {
741  public:
742   static bool Register(const char* /*prefix*/, const CodeLocation&,
743                        const char* /*case_name*/, const char* /*test_names*/,
744                        int /*index*/,
745                        const std::vector<std::string>& =
746                            std::vector<std::string>() /*type_names*/) {
747     return true;
748   }
749 };
750 
751 GTEST_API_ void RegisterTypeParameterizedTestSuite(const char* test_suite_name,
752                                                    CodeLocation code_location);
753 GTEST_API_ void RegisterTypeParameterizedTestSuiteInstantiation(
754     const char* case_name);
755 
756 // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register()
757 // registers *all combinations* of 'Tests' and 'Types' with Google
758 // Test.  The return value is insignificant - we just need to return
759 // something such that we can call this function in a namespace scope.
760 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
761 class TypeParameterizedTestSuite {
762  public:
763   static bool Register(const char* prefix, CodeLocation code_location,
764                        const TypedTestSuitePState* state, const char* case_name,
765                        const char* test_names,
766                        const std::vector<std::string>& type_names =
767                            GenerateNames<DefaultNameGenerator, Types>()) {
768     RegisterTypeParameterizedTestSuiteInstantiation(case_name);
769     std::string test_name =
770         StripTrailingSpaces(GetPrefixUntilComma(test_names));
771     if (!state->TestExists(test_name)) {
772       fprintf(stderr, "Failed to get code location for test %s.%s at %s.",
773               case_name, test_name.c_str(),
774               FormatFileLocation(code_location.file.c_str(), code_location.line)
775                   .c_str());
776       fflush(stderr);
777       posix::Abort();
778     }
779     const CodeLocation& test_location = state->GetCodeLocation(test_name);
780 
781     typedef typename Tests::Head Head;
782 
783     // First, register the first test in 'Test' for each type in 'Types'.
784     TypeParameterizedTest<Fixture, Head, Types>::Register(
785         prefix, test_location, case_name, test_names, 0, type_names);
786 
787     // Next, recurses (at compile time) with the tail of the test list.
788     return TypeParameterizedTestSuite<Fixture, typename Tests::Tail,
789                                       Types>::Register(prefix, code_location,
790                                                        state, case_name,
791                                                        SkipComma(test_names),
792                                                        type_names);
793   }
794 };
795 
796 // The base case for the compile time recursion.
797 template <GTEST_TEMPLATE_ Fixture, typename Types>
798 class TypeParameterizedTestSuite<Fixture, internal::None, Types> {
799  public:
800   static bool Register(const char* /*prefix*/, const CodeLocation&,
801                        const TypedTestSuitePState* /*state*/,
802                        const char* /*case_name*/, const char* /*test_names*/,
803                        const std::vector<std::string>& =
804                            std::vector<std::string>() /*type_names*/) {
805     return true;
806   }
807 };
808 
809 // Returns the current OS stack trace as an std::string.
810 //
811 // The maximum number of stack frames to be included is specified by
812 // the gtest_stack_trace_depth flag.  The skip_count parameter
813 // specifies the number of top frames to be skipped, which doesn't
814 // count against the number of frames to be included.
815 //
816 // For example, if Foo() calls Bar(), which in turn calls
817 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
818 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
819 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(int skip_count);
820 
821 // Helpers for suppressing warnings on unreachable code or constant
822 // condition.
823 
824 // Always returns true.
825 GTEST_API_ bool AlwaysTrue();
826 
827 // Always returns false.
AlwaysFalse()828 inline bool AlwaysFalse() { return !AlwaysTrue(); }
829 
830 // Helper for suppressing false warning from Clang on a const char*
831 // variable declared in a conditional expression always being NULL in
832 // the else branch.
833 struct GTEST_API_ ConstCharPtr {
ConstCharPtrConstCharPtr834   ConstCharPtr(const char* str) : value(str) {}
835   operator bool() const { return true; }
836   const char* value;
837 };
838 
839 // Helper for declaring std::string within 'if' statement
840 // in pre C++17 build environment.
841 struct TrueWithString {
842   TrueWithString() = default;
TrueWithStringTrueWithString843   explicit TrueWithString(const char* str) : value(str) {}
TrueWithStringTrueWithString844   explicit TrueWithString(const std::string& str) : value(str) {}
845   explicit operator bool() const { return true; }
846   std::string value;
847 };
848 
849 // A simple Linear Congruential Generator for generating random
850 // numbers with a uniform distribution.  Unlike rand() and srand(), it
851 // doesn't use global state (and therefore can't interfere with user
852 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
853 // but it's good enough for our purposes.
854 class GTEST_API_ Random {
855  public:
856   static const uint32_t kMaxRange = 1u << 31;
857 
Random(uint32_t seed)858   explicit Random(uint32_t seed) : state_(seed) {}
859 
Reseed(uint32_t seed)860   void Reseed(uint32_t seed) { state_ = seed; }
861 
862   // Generates a random number from [0, range).  Crashes if 'range' is
863   // 0 or greater than kMaxRange.
864   uint32_t Generate(uint32_t range);
865 
866  private:
867   uint32_t state_;
868   Random(const Random&) = delete;
869   Random& operator=(const Random&) = delete;
870 };
871 
872 // Turns const U&, U&, const U, and U all into U.
873 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
874   typename std::remove_const<typename std::remove_reference<T>::type>::type
875 
876 // HasDebugStringAndShortDebugString<T>::value is a compile-time bool constant
877 // that's true if and only if T has methods DebugString() and ShortDebugString()
878 // that return std::string.
879 template <typename T>
880 class HasDebugStringAndShortDebugString {
881  private:
882   template <typename C>
883   static auto CheckDebugString(C*) -> typename std::is_same<
884       std::string, decltype(std::declval<const C>().DebugString())>::type;
885   template <typename>
886   static std::false_type CheckDebugString(...);
887 
888   template <typename C>
889   static auto CheckShortDebugString(C*) -> typename std::is_same<
890       std::string, decltype(std::declval<const C>().ShortDebugString())>::type;
891   template <typename>
892   static std::false_type CheckShortDebugString(...);
893 
894   using HasDebugStringType = decltype(CheckDebugString<T>(nullptr));
895   using HasShortDebugStringType = decltype(CheckShortDebugString<T>(nullptr));
896 
897  public:
898   static constexpr bool value =
899       HasDebugStringType::value && HasShortDebugStringType::value;
900 };
901 
902 #ifdef GTEST_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
903 template <typename T>
904 constexpr bool HasDebugStringAndShortDebugString<T>::value;
905 #endif
906 
907 // When the compiler sees expression IsContainerTest<C>(0), if C is an
908 // STL-style container class, the first overload of IsContainerTest
909 // will be viable (since both C::iterator* and C::const_iterator* are
910 // valid types and NULL can be implicitly converted to them).  It will
911 // be picked over the second overload as 'int' is a perfect match for
912 // the type of argument 0.  If C::iterator or C::const_iterator is not
913 // a valid type, the first overload is not viable, and the second
914 // overload will be picked.  Therefore, we can determine whether C is
915 // a container class by checking the type of IsContainerTest<C>(0).
916 // The value of the expression is insignificant.
917 //
918 // In C++11 mode we check the existence of a const_iterator and that an
919 // iterator is properly implemented for the container.
920 //
921 // For pre-C++11 that we look for both C::iterator and C::const_iterator.
922 // The reason is that C++ injects the name of a class as a member of the
923 // class itself (e.g. you can refer to class iterator as either
924 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
925 // only, for example, we would mistakenly think that a class named
926 // iterator is an STL container.
927 //
928 // Also note that the simpler approach of overloading
929 // IsContainerTest(typename C::const_iterator*) and
930 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
931 typedef int IsContainer;
932 template <class C,
933           class Iterator = decltype(::std::declval<const C&>().begin()),
934           class = decltype(::std::declval<const C&>().end()),
935           class = decltype(++::std::declval<Iterator&>()),
936           class = decltype(*::std::declval<Iterator>()),
937           class = typename C::const_iterator>
IsContainerTest(int)938 IsContainer IsContainerTest(int /* dummy */) {
939   return 0;
940 }
941 
942 typedef char IsNotContainer;
943 template <class C>
IsContainerTest(long)944 IsNotContainer IsContainerTest(long /* dummy */) {
945   return '\0';
946 }
947 
948 // Trait to detect whether a type T is a hash table.
949 // The heuristic used is that the type contains an inner type `hasher` and does
950 // not contain an inner type `reverse_iterator`.
951 // If the container is iterable in reverse, then order might actually matter.
952 template <typename T>
953 struct IsHashTable {
954  private:
955   template <typename U>
956   static char test(typename U::hasher*, typename U::reverse_iterator*);
957   template <typename U>
958   static int test(typename U::hasher*, ...);
959   template <typename U>
960   static char test(...);
961 
962  public:
963   static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int);
964 };
965 
966 template <typename T>
967 const bool IsHashTable<T>::value;
968 
969 template <typename C,
970           bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)>
971 struct IsRecursiveContainerImpl;
972 
973 template <typename C>
974 struct IsRecursiveContainerImpl<C, false> : public std::false_type {};
975 
976 // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to
977 // obey the same inconsistencies as the IsContainerTest, namely check if
978 // something is a container is relying on only const_iterator in C++11 and
979 // is relying on both const_iterator and iterator otherwise
980 template <typename C>
981 struct IsRecursiveContainerImpl<C, true> {
982   using value_type = decltype(*std::declval<typename C::const_iterator>());
983   using type =
984       std::is_same<typename std::remove_const<
985                        typename std::remove_reference<value_type>::type>::type,
986                    C>;
987 };
988 
989 // IsRecursiveContainer<Type> is a unary compile-time predicate that
990 // evaluates whether C is a recursive container type. A recursive container
991 // type is a container type whose value_type is equal to the container type
992 // itself. An example for a recursive container type is
993 // boost::filesystem::path, whose iterator has a value_type that is equal to
994 // boost::filesystem::path.
995 template <typename C>
996 struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {};
997 
998 // Utilities for native arrays.
999 
1000 // ArrayEq() compares two k-dimensional native arrays using the
1001 // elements' operator==, where k can be any integer >= 0.  When k is
1002 // 0, ArrayEq() degenerates into comparing a single pair of values.
1003 
1004 template <typename T, typename U>
1005 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
1006 
1007 // This generic version is used when k is 0.
1008 template <typename T, typename U>
1009 inline bool ArrayEq(const T& lhs, const U& rhs) {
1010   return lhs == rhs;
1011 }
1012 
1013 // This overload is used when k >= 1.
1014 template <typename T, typename U, size_t N>
1015 inline bool ArrayEq(const T (&lhs)[N], const U (&rhs)[N]) {
1016   return internal::ArrayEq(lhs, N, rhs);
1017 }
1018 
1019 // This helper reduces code bloat.  If we instead put its logic inside
1020 // the previous ArrayEq() function, arrays with different sizes would
1021 // lead to different copies of the template code.
1022 template <typename T, typename U>
1023 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
1024   for (size_t i = 0; i != size; i++) {
1025     if (!internal::ArrayEq(lhs[i], rhs[i])) return false;
1026   }
1027   return true;
1028 }
1029 
1030 // Finds the first element in the iterator range [begin, end) that
1031 // equals elem.  Element may be a native array type itself.
1032 template <typename Iter, typename Element>
1033 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
1034   for (Iter it = begin; it != end; ++it) {
1035     if (internal::ArrayEq(*it, elem)) return it;
1036   }
1037   return end;
1038 }
1039 
1040 // CopyArray() copies a k-dimensional native array using the elements'
1041 // operator=, where k can be any integer >= 0.  When k is 0,
1042 // CopyArray() degenerates into copying a single value.
1043 
1044 template <typename T, typename U>
1045 void CopyArray(const T* from, size_t size, U* to);
1046 
1047 // This generic version is used when k is 0.
1048 template <typename T, typename U>
1049 inline void CopyArray(const T& from, U* to) {
1050   *to = from;
1051 }
1052 
1053 // This overload is used when k >= 1.
1054 template <typename T, typename U, size_t N>
1055 inline void CopyArray(const T (&from)[N], U (*to)[N]) {
1056   internal::CopyArray(from, N, *to);
1057 }
1058 
1059 // This helper reduces code bloat.  If we instead put its logic inside
1060 // the previous CopyArray() function, arrays with different sizes
1061 // would lead to different copies of the template code.
1062 template <typename T, typename U>
1063 void CopyArray(const T* from, size_t size, U* to) {
1064   for (size_t i = 0; i != size; i++) {
1065     internal::CopyArray(from[i], to + i);
1066   }
1067 }
1068 
1069 // The relation between an NativeArray object (see below) and the
1070 // native array it represents.
1071 // We use 2 different structs to allow non-copyable types to be used, as long
1072 // as RelationToSourceReference() is passed.
1073 struct RelationToSourceReference {};
1074 struct RelationToSourceCopy {};
1075 
1076 // Adapts a native array to a read-only STL-style container.  Instead
1077 // of the complete STL container concept, this adaptor only implements
1078 // members useful for Google Mock's container matchers.  New members
1079 // should be added as needed.  To simplify the implementation, we only
1080 // support Element being a raw type (i.e. having no top-level const or
1081 // reference modifier).  It's the client's responsibility to satisfy
1082 // this requirement.  Element can be an array type itself (hence
1083 // multi-dimensional arrays are supported).
1084 template <typename Element>
1085 class NativeArray {
1086  public:
1087   // STL-style container typedefs.
1088   typedef Element value_type;
1089   typedef Element* iterator;
1090   typedef const Element* const_iterator;
1091 
1092   // Constructs from a native array. References the source.
1093   NativeArray(const Element* array, size_t count, RelationToSourceReference) {
1094     InitRef(array, count);
1095   }
1096 
1097   // Constructs from a native array. Copies the source.
1098   NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
1099     InitCopy(array, count);
1100   }
1101 
1102   // Copy constructor.
1103   NativeArray(const NativeArray& rhs) {
1104     (this->*rhs.clone_)(rhs.array_, rhs.size_);
1105   }
1106 
1107   ~NativeArray() {
1108     if (clone_ != &NativeArray::InitRef) delete[] array_;
1109   }
1110 
1111   // STL-style container methods.
1112   size_t size() const { return size_; }
1113   const_iterator begin() const { return array_; }
1114   const_iterator end() const { return array_ + size_; }
1115   bool operator==(const NativeArray& rhs) const {
1116     return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin());
1117   }
1118 
1119  private:
1120   static_assert(!std::is_const<Element>::value, "Type must not be const");
1121   static_assert(!std::is_reference<Element>::value,
1122                 "Type must not be a reference");
1123 
1124   // Initializes this object with a copy of the input.
1125   void InitCopy(const Element* array, size_t a_size) {
1126     Element* const copy = new Element[a_size];
1127     CopyArray(array, a_size, copy);
1128     array_ = copy;
1129     size_ = a_size;
1130     clone_ = &NativeArray::InitCopy;
1131   }
1132 
1133   // Initializes this object with a reference of the input.
1134   void InitRef(const Element* array, size_t a_size) {
1135     array_ = array;
1136     size_ = a_size;
1137     clone_ = &NativeArray::InitRef;
1138   }
1139 
1140   const Element* array_;
1141   size_t size_;
1142   void (NativeArray::*clone_)(const Element*, size_t);
1143 };
1144 
1145 // Backport of std::index_sequence.
1146 template <size_t... Is>
1147 struct IndexSequence {
1148   using type = IndexSequence;
1149 };
1150 
1151 // Double the IndexSequence, and one if plus_one is true.
1152 template <bool plus_one, typename T, size_t sizeofT>
1153 struct DoubleSequence;
1154 template <size_t... I, size_t sizeofT>
1155 struct DoubleSequence<true, IndexSequence<I...>, sizeofT> {
1156   using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>;
1157 };
1158 template <size_t... I, size_t sizeofT>
1159 struct DoubleSequence<false, IndexSequence<I...>, sizeofT> {
1160   using type = IndexSequence<I..., (sizeofT + I)...>;
1161 };
1162 
1163 // Backport of std::make_index_sequence.
1164 // It uses O(ln(N)) instantiation depth.
1165 template <size_t N>
1166 struct MakeIndexSequenceImpl
1167     : DoubleSequence<N % 2 == 1, typename MakeIndexSequenceImpl<N / 2>::type,
1168                      N / 2>::type {};
1169 
1170 template <>
1171 struct MakeIndexSequenceImpl<0> : IndexSequence<> {};
1172 
1173 template <size_t N>
1174 using MakeIndexSequence = typename MakeIndexSequenceImpl<N>::type;
1175 
1176 template <typename... T>
1177 using IndexSequenceFor = typename MakeIndexSequence<sizeof...(T)>::type;
1178 
1179 template <size_t>
1180 struct Ignore {
1181   Ignore(...);  // NOLINT
1182 };
1183 
1184 template <typename>
1185 struct ElemFromListImpl;
1186 template <size_t... I>
1187 struct ElemFromListImpl<IndexSequence<I...>> {
1188   // We make Ignore a template to solve a problem with MSVC.
1189   // A non-template Ignore would work fine with `decltype(Ignore(I))...`, but
1190   // MSVC doesn't understand how to deal with that pack expansion.
1191   // Use `0 * I` to have a single instantiation of Ignore.
1192   template <typename R>
1193   static R Apply(Ignore<0 * I>..., R (*)(), ...);
1194 };
1195 
1196 template <size_t N, typename... T>
1197 struct ElemFromList {
1198   using type =
1199       decltype(ElemFromListImpl<typename MakeIndexSequence<N>::type>::Apply(
1200           static_cast<T (*)()>(nullptr)...));
1201 };
1202 
1203 struct FlatTupleConstructTag {};
1204 
1205 template <typename... T>
1206 class FlatTuple;
1207 
1208 template <typename Derived, size_t I>
1209 struct FlatTupleElemBase;
1210 
1211 template <typename... T, size_t I>
1212 struct FlatTupleElemBase<FlatTuple<T...>, I> {
1213   using value_type = typename ElemFromList<I, T...>::type;
1214   FlatTupleElemBase() = default;
1215   template <typename Arg>
1216   explicit FlatTupleElemBase(FlatTupleConstructTag, Arg&& t)
1217       : value(std::forward<Arg>(t)) {}
1218   value_type value;
1219 };
1220 
1221 template <typename Derived, typename Idx>
1222 struct FlatTupleBase;
1223 
1224 template <size_t... Idx, typename... T>
1225 struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>>
1226     : FlatTupleElemBase<FlatTuple<T...>, Idx>... {
1227   using Indices = IndexSequence<Idx...>;
1228   FlatTupleBase() = default;
1229   template <typename... Args>
1230   explicit FlatTupleBase(FlatTupleConstructTag, Args&&... args)
1231       : FlatTupleElemBase<FlatTuple<T...>, Idx>(FlatTupleConstructTag{},
1232                                                 std::forward<Args>(args))... {}
1233 
1234   template <size_t I>
1235   const typename ElemFromList<I, T...>::type& Get() const {
1236     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1237   }
1238 
1239   template <size_t I>
1240   typename ElemFromList<I, T...>::type& Get() {
1241     return FlatTupleElemBase<FlatTuple<T...>, I>::value;
1242   }
1243 
1244   template <typename F>
1245   auto Apply(F&& f) -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1246     return std::forward<F>(f)(Get<Idx>()...);
1247   }
1248 
1249   template <typename F>
1250   auto Apply(F&& f) const -> decltype(std::forward<F>(f)(this->Get<Idx>()...)) {
1251     return std::forward<F>(f)(Get<Idx>()...);
1252   }
1253 };
1254 
1255 // Analog to std::tuple but with different tradeoffs.
1256 // This class minimizes the template instantiation depth, thus allowing more
1257 // elements than std::tuple would. std::tuple has been seen to require an
1258 // instantiation depth of more than 10x the number of elements in some
1259 // implementations.
1260 // FlatTuple and ElemFromList are not recursive and have a fixed depth
1261 // regardless of T...
1262 // MakeIndexSequence, on the other hand, it is recursive but with an
1263 // instantiation depth of O(ln(N)).
1264 template <typename... T>
1265 class FlatTuple
1266     : private FlatTupleBase<FlatTuple<T...>,
1267                             typename MakeIndexSequence<sizeof...(T)>::type> {
1268   using Indices = typename FlatTupleBase<
1269       FlatTuple<T...>, typename MakeIndexSequence<sizeof...(T)>::type>::Indices;
1270 
1271  public:
1272   FlatTuple() = default;
1273   template <typename... Args>
1274   explicit FlatTuple(FlatTupleConstructTag tag, Args&&... args)
1275       : FlatTuple::FlatTupleBase(tag, std::forward<Args>(args)...) {}
1276 
1277   using FlatTuple::FlatTupleBase::Apply;
1278   using FlatTuple::FlatTupleBase::Get;
1279 };
1280 
1281 // Utility functions to be called with static_assert to induce deprecation
1282 // warnings.
1283 GTEST_INTERNAL_DEPRECATED(
1284     "INSTANTIATE_TEST_CASE_P is deprecated, please use "
1285     "INSTANTIATE_TEST_SUITE_P")
1286 constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; }
1287 
1288 GTEST_INTERNAL_DEPRECATED(
1289     "TYPED_TEST_CASE_P is deprecated, please use "
1290     "TYPED_TEST_SUITE_P")
1291 constexpr bool TypedTestCase_P_IsDeprecated() { return true; }
1292 
1293 GTEST_INTERNAL_DEPRECATED(
1294     "TYPED_TEST_CASE is deprecated, please use "
1295     "TYPED_TEST_SUITE")
1296 constexpr bool TypedTestCaseIsDeprecated() { return true; }
1297 
1298 GTEST_INTERNAL_DEPRECATED(
1299     "REGISTER_TYPED_TEST_CASE_P is deprecated, please use "
1300     "REGISTER_TYPED_TEST_SUITE_P")
1301 constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; }
1302 
1303 GTEST_INTERNAL_DEPRECATED(
1304     "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use "
1305     "INSTANTIATE_TYPED_TEST_SUITE_P")
1306 constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; }
1307 
1308 }  // namespace internal
1309 }  // namespace testing
1310 
1311 namespace std {
1312 // Some standard library implementations use `struct tuple_size` and some use
1313 // `class tuple_size`. Clang warns about the mismatch.
1314 // https://reviews.llvm.org/D55466
1315 #ifdef __clang__
1316 #pragma clang diagnostic push
1317 #pragma clang diagnostic ignored "-Wmismatched-tags"
1318 #endif
1319 template <typename... Ts>
1320 struct tuple_size<testing::internal::FlatTuple<Ts...>>
1321     : std::integral_constant<size_t, sizeof...(Ts)> {};
1322 #ifdef __clang__
1323 #pragma clang diagnostic pop
1324 #endif
1325 }  // namespace std
1326 
1327 #define GTEST_MESSAGE_AT_(file, line, message, result_type)             \
1328   ::testing::internal::AssertHelper(result_type, file, line, message) = \
1329       ::testing::Message()
1330 
1331 #define GTEST_MESSAGE_(message, result_type) \
1332   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
1333 
1334 #define GTEST_FATAL_FAILURE_(message) \
1335   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
1336 
1337 #define GTEST_NONFATAL_FAILURE_(message) \
1338   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
1339 
1340 #define GTEST_SUCCESS_(message) \
1341   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
1342 
1343 #define GTEST_SKIP_(message) \
1344   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip)
1345 
1346 // Suppress MSVC warning 4072 (unreachable code) for the code following
1347 // statement if it returns or throws (or doesn't return or throw in some
1348 // situations).
1349 // NOTE: The "else" is important to keep this expansion to prevent a top-level
1350 // "else" from attaching to our "if".
1351 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
1352   if (::testing::internal::AlwaysTrue()) {                        \
1353     statement;                                                    \
1354   } else                     /* NOLINT */                         \
1355     static_assert(true, "")  // User must have a semicolon after expansion.
1356 
1357 #if GTEST_HAS_EXCEPTIONS
1358 
1359 namespace testing {
1360 namespace internal {
1361 
1362 class NeverThrown {
1363  public:
1364   const char* what() const noexcept {
1365     return "this exception should never be thrown";
1366   }
1367 };
1368 
1369 }  // namespace internal
1370 }  // namespace testing
1371 
1372 #if GTEST_HAS_RTTI
1373 
1374 #define GTEST_EXCEPTION_TYPE_(e) ::testing::internal::GetTypeName(typeid(e))
1375 
1376 #else  // GTEST_HAS_RTTI
1377 
1378 #define GTEST_EXCEPTION_TYPE_(e) \
1379   std::string { "an std::exception-derived error" }
1380 
1381 #endif  // GTEST_HAS_RTTI
1382 
1383 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)   \
1384   catch (typename std::conditional<                                            \
1385          std::is_same<typename std::remove_cv<typename std::remove_reference<  \
1386                           expected_exception>::type>::type,                    \
1387                       std::exception>::value,                                  \
1388          const ::testing::internal::NeverThrown&, const std::exception&>::type \
1389              e) {                                                              \
1390     gtest_msg.value = "Expected: " #statement                                  \
1391                       " throws an exception of type " #expected_exception      \
1392                       ".\n  Actual: it throws ";                               \
1393     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                               \
1394     gtest_msg.value += " with description \"";                                 \
1395     gtest_msg.value += e.what();                                               \
1396     gtest_msg.value += "\".";                                                  \
1397     goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);                \
1398   }
1399 
1400 #else  // GTEST_HAS_EXCEPTIONS
1401 
1402 #define GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)
1403 
1404 #endif  // GTEST_HAS_EXCEPTIONS
1405 
1406 #define GTEST_TEST_THROW_(statement, expected_exception, fail)              \
1407   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                             \
1408   if (::testing::internal::TrueWithString gtest_msg{}) {                    \
1409     bool gtest_caught_expected = false;                                     \
1410     try {                                                                   \
1411       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);            \
1412     } catch (expected_exception const&) {                                   \
1413       gtest_caught_expected = true;                                         \
1414     }                                                                       \
1415     GTEST_TEST_THROW_CATCH_STD_EXCEPTION_(statement, expected_exception)    \
1416     catch (...) {                                                           \
1417       gtest_msg.value = "Expected: " #statement                             \
1418                         " throws an exception of type " #expected_exception \
1419                         ".\n  Actual: it throws a different type.";         \
1420       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1421     }                                                                       \
1422     if (!gtest_caught_expected) {                                           \
1423       gtest_msg.value = "Expected: " #statement                             \
1424                         " throws an exception of type " #expected_exception \
1425                         ".\n  Actual: it throws nothing.";                  \
1426       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__);           \
1427     }                                                                       \
1428   } else /*NOLINT*/                                                         \
1429     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__)                   \
1430         : fail(gtest_msg.value.c_str())
1431 
1432 #if GTEST_HAS_EXCEPTIONS
1433 
1434 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                \
1435   catch (std::exception const& e) {                               \
1436     gtest_msg.value = "it throws ";                               \
1437     gtest_msg.value += GTEST_EXCEPTION_TYPE_(e);                  \
1438     gtest_msg.value += " with description \"";                    \
1439     gtest_msg.value += e.what();                                  \
1440     gtest_msg.value += "\".";                                     \
1441     goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
1442   }
1443 
1444 #else  // GTEST_HAS_EXCEPTIONS
1445 
1446 #define GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()
1447 
1448 #endif  // GTEST_HAS_EXCEPTIONS
1449 
1450 #define GTEST_TEST_NO_THROW_(statement, fail)                            \
1451   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                          \
1452   if (::testing::internal::TrueWithString gtest_msg{}) {                 \
1453     try {                                                                \
1454       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);         \
1455     }                                                                    \
1456     GTEST_TEST_NO_THROW_CATCH_STD_EXCEPTION_()                           \
1457     catch (...) {                                                        \
1458       gtest_msg.value = "it throws.";                                    \
1459       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__);      \
1460     }                                                                    \
1461   } else                                                                 \
1462     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__)              \
1463         : fail(("Expected: " #statement " doesn't throw an exception.\n" \
1464                 "  Actual: " +                                           \
1465                 gtest_msg.value)                                         \
1466                    .c_str())
1467 
1468 #define GTEST_TEST_ANY_THROW_(statement, fail)                       \
1469   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                      \
1470   if (::testing::internal::AlwaysTrue()) {                           \
1471     bool gtest_caught_any = false;                                   \
1472     try {                                                            \
1473       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);     \
1474     } catch (...) {                                                  \
1475       gtest_caught_any = true;                                       \
1476     }                                                                \
1477     if (!gtest_caught_any) {                                         \
1478       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
1479     }                                                                \
1480   } else                                                             \
1481     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__)         \
1482         : fail("Expected: " #statement                               \
1483                " throws an exception.\n"                             \
1484                "  Actual: it doesn't.")
1485 
1486 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
1487 // either a boolean expression or an AssertionResult. text is a textual
1488 // representation of expression as it was passed into the EXPECT_TRUE.
1489 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
1490   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                       \
1491   if (const ::testing::AssertionResult gtest_ar_ =                    \
1492           ::testing::AssertionResult(expression))                     \
1493     ;                                                                 \
1494   else                                                                \
1495     fail(::testing::internal::GetBoolAssertionFailureMessage(         \
1496              gtest_ar_, text, #actual, #expected)                     \
1497              .c_str())
1498 
1499 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail)               \
1500   GTEST_AMBIGUOUS_ELSE_BLOCKER_                                     \
1501   if (::testing::internal::AlwaysTrue()) {                          \
1502     const ::testing::internal::HasNewFatalFailureHelper             \
1503         gtest_fatal_failure_checker;                                \
1504     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement);      \
1505     if (gtest_fatal_failure_checker.has_new_fatal_failure()) {      \
1506       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
1507     }                                                               \
1508   } else /* NOLINT */                                               \
1509     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__)         \
1510         : fail("Expected: " #statement                              \
1511                " doesn't generate new fatal "                       \
1512                "failures in the current thread.\n"                  \
1513                "  Actual: it does.")
1514 
1515 // Expands to the name of the class that implements the given test.
1516 #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \
1517   test_suite_name##_##test_name##_Test
1518 
1519 // Helper macro for defining tests.
1520 #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id)       \
1521   static_assert(sizeof(GTEST_STRINGIFY_(test_suite_name)) > 1,                 \
1522                 "test_suite_name must not be empty");                          \
1523   static_assert(sizeof(GTEST_STRINGIFY_(test_name)) > 1,                       \
1524                 "test_name must not be empty");                                \
1525   class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                     \
1526       : public parent_class {                                                  \
1527    public:                                                                     \
1528     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() = default;            \
1529     ~GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() override = default;  \
1530     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1531     (const GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &) = delete;     \
1532     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1533         const GTEST_TEST_CLASS_NAME_(test_suite_name,                          \
1534                                      test_name) &) = delete; /* NOLINT */      \
1535     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)                         \
1536     (GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) &&) noexcept = delete; \
1537     GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) & operator=(            \
1538         GTEST_TEST_CLASS_NAME_(test_suite_name,                                \
1539                                test_name) &&) noexcept = delete; /* NOLINT */  \
1540                                                                                \
1541    private:                                                                    \
1542     void TestBody() override;                                                  \
1543     static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;      \
1544   };                                                                           \
1545                                                                                \
1546   ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name,           \
1547                                                     test_name)::test_info_ =   \
1548       ::testing::internal::MakeAndRegisterTestInfo(                            \
1549           #test_suite_name, #test_name, nullptr, nullptr,                      \
1550           ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id),  \
1551           ::testing::internal::SuiteApiResolver<                               \
1552               parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__),          \
1553           ::testing::internal::SuiteApiResolver<                               \
1554               parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__),       \
1555           new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_(     \
1556               test_suite_name, test_name)>);                                   \
1557   void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody()
1558 
1559 #endif  // GOOGLETEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
1560