• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/numbers/fast-dtoa.h"
6 
7 #include <stdint.h>
8 
9 #include "src/base/logging.h"
10 #include "src/base/numbers/cached-powers.h"
11 #include "src/base/numbers/diy-fp.h"
12 #include "src/base/numbers/double.h"
13 #include "src/base/v8-fallthrough.h"
14 
15 namespace v8 {
16 namespace base {
17 
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26 
27 // Adjusts the last digit of the generated number, and screens out generated
28 // solutions that may be inaccurate. A solution may be inaccurate if it is
29 // outside the safe interval, or if we ctannot prove that it is closer to the
30 // input than a neighboring representation of the same length.
31 //
32 // Input: * buffer containing the digits of too_high / 10^kappa
33 //        * the buffer's length
34 //        * distance_too_high_w == (too_high - w).f() * unit
35 //        * unsafe_interval == (too_high - too_low).f() * unit
36 //        * rest = (too_high - buffer * 10^kappa).f() * unit
37 //        * ten_kappa = 10^kappa * unit
38 //        * unit = the common multiplier
39 // Output: returns true if the buffer is guaranteed to contain the closest
40 //    representable number to the input.
41 //  Modifies the generated digits in the buffer to approach (round towards) w.
RoundWeed(Vector<char> buffer,int length,uint64_t distance_too_high_w,uint64_t unsafe_interval,uint64_t rest,uint64_t ten_kappa,uint64_t unit)42 static bool RoundWeed(Vector<char> buffer, int length,
43                       uint64_t distance_too_high_w, uint64_t unsafe_interval,
44                       uint64_t rest, uint64_t ten_kappa, uint64_t unit) {
45   uint64_t small_distance = distance_too_high_w - unit;
46   uint64_t big_distance = distance_too_high_w + unit;
47   // Let w_low  = too_high - big_distance, and
48   //     w_high = too_high - small_distance.
49   // Note: w_low < w < w_high
50   //
51   // The real w (* unit) must lie somewhere inside the interval
52   // ]w_low; w_high[ (often written as "(w_low; w_high)")
53 
54   // Basically the buffer currently contains a number in the unsafe interval
55   // ]too_low; too_high[ with too_low < w < too_high
56   //
57   //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
58   //                     ^v 1 unit            ^      ^                 ^      ^
59   //  boundary_high ---------------------     .      .                 .      .
60   //                     ^v 1 unit            .      .                 .      .
61   //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
62   //                                          .      .         ^       .      .
63   //                                          .  big_distance  .       .      .
64   //                                          .      .         .       .    rest
65   //                              small_distance     .         .       .      .
66   //                                          v      .         .       .      .
67   //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
68   //                     ^v 1 unit                   .         .       .      .
69   //  w ----------------------------------------     .         .       .      .
70   //                     ^v 1 unit                   v         .       .      .
71   //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
72   //                                                           .       .      v
73   //  buffer --------------------------------------------------+-------+--------
74   //                                                           .       .
75   //                                                  safe_interval    .
76   //                                                           v       .
77   //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
78   //                     ^v 1 unit                                     .
79   //  boundary_low -------------------------                     unsafe_interval
80   //                     ^v 1 unit                                     v
81   //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
82   //
83   //
84   // Note that the value of buffer could lie anywhere inside the range too_low
85   // to too_high.
86   //
87   // boundary_low, boundary_high and w are approximations of the real boundaries
88   // and v (the input number). They are guaranteed to be precise up to one unit.
89   // In fact the error is guaranteed to be strictly less than one unit.
90   //
91   // Anything that lies outside the unsafe interval is guaranteed not to round
92   // to v when read again.
93   // Anything that lies inside the safe interval is guaranteed to round to v
94   // when read again.
95   // If the number inside the buffer lies inside the unsafe interval but not
96   // inside the safe interval then we simply do not know and bail out (returning
97   // false).
98   //
99   // Similarly we have to take into account the imprecision of 'w' when finding
100   // the closest representation of 'w'. If we have two potential
101   // representations, and one is closer to both w_low and w_high, then we know
102   // it is closer to the actual value v.
103   //
104   // By generating the digits of too_high we got the largest (closest to
105   // too_high) buffer that is still in the unsafe interval. In the case where
106   // w_high < buffer < too_high we try to decrement the buffer.
107   // This way the buffer approaches (rounds towards) w.
108   // There are 3 conditions that stop the decrementation process:
109   //   1) the buffer is already below w_high
110   //   2) decrementing the buffer would make it leave the unsafe interval
111   //   3) decrementing the buffer would yield a number below w_high and farther
112   //      away than the current number. In other words:
113   //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
114   // Instead of using the buffer directly we use its distance to too_high.
115   // Conceptually rest ~= too_high - buffer
116   // We need to do the following tests in this order to avoid over- and
117   // underflows.
118   DCHECK(rest <= unsafe_interval);
119   while (rest < small_distance &&                // Negated condition 1
120          unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
121          (rest + ten_kappa < small_distance ||   // buffer{-1} > w_high
122           small_distance - rest >= rest + ten_kappa - small_distance)) {
123     buffer[length - 1]--;
124     rest += ten_kappa;
125   }
126 
127   // We have approached w+ as much as possible. We now test if approaching w-
128   // would require changing the buffer. If yes, then we have two possible
129   // representations close to w, but we cannot decide which one is closer.
130   if (rest < big_distance && unsafe_interval - rest >= ten_kappa &&
131       (rest + ten_kappa < big_distance ||
132        big_distance - rest > rest + ten_kappa - big_distance)) {
133     return false;
134   }
135 
136   // Weeding test.
137   //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
138   //   Since too_low = too_high - unsafe_interval this is equivalent to
139   //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
140   //   Conceptually we have: rest ~= too_high - buffer
141   return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
142 }
143 
144 // Rounds the buffer upwards if the result is closer to v by possibly adding
145 // 1 to the buffer. If the precision of the calculation is not sufficient to
146 // round correctly, return false.
147 // The rounding might shift the whole buffer in which case the kappa is
148 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
149 //
150 // If 2*rest > ten_kappa then the buffer needs to be round up.
151 // rest can have an error of +/- 1 unit. This function accounts for the
152 // imprecision and returns false, if the rounding direction cannot be
153 // unambiguously determined.
154 //
155 // Precondition: rest < ten_kappa.
RoundWeedCounted(Vector<char> buffer,int length,uint64_t rest,uint64_t ten_kappa,uint64_t unit,int * kappa)156 static bool RoundWeedCounted(Vector<char> buffer, int length, uint64_t rest,
157                              uint64_t ten_kappa, uint64_t unit, int* kappa) {
158   DCHECK(rest < ten_kappa);
159   // The following tests are done in a specific order to avoid overflows. They
160   // will work correctly with any uint64 values of rest < ten_kappa and unit.
161   //
162   // If the unit is too big, then we don't know which way to round. For example
163   // a unit of 50 means that the real number lies within rest +/- 50. If
164   // 10^kappa == 40 then there is no way to tell which way to round.
165   if (unit >= ten_kappa) return false;
166   // Even if unit is just half the size of 10^kappa we are already completely
167   // lost. (And after the previous test we know that the expression will not
168   // over/underflow.)
169   if (ten_kappa - unit <= unit) return false;
170   // If 2 * (rest + unit) <= 10^kappa we can safely round down.
171   if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
172     return true;
173   }
174   // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
175   if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
176     // Increment the last digit recursively until we find a non '9' digit.
177     buffer[length - 1]++;
178     for (int i = length - 1; i > 0; --i) {
179       if (buffer[i] != '0' + 10) break;
180       buffer[i] = '0';
181       buffer[i - 1]++;
182     }
183     // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
184     // exception of the first digit all digits are now '0'. Simply switch the
185     // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
186     // the power (the kappa) is increased.
187     if (buffer[0] == '0' + 10) {
188       buffer[0] = '1';
189       (*kappa) += 1;
190     }
191     return true;
192   }
193   return false;
194 }
195 
196 static const uint32_t kTen4 = 10000;
197 static const uint32_t kTen5 = 100000;
198 static const uint32_t kTen6 = 1000000;
199 static const uint32_t kTen7 = 10000000;
200 static const uint32_t kTen8 = 100000000;
201 static const uint32_t kTen9 = 1000000000;
202 
203 // Returns the biggest power of ten that is less than or equal than the given
204 // number. We furthermore receive the maximum number of bits 'number' has.
205 // If number_bits == 0 then 0^-1 is returned
206 // The number of bits must be <= 32.
207 // Precondition: number < (1 << (number_bits + 1)).
BiggestPowerTen(uint32_t number,int number_bits,uint32_t * power,int * exponent)208 static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power,
209                             int* exponent) {
210   switch (number_bits) {
211     case 32:
212     case 31:
213     case 30:
214       if (kTen9 <= number) {
215         *power = kTen9;
216         *exponent = 9;
217         break;
218       }
219       V8_FALLTHROUGH;
220     case 29:
221     case 28:
222     case 27:
223       if (kTen8 <= number) {
224         *power = kTen8;
225         *exponent = 8;
226         break;
227       }
228       V8_FALLTHROUGH;
229     case 26:
230     case 25:
231     case 24:
232       if (kTen7 <= number) {
233         *power = kTen7;
234         *exponent = 7;
235         break;
236       }
237       V8_FALLTHROUGH;
238     case 23:
239     case 22:
240     case 21:
241     case 20:
242       if (kTen6 <= number) {
243         *power = kTen6;
244         *exponent = 6;
245         break;
246       }
247       V8_FALLTHROUGH;
248     case 19:
249     case 18:
250     case 17:
251       if (kTen5 <= number) {
252         *power = kTen5;
253         *exponent = 5;
254         break;
255       }
256       V8_FALLTHROUGH;
257     case 16:
258     case 15:
259     case 14:
260       if (kTen4 <= number) {
261         *power = kTen4;
262         *exponent = 4;
263         break;
264       }
265       V8_FALLTHROUGH;
266     case 13:
267     case 12:
268     case 11:
269     case 10:
270       if (1000 <= number) {
271         *power = 1000;
272         *exponent = 3;
273         break;
274       }
275       V8_FALLTHROUGH;
276     case 9:
277     case 8:
278     case 7:
279       if (100 <= number) {
280         *power = 100;
281         *exponent = 2;
282         break;
283       }
284       V8_FALLTHROUGH;
285     case 6:
286     case 5:
287     case 4:
288       if (10 <= number) {
289         *power = 10;
290         *exponent = 1;
291         break;
292       }
293       V8_FALLTHROUGH;
294     case 3:
295     case 2:
296     case 1:
297       if (1 <= number) {
298         *power = 1;
299         *exponent = 0;
300         break;
301       }
302       V8_FALLTHROUGH;
303     case 0:
304       *power = 0;
305       *exponent = -1;
306       break;
307     default:
308       // Following assignments are here to silence compiler warnings.
309       *power = 0;
310       *exponent = 0;
311       UNREACHABLE();
312   }
313 }
314 
315 // Generates the digits of input number w.
316 // w is a floating-point number (DiyFp), consisting of a significand and an
317 // exponent. Its exponent is bounded by kMinimalTargetExponent and
318 // kMaximalTargetExponent.
319 //       Hence -60 <= w.e() <= -32.
320 //
321 // Returns false if it fails, in which case the generated digits in the buffer
322 // should not be used.
323 // Preconditions:
324 //  * low, w and high are correct up to 1 ulp (unit in the last place). That
325 //    is, their error must be less than a unit of their last digits.
326 //  * low.e() == w.e() == high.e()
327 //  * low < w < high, and taking into account their error: low~ <= high~
328 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
329 // Postconditions: returns false if procedure fails.
330 //   otherwise:
331 //     * buffer is not null-terminated, but len contains the number of digits.
332 //     * buffer contains the shortest possible decimal digit-sequence
333 //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
334 //       correct values of low and high (without their error).
335 //     * if more than one decimal representation gives the minimal number of
336 //       decimal digits then the one closest to W (where W is the correct value
337 //       of w) is chosen.
338 // Remark: this procedure takes into account the imprecision of its input
339 //   numbers. If the precision is not enough to guarantee all the postconditions
340 //   then false is returned. This usually happens rarely (~0.5%).
341 //
342 // Say, for the sake of example, that
343 //   w.e() == -48, and w.f() == 0x1234567890ABCDEF
344 // w's value can be computed by w.f() * 2^w.e()
345 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
346 //  -> w's integral part is 0x1234
347 //  w's fractional part is therefore 0x567890ABCDEF.
348 // Printing w's integral part is easy (simply print 0x1234 in decimal).
349 // In order to print its fraction we repeatedly multiply the fraction by 10 and
350 // get each digit. Example the first digit after the point would be computed by
351 //   (0x567890ABCDEF * 10) >> 48. -> 3
352 // The whole thing becomes slightly more complicated because we want to stop
353 // once we have enough digits. That is, once the digits inside the buffer
354 // represent 'w' we can stop. Everything inside the interval low - high
355 // represents w. However we have to pay attention to low, high and w's
356 // imprecision.
DigitGen(DiyFp low,DiyFp w,DiyFp high,Vector<char> buffer,int * length,int * kappa)357 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector<char> buffer,
358                      int* length, int* kappa) {
359   DCHECK(low.e() == w.e() && w.e() == high.e());
360   DCHECK(low.f() + 1 <= high.f() - 1);
361   DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
362   // low, w and high are imprecise, but by less than one ulp (unit in the last
363   // place).
364   // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
365   // the new numbers are outside of the interval we want the final
366   // representation to lie in.
367   // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
368   // numbers that are certain to lie in the interval. We will use this fact
369   // later on.
370   // We will now start by generating the digits within the uncertain
371   // interval. Later we will weed out representations that lie outside the safe
372   // interval and thus _might_ lie outside the correct interval.
373   uint64_t unit = 1;
374   DiyFp too_low = DiyFp(low.f() - unit, low.e());
375   DiyFp too_high = DiyFp(high.f() + unit, high.e());
376   // too_low and too_high are guaranteed to lie outside the interval we want the
377   // generated number in.
378   DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
379   // We now cut the input number into two parts: the integral digits and the
380   // fractionals. We will not write any decimal separator though, but adapt
381   // kappa instead.
382   // Reminder: we are currently computing the digits (stored inside the buffer)
383   // such that:   too_low < buffer * 10^kappa < too_high
384   // We use too_high for the digit_generation and stop as soon as possible.
385   // If we stop early we effectively round down.
386   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
387   // Division by one is a shift.
388   uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
389   // Modulo by one is an and.
390   uint64_t fractionals = too_high.f() & (one.f() - 1);
391   uint32_t divisor;
392   int divisor_exponent;
393   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
394                   &divisor_exponent);
395   *kappa = divisor_exponent + 1;
396   *length = 0;
397   // Loop invariant: buffer = too_high / 10^kappa  (integer division)
398   // The invariant holds for the first iteration: kappa has been initialized
399   // with the divisor exponent + 1. And the divisor is the biggest power of ten
400   // that is smaller than integrals.
401   while (*kappa > 0) {
402     int digit = integrals / divisor;
403     buffer[*length] = '0' + digit;
404     (*length)++;
405     integrals %= divisor;
406     (*kappa)--;
407     // Note that kappa now equals the exponent of the divisor and that the
408     // invariant thus holds again.
409     uint64_t rest =
410         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
411     // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
412     // Reminder: unsafe_interval.e() == one.e()
413     if (rest < unsafe_interval.f()) {
414       // Rounding down (by not emitting the remaining digits) yields a number
415       // that lies within the unsafe interval.
416       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
417                        unsafe_interval.f(), rest,
418                        static_cast<uint64_t>(divisor) << -one.e(), unit);
419     }
420     divisor /= 10;
421   }
422 
423   // The integrals have been generated. We are at the point of the decimal
424   // separator. In the following loop we simply multiply the remaining digits by
425   // 10 and divide by one. We just need to pay attention to multiply associated
426   // data (like the interval or 'unit'), too.
427   // Note that the multiplication by 10 does not overflow, because w.e >= -60
428   // and thus one.e >= -60.
429   DCHECK_GE(one.e(), -60);
430   DCHECK(fractionals < one.f());
431   DCHECK(0xFFFF'FFFF'FFFF'FFFF / 10 >= one.f());
432   while (true) {
433     fractionals *= 10;
434     unit *= 10;
435     unsafe_interval.set_f(unsafe_interval.f() * 10);
436     // Integer division by one.
437     int digit = static_cast<int>(fractionals >> -one.e());
438     buffer[*length] = '0' + digit;
439     (*length)++;
440     fractionals &= one.f() - 1;  // Modulo by one.
441     (*kappa)--;
442     if (fractionals < unsafe_interval.f()) {
443       return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
444                        unsafe_interval.f(), fractionals, one.f(), unit);
445     }
446   }
447 }
448 
449 // Generates (at most) requested_digits of input number w.
450 // w is a floating-point number (DiyFp), consisting of a significand and an
451 // exponent. Its exponent is bounded by kMinimalTargetExponent and
452 // kMaximalTargetExponent.
453 //       Hence -60 <= w.e() <= -32.
454 //
455 // Returns false if it fails, in which case the generated digits in the buffer
456 // should not be used.
457 // Preconditions:
458 //  * w is correct up to 1 ulp (unit in the last place). That
459 //    is, its error must be strictly less than a unit of its last digit.
460 //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
461 //
462 // Postconditions: returns false if procedure fails.
463 //   otherwise:
464 //     * buffer is not null-terminated, but length contains the number of
465 //       digits.
466 //     * the representation in buffer is the most precise representation of
467 //       requested_digits digits.
468 //     * buffer contains at most requested_digits digits of w. If there are less
469 //       than requested_digits digits then some trailing '0's have been removed.
470 //     * kappa is such that
471 //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
472 //
473 // Remark: This procedure takes into account the imprecision of its input
474 //   numbers. If the precision is not enough to guarantee all the postconditions
475 //   then false is returned. This usually happens rarely, but the failure-rate
476 //   increases with higher requested_digits.
DigitGenCounted(DiyFp w,int requested_digits,Vector<char> buffer,int * length,int * kappa)477 static bool DigitGenCounted(DiyFp w, int requested_digits, Vector<char> buffer,
478                             int* length, int* kappa) {
479   DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
480   DCHECK_GE(kMinimalTargetExponent, -60);
481   DCHECK_LE(kMaximalTargetExponent, -32);
482   // w is assumed to have an error less than 1 unit. Whenever w is scaled we
483   // also scale its error.
484   uint64_t w_error = 1;
485   // We cut the input number into two parts: the integral digits and the
486   // fractional digits. We don't emit any decimal separator, but adapt kappa
487   // instead. Example: instead of writing "1.2" we put "12" into the buffer and
488   // increase kappa by 1.
489   DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
490   // Division by one is a shift.
491   uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
492   // Modulo by one is an and.
493   uint64_t fractionals = w.f() & (one.f() - 1);
494   uint32_t divisor;
495   int divisor_exponent;
496   BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
497                   &divisor_exponent);
498   *kappa = divisor_exponent + 1;
499   *length = 0;
500 
501   // Loop invariant: buffer = w / 10^kappa  (integer division)
502   // The invariant holds for the first iteration: kappa has been initialized
503   // with the divisor exponent + 1. And the divisor is the biggest power of ten
504   // that is smaller than 'integrals'.
505   while (*kappa > 0) {
506     int digit = integrals / divisor;
507     buffer[*length] = '0' + digit;
508     (*length)++;
509     requested_digits--;
510     integrals %= divisor;
511     (*kappa)--;
512     // Note that kappa now equals the exponent of the divisor and that the
513     // invariant thus holds again.
514     if (requested_digits == 0) break;
515     divisor /= 10;
516   }
517 
518   if (requested_digits == 0) {
519     uint64_t rest =
520         (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
521     return RoundWeedCounted(buffer, *length, rest,
522                             static_cast<uint64_t>(divisor) << -one.e(), w_error,
523                             kappa);
524   }
525 
526   // The integrals have been generated. We are at the point of the decimal
527   // separator. In the following loop we simply multiply the remaining digits by
528   // 10 and divide by one. We just need to pay attention to multiply associated
529   // data (the 'unit'), too.
530   // Note that the multiplication by 10 does not overflow, because w.e >= -60
531   // and thus one.e >= -60.
532   DCHECK_GE(one.e(), -60);
533   DCHECK(fractionals < one.f());
534   DCHECK(0xFFFF'FFFF'FFFF'FFFF / 10 >= one.f());
535   while (requested_digits > 0 && fractionals > w_error) {
536     fractionals *= 10;
537     w_error *= 10;
538     // Integer division by one.
539     int digit = static_cast<int>(fractionals >> -one.e());
540     buffer[*length] = '0' + digit;
541     (*length)++;
542     requested_digits--;
543     fractionals &= one.f() - 1;  // Modulo by one.
544     (*kappa)--;
545   }
546   if (requested_digits != 0) return false;
547   return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
548                           kappa);
549 }
550 
551 // Provides a decimal representation of v.
552 // Returns true if it succeeds, otherwise the result cannot be trusted.
553 // There will be *length digits inside the buffer (not null-terminated).
554 // If the function returns true then
555 //        v == (double) (buffer * 10^decimal_exponent).
556 // The digits in the buffer are the shortest representation possible: no
557 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
558 // chosen even if the longer one would be closer to v.
559 // The last digit will be closest to the actual v. That is, even if several
560 // digits might correctly yield 'v' when read again, the closest will be
561 // computed.
Grisu3(double v,Vector<char> buffer,int * length,int * decimal_exponent)562 static bool Grisu3(double v, Vector<char> buffer, int* length,
563                    int* decimal_exponent) {
564   DiyFp w = Double(v).AsNormalizedDiyFp();
565   // boundary_minus and boundary_plus are the boundaries between v and its
566   // closest floating-point neighbors. Any number strictly between
567   // boundary_minus and boundary_plus will round to v when convert to a double.
568   // Grisu3 will never output representations that lie exactly on a boundary.
569   DiyFp boundary_minus, boundary_plus;
570   Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
571   DCHECK(boundary_plus.e() == w.e());
572   DiyFp ten_mk;  // Cached power of ten: 10^-k
573   int mk;        // -k
574   int ten_mk_minimal_binary_exponent =
575       kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
576   int ten_mk_maximal_binary_exponent =
577       kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
578   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
579       ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
580       &mk);
581   DCHECK(
582       (kMinimalTargetExponent <=
583        w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
584       (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
585   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
586   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
587 
588   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
589   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
590   // off by a small amount.
591   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
592   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
593   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
594   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
595   DCHECK(scaled_w.e() ==
596          boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
597   // In theory it would be possible to avoid some recomputations by computing
598   // the difference between w and boundary_minus/plus (a power of 2) and to
599   // compute scaled_boundary_minus/plus by subtracting/adding from
600   // scaled_w. However the code becomes much less readable and the speed
601   // enhancements are not terriffic.
602   DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
603   DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
604 
605   // DigitGen will generate the digits of scaled_w. Therefore we have
606   // v == (double) (scaled_w * 10^-mk).
607   // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
608   // integer than it will be updated. For instance if scaled_w == 1.23 then
609   // the buffer will be filled with "123" und the decimal_exponent will be
610   // decreased by 2.
611   int kappa;
612   bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
613                          buffer, length, &kappa);
614   *decimal_exponent = -mk + kappa;
615   return result;
616 }
617 
618 // The "counted" version of grisu3 (see above) only generates requested_digits
619 // number of digits. This version does not generate the shortest representation,
620 // and with enough requested digits 0.1 will at some point print as 0.9999999...
621 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
622 // therefore the rounding strategy for halfway cases is irrelevant.
Grisu3Counted(double v,int requested_digits,Vector<char> buffer,int * length,int * decimal_exponent)623 static bool Grisu3Counted(double v, int requested_digits, Vector<char> buffer,
624                           int* length, int* decimal_exponent) {
625   DiyFp w = Double(v).AsNormalizedDiyFp();
626   DiyFp ten_mk;  // Cached power of ten: 10^-k
627   int mk;        // -k
628   int ten_mk_minimal_binary_exponent =
629       kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
630   int ten_mk_maximal_binary_exponent =
631       kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
632   PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
633       ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
634       &mk);
635   DCHECK(
636       (kMinimalTargetExponent <=
637        w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
638       (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
639   // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
640   // 64 bit significand and ten_mk is thus only precise up to 64 bits.
641 
642   // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
643   // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
644   // off by a small amount.
645   // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
646   // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
647   //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
648   DiyFp scaled_w = DiyFp::Times(w, ten_mk);
649 
650   // We now have (double) (scaled_w * 10^-mk).
651   // DigitGen will generate the first requested_digits digits of scaled_w and
652   // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
653   // will not always be exactly the same since DigitGenCounted only produces a
654   // limited number of digits.)
655   int kappa;
656   bool result =
657       DigitGenCounted(scaled_w, requested_digits, buffer, length, &kappa);
658   *decimal_exponent = -mk + kappa;
659   return result;
660 }
661 
FastDtoa(double v,FastDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)662 bool FastDtoa(double v, FastDtoaMode mode, int requested_digits,
663               Vector<char> buffer, int* length, int* decimal_point) {
664   DCHECK_GT(v, 0);
665   DCHECK(!Double(v).IsSpecial());
666 
667   bool result = false;
668   int decimal_exponent = 0;
669   switch (mode) {
670     case FAST_DTOA_SHORTEST:
671       result = Grisu3(v, buffer, length, &decimal_exponent);
672       break;
673     case FAST_DTOA_PRECISION:
674       result =
675           Grisu3Counted(v, requested_digits, buffer, length, &decimal_exponent);
676       break;
677     default:
678       UNREACHABLE();
679   }
680   if (result) {
681     *decimal_point = *length + decimal_exponent;
682     buffer[*length] = '\0';
683   }
684   return result;
685 }
686 
687 }  // namespace base
688 }  // namespace v8
689