1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/base/numbers/fast-dtoa.h"
6
7 #include <stdint.h>
8
9 #include "src/base/logging.h"
10 #include "src/base/numbers/cached-powers.h"
11 #include "src/base/numbers/diy-fp.h"
12 #include "src/base/numbers/double.h"
13 #include "src/base/v8-fallthrough.h"
14
15 namespace v8 {
16 namespace base {
17
18 // The minimal and maximal target exponent define the range of w's binary
19 // exponent, where 'w' is the result of multiplying the input by a cached power
20 // of ten.
21 //
22 // A different range might be chosen on a different platform, to optimize digit
23 // generation, but a smaller range requires more powers of ten to be cached.
24 static const int kMinimalTargetExponent = -60;
25 static const int kMaximalTargetExponent = -32;
26
27 // Adjusts the last digit of the generated number, and screens out generated
28 // solutions that may be inaccurate. A solution may be inaccurate if it is
29 // outside the safe interval, or if we ctannot prove that it is closer to the
30 // input than a neighboring representation of the same length.
31 //
32 // Input: * buffer containing the digits of too_high / 10^kappa
33 // * the buffer's length
34 // * distance_too_high_w == (too_high - w).f() * unit
35 // * unsafe_interval == (too_high - too_low).f() * unit
36 // * rest = (too_high - buffer * 10^kappa).f() * unit
37 // * ten_kappa = 10^kappa * unit
38 // * unit = the common multiplier
39 // Output: returns true if the buffer is guaranteed to contain the closest
40 // representable number to the input.
41 // Modifies the generated digits in the buffer to approach (round towards) w.
RoundWeed(Vector<char> buffer,int length,uint64_t distance_too_high_w,uint64_t unsafe_interval,uint64_t rest,uint64_t ten_kappa,uint64_t unit)42 static bool RoundWeed(Vector<char> buffer, int length,
43 uint64_t distance_too_high_w, uint64_t unsafe_interval,
44 uint64_t rest, uint64_t ten_kappa, uint64_t unit) {
45 uint64_t small_distance = distance_too_high_w - unit;
46 uint64_t big_distance = distance_too_high_w + unit;
47 // Let w_low = too_high - big_distance, and
48 // w_high = too_high - small_distance.
49 // Note: w_low < w < w_high
50 //
51 // The real w (* unit) must lie somewhere inside the interval
52 // ]w_low; w_high[ (often written as "(w_low; w_high)")
53
54 // Basically the buffer currently contains a number in the unsafe interval
55 // ]too_low; too_high[ with too_low < w < too_high
56 //
57 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
58 // ^v 1 unit ^ ^ ^ ^
59 // boundary_high --------------------- . . . .
60 // ^v 1 unit . . . .
61 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
62 // . . ^ . .
63 // . big_distance . . .
64 // . . . . rest
65 // small_distance . . . .
66 // v . . . .
67 // w_high - - - - - - - - - - - - - - - - - - . . . .
68 // ^v 1 unit . . . .
69 // w ---------------------------------------- . . . .
70 // ^v 1 unit v . . .
71 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
72 // . . v
73 // buffer --------------------------------------------------+-------+--------
74 // . .
75 // safe_interval .
76 // v .
77 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
78 // ^v 1 unit .
79 // boundary_low ------------------------- unsafe_interval
80 // ^v 1 unit v
81 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
82 //
83 //
84 // Note that the value of buffer could lie anywhere inside the range too_low
85 // to too_high.
86 //
87 // boundary_low, boundary_high and w are approximations of the real boundaries
88 // and v (the input number). They are guaranteed to be precise up to one unit.
89 // In fact the error is guaranteed to be strictly less than one unit.
90 //
91 // Anything that lies outside the unsafe interval is guaranteed not to round
92 // to v when read again.
93 // Anything that lies inside the safe interval is guaranteed to round to v
94 // when read again.
95 // If the number inside the buffer lies inside the unsafe interval but not
96 // inside the safe interval then we simply do not know and bail out (returning
97 // false).
98 //
99 // Similarly we have to take into account the imprecision of 'w' when finding
100 // the closest representation of 'w'. If we have two potential
101 // representations, and one is closer to both w_low and w_high, then we know
102 // it is closer to the actual value v.
103 //
104 // By generating the digits of too_high we got the largest (closest to
105 // too_high) buffer that is still in the unsafe interval. In the case where
106 // w_high < buffer < too_high we try to decrement the buffer.
107 // This way the buffer approaches (rounds towards) w.
108 // There are 3 conditions that stop the decrementation process:
109 // 1) the buffer is already below w_high
110 // 2) decrementing the buffer would make it leave the unsafe interval
111 // 3) decrementing the buffer would yield a number below w_high and farther
112 // away than the current number. In other words:
113 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
114 // Instead of using the buffer directly we use its distance to too_high.
115 // Conceptually rest ~= too_high - buffer
116 // We need to do the following tests in this order to avoid over- and
117 // underflows.
118 DCHECK(rest <= unsafe_interval);
119 while (rest < small_distance && // Negated condition 1
120 unsafe_interval - rest >= ten_kappa && // Negated condition 2
121 (rest + ten_kappa < small_distance || // buffer{-1} > w_high
122 small_distance - rest >= rest + ten_kappa - small_distance)) {
123 buffer[length - 1]--;
124 rest += ten_kappa;
125 }
126
127 // We have approached w+ as much as possible. We now test if approaching w-
128 // would require changing the buffer. If yes, then we have two possible
129 // representations close to w, but we cannot decide which one is closer.
130 if (rest < big_distance && unsafe_interval - rest >= ten_kappa &&
131 (rest + ten_kappa < big_distance ||
132 big_distance - rest > rest + ten_kappa - big_distance)) {
133 return false;
134 }
135
136 // Weeding test.
137 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
138 // Since too_low = too_high - unsafe_interval this is equivalent to
139 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
140 // Conceptually we have: rest ~= too_high - buffer
141 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
142 }
143
144 // Rounds the buffer upwards if the result is closer to v by possibly adding
145 // 1 to the buffer. If the precision of the calculation is not sufficient to
146 // round correctly, return false.
147 // The rounding might shift the whole buffer in which case the kappa is
148 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
149 //
150 // If 2*rest > ten_kappa then the buffer needs to be round up.
151 // rest can have an error of +/- 1 unit. This function accounts for the
152 // imprecision and returns false, if the rounding direction cannot be
153 // unambiguously determined.
154 //
155 // Precondition: rest < ten_kappa.
RoundWeedCounted(Vector<char> buffer,int length,uint64_t rest,uint64_t ten_kappa,uint64_t unit,int * kappa)156 static bool RoundWeedCounted(Vector<char> buffer, int length, uint64_t rest,
157 uint64_t ten_kappa, uint64_t unit, int* kappa) {
158 DCHECK(rest < ten_kappa);
159 // The following tests are done in a specific order to avoid overflows. They
160 // will work correctly with any uint64 values of rest < ten_kappa and unit.
161 //
162 // If the unit is too big, then we don't know which way to round. For example
163 // a unit of 50 means that the real number lies within rest +/- 50. If
164 // 10^kappa == 40 then there is no way to tell which way to round.
165 if (unit >= ten_kappa) return false;
166 // Even if unit is just half the size of 10^kappa we are already completely
167 // lost. (And after the previous test we know that the expression will not
168 // over/underflow.)
169 if (ten_kappa - unit <= unit) return false;
170 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
171 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
172 return true;
173 }
174 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
175 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
176 // Increment the last digit recursively until we find a non '9' digit.
177 buffer[length - 1]++;
178 for (int i = length - 1; i > 0; --i) {
179 if (buffer[i] != '0' + 10) break;
180 buffer[i] = '0';
181 buffer[i - 1]++;
182 }
183 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
184 // exception of the first digit all digits are now '0'. Simply switch the
185 // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
186 // the power (the kappa) is increased.
187 if (buffer[0] == '0' + 10) {
188 buffer[0] = '1';
189 (*kappa) += 1;
190 }
191 return true;
192 }
193 return false;
194 }
195
196 static const uint32_t kTen4 = 10000;
197 static const uint32_t kTen5 = 100000;
198 static const uint32_t kTen6 = 1000000;
199 static const uint32_t kTen7 = 10000000;
200 static const uint32_t kTen8 = 100000000;
201 static const uint32_t kTen9 = 1000000000;
202
203 // Returns the biggest power of ten that is less than or equal than the given
204 // number. We furthermore receive the maximum number of bits 'number' has.
205 // If number_bits == 0 then 0^-1 is returned
206 // The number of bits must be <= 32.
207 // Precondition: number < (1 << (number_bits + 1)).
BiggestPowerTen(uint32_t number,int number_bits,uint32_t * power,int * exponent)208 static void BiggestPowerTen(uint32_t number, int number_bits, uint32_t* power,
209 int* exponent) {
210 switch (number_bits) {
211 case 32:
212 case 31:
213 case 30:
214 if (kTen9 <= number) {
215 *power = kTen9;
216 *exponent = 9;
217 break;
218 }
219 V8_FALLTHROUGH;
220 case 29:
221 case 28:
222 case 27:
223 if (kTen8 <= number) {
224 *power = kTen8;
225 *exponent = 8;
226 break;
227 }
228 V8_FALLTHROUGH;
229 case 26:
230 case 25:
231 case 24:
232 if (kTen7 <= number) {
233 *power = kTen7;
234 *exponent = 7;
235 break;
236 }
237 V8_FALLTHROUGH;
238 case 23:
239 case 22:
240 case 21:
241 case 20:
242 if (kTen6 <= number) {
243 *power = kTen6;
244 *exponent = 6;
245 break;
246 }
247 V8_FALLTHROUGH;
248 case 19:
249 case 18:
250 case 17:
251 if (kTen5 <= number) {
252 *power = kTen5;
253 *exponent = 5;
254 break;
255 }
256 V8_FALLTHROUGH;
257 case 16:
258 case 15:
259 case 14:
260 if (kTen4 <= number) {
261 *power = kTen4;
262 *exponent = 4;
263 break;
264 }
265 V8_FALLTHROUGH;
266 case 13:
267 case 12:
268 case 11:
269 case 10:
270 if (1000 <= number) {
271 *power = 1000;
272 *exponent = 3;
273 break;
274 }
275 V8_FALLTHROUGH;
276 case 9:
277 case 8:
278 case 7:
279 if (100 <= number) {
280 *power = 100;
281 *exponent = 2;
282 break;
283 }
284 V8_FALLTHROUGH;
285 case 6:
286 case 5:
287 case 4:
288 if (10 <= number) {
289 *power = 10;
290 *exponent = 1;
291 break;
292 }
293 V8_FALLTHROUGH;
294 case 3:
295 case 2:
296 case 1:
297 if (1 <= number) {
298 *power = 1;
299 *exponent = 0;
300 break;
301 }
302 V8_FALLTHROUGH;
303 case 0:
304 *power = 0;
305 *exponent = -1;
306 break;
307 default:
308 // Following assignments are here to silence compiler warnings.
309 *power = 0;
310 *exponent = 0;
311 UNREACHABLE();
312 }
313 }
314
315 // Generates the digits of input number w.
316 // w is a floating-point number (DiyFp), consisting of a significand and an
317 // exponent. Its exponent is bounded by kMinimalTargetExponent and
318 // kMaximalTargetExponent.
319 // Hence -60 <= w.e() <= -32.
320 //
321 // Returns false if it fails, in which case the generated digits in the buffer
322 // should not be used.
323 // Preconditions:
324 // * low, w and high are correct up to 1 ulp (unit in the last place). That
325 // is, their error must be less than a unit of their last digits.
326 // * low.e() == w.e() == high.e()
327 // * low < w < high, and taking into account their error: low~ <= high~
328 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
329 // Postconditions: returns false if procedure fails.
330 // otherwise:
331 // * buffer is not null-terminated, but len contains the number of digits.
332 // * buffer contains the shortest possible decimal digit-sequence
333 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
334 // correct values of low and high (without their error).
335 // * if more than one decimal representation gives the minimal number of
336 // decimal digits then the one closest to W (where W is the correct value
337 // of w) is chosen.
338 // Remark: this procedure takes into account the imprecision of its input
339 // numbers. If the precision is not enough to guarantee all the postconditions
340 // then false is returned. This usually happens rarely (~0.5%).
341 //
342 // Say, for the sake of example, that
343 // w.e() == -48, and w.f() == 0x1234567890ABCDEF
344 // w's value can be computed by w.f() * 2^w.e()
345 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
346 // -> w's integral part is 0x1234
347 // w's fractional part is therefore 0x567890ABCDEF.
348 // Printing w's integral part is easy (simply print 0x1234 in decimal).
349 // In order to print its fraction we repeatedly multiply the fraction by 10 and
350 // get each digit. Example the first digit after the point would be computed by
351 // (0x567890ABCDEF * 10) >> 48. -> 3
352 // The whole thing becomes slightly more complicated because we want to stop
353 // once we have enough digits. That is, once the digits inside the buffer
354 // represent 'w' we can stop. Everything inside the interval low - high
355 // represents w. However we have to pay attention to low, high and w's
356 // imprecision.
DigitGen(DiyFp low,DiyFp w,DiyFp high,Vector<char> buffer,int * length,int * kappa)357 static bool DigitGen(DiyFp low, DiyFp w, DiyFp high, Vector<char> buffer,
358 int* length, int* kappa) {
359 DCHECK(low.e() == w.e() && w.e() == high.e());
360 DCHECK(low.f() + 1 <= high.f() - 1);
361 DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
362 // low, w and high are imprecise, but by less than one ulp (unit in the last
363 // place).
364 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
365 // the new numbers are outside of the interval we want the final
366 // representation to lie in.
367 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
368 // numbers that are certain to lie in the interval. We will use this fact
369 // later on.
370 // We will now start by generating the digits within the uncertain
371 // interval. Later we will weed out representations that lie outside the safe
372 // interval and thus _might_ lie outside the correct interval.
373 uint64_t unit = 1;
374 DiyFp too_low = DiyFp(low.f() - unit, low.e());
375 DiyFp too_high = DiyFp(high.f() + unit, high.e());
376 // too_low and too_high are guaranteed to lie outside the interval we want the
377 // generated number in.
378 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
379 // We now cut the input number into two parts: the integral digits and the
380 // fractionals. We will not write any decimal separator though, but adapt
381 // kappa instead.
382 // Reminder: we are currently computing the digits (stored inside the buffer)
383 // such that: too_low < buffer * 10^kappa < too_high
384 // We use too_high for the digit_generation and stop as soon as possible.
385 // If we stop early we effectively round down.
386 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
387 // Division by one is a shift.
388 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
389 // Modulo by one is an and.
390 uint64_t fractionals = too_high.f() & (one.f() - 1);
391 uint32_t divisor;
392 int divisor_exponent;
393 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
394 &divisor_exponent);
395 *kappa = divisor_exponent + 1;
396 *length = 0;
397 // Loop invariant: buffer = too_high / 10^kappa (integer division)
398 // The invariant holds for the first iteration: kappa has been initialized
399 // with the divisor exponent + 1. And the divisor is the biggest power of ten
400 // that is smaller than integrals.
401 while (*kappa > 0) {
402 int digit = integrals / divisor;
403 buffer[*length] = '0' + digit;
404 (*length)++;
405 integrals %= divisor;
406 (*kappa)--;
407 // Note that kappa now equals the exponent of the divisor and that the
408 // invariant thus holds again.
409 uint64_t rest =
410 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
411 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
412 // Reminder: unsafe_interval.e() == one.e()
413 if (rest < unsafe_interval.f()) {
414 // Rounding down (by not emitting the remaining digits) yields a number
415 // that lies within the unsafe interval.
416 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
417 unsafe_interval.f(), rest,
418 static_cast<uint64_t>(divisor) << -one.e(), unit);
419 }
420 divisor /= 10;
421 }
422
423 // The integrals have been generated. We are at the point of the decimal
424 // separator. In the following loop we simply multiply the remaining digits by
425 // 10 and divide by one. We just need to pay attention to multiply associated
426 // data (like the interval or 'unit'), too.
427 // Note that the multiplication by 10 does not overflow, because w.e >= -60
428 // and thus one.e >= -60.
429 DCHECK_GE(one.e(), -60);
430 DCHECK(fractionals < one.f());
431 DCHECK(0xFFFF'FFFF'FFFF'FFFF / 10 >= one.f());
432 while (true) {
433 fractionals *= 10;
434 unit *= 10;
435 unsafe_interval.set_f(unsafe_interval.f() * 10);
436 // Integer division by one.
437 int digit = static_cast<int>(fractionals >> -one.e());
438 buffer[*length] = '0' + digit;
439 (*length)++;
440 fractionals &= one.f() - 1; // Modulo by one.
441 (*kappa)--;
442 if (fractionals < unsafe_interval.f()) {
443 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
444 unsafe_interval.f(), fractionals, one.f(), unit);
445 }
446 }
447 }
448
449 // Generates (at most) requested_digits of input number w.
450 // w is a floating-point number (DiyFp), consisting of a significand and an
451 // exponent. Its exponent is bounded by kMinimalTargetExponent and
452 // kMaximalTargetExponent.
453 // Hence -60 <= w.e() <= -32.
454 //
455 // Returns false if it fails, in which case the generated digits in the buffer
456 // should not be used.
457 // Preconditions:
458 // * w is correct up to 1 ulp (unit in the last place). That
459 // is, its error must be strictly less than a unit of its last digit.
460 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
461 //
462 // Postconditions: returns false if procedure fails.
463 // otherwise:
464 // * buffer is not null-terminated, but length contains the number of
465 // digits.
466 // * the representation in buffer is the most precise representation of
467 // requested_digits digits.
468 // * buffer contains at most requested_digits digits of w. If there are less
469 // than requested_digits digits then some trailing '0's have been removed.
470 // * kappa is such that
471 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
472 //
473 // Remark: This procedure takes into account the imprecision of its input
474 // numbers. If the precision is not enough to guarantee all the postconditions
475 // then false is returned. This usually happens rarely, but the failure-rate
476 // increases with higher requested_digits.
DigitGenCounted(DiyFp w,int requested_digits,Vector<char> buffer,int * length,int * kappa)477 static bool DigitGenCounted(DiyFp w, int requested_digits, Vector<char> buffer,
478 int* length, int* kappa) {
479 DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
480 DCHECK_GE(kMinimalTargetExponent, -60);
481 DCHECK_LE(kMaximalTargetExponent, -32);
482 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
483 // also scale its error.
484 uint64_t w_error = 1;
485 // We cut the input number into two parts: the integral digits and the
486 // fractional digits. We don't emit any decimal separator, but adapt kappa
487 // instead. Example: instead of writing "1.2" we put "12" into the buffer and
488 // increase kappa by 1.
489 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
490 // Division by one is a shift.
491 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
492 // Modulo by one is an and.
493 uint64_t fractionals = w.f() & (one.f() - 1);
494 uint32_t divisor;
495 int divisor_exponent;
496 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
497 &divisor_exponent);
498 *kappa = divisor_exponent + 1;
499 *length = 0;
500
501 // Loop invariant: buffer = w / 10^kappa (integer division)
502 // The invariant holds for the first iteration: kappa has been initialized
503 // with the divisor exponent + 1. And the divisor is the biggest power of ten
504 // that is smaller than 'integrals'.
505 while (*kappa > 0) {
506 int digit = integrals / divisor;
507 buffer[*length] = '0' + digit;
508 (*length)++;
509 requested_digits--;
510 integrals %= divisor;
511 (*kappa)--;
512 // Note that kappa now equals the exponent of the divisor and that the
513 // invariant thus holds again.
514 if (requested_digits == 0) break;
515 divisor /= 10;
516 }
517
518 if (requested_digits == 0) {
519 uint64_t rest =
520 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
521 return RoundWeedCounted(buffer, *length, rest,
522 static_cast<uint64_t>(divisor) << -one.e(), w_error,
523 kappa);
524 }
525
526 // The integrals have been generated. We are at the point of the decimal
527 // separator. In the following loop we simply multiply the remaining digits by
528 // 10 and divide by one. We just need to pay attention to multiply associated
529 // data (the 'unit'), too.
530 // Note that the multiplication by 10 does not overflow, because w.e >= -60
531 // and thus one.e >= -60.
532 DCHECK_GE(one.e(), -60);
533 DCHECK(fractionals < one.f());
534 DCHECK(0xFFFF'FFFF'FFFF'FFFF / 10 >= one.f());
535 while (requested_digits > 0 && fractionals > w_error) {
536 fractionals *= 10;
537 w_error *= 10;
538 // Integer division by one.
539 int digit = static_cast<int>(fractionals >> -one.e());
540 buffer[*length] = '0' + digit;
541 (*length)++;
542 requested_digits--;
543 fractionals &= one.f() - 1; // Modulo by one.
544 (*kappa)--;
545 }
546 if (requested_digits != 0) return false;
547 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
548 kappa);
549 }
550
551 // Provides a decimal representation of v.
552 // Returns true if it succeeds, otherwise the result cannot be trusted.
553 // There will be *length digits inside the buffer (not null-terminated).
554 // If the function returns true then
555 // v == (double) (buffer * 10^decimal_exponent).
556 // The digits in the buffer are the shortest representation possible: no
557 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
558 // chosen even if the longer one would be closer to v.
559 // The last digit will be closest to the actual v. That is, even if several
560 // digits might correctly yield 'v' when read again, the closest will be
561 // computed.
Grisu3(double v,Vector<char> buffer,int * length,int * decimal_exponent)562 static bool Grisu3(double v, Vector<char> buffer, int* length,
563 int* decimal_exponent) {
564 DiyFp w = Double(v).AsNormalizedDiyFp();
565 // boundary_minus and boundary_plus are the boundaries between v and its
566 // closest floating-point neighbors. Any number strictly between
567 // boundary_minus and boundary_plus will round to v when convert to a double.
568 // Grisu3 will never output representations that lie exactly on a boundary.
569 DiyFp boundary_minus, boundary_plus;
570 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
571 DCHECK(boundary_plus.e() == w.e());
572 DiyFp ten_mk; // Cached power of ten: 10^-k
573 int mk; // -k
574 int ten_mk_minimal_binary_exponent =
575 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
576 int ten_mk_maximal_binary_exponent =
577 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
578 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
579 ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
580 &mk);
581 DCHECK(
582 (kMinimalTargetExponent <=
583 w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
584 (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
585 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
586 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
587
588 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
589 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
590 // off by a small amount.
591 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
592 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
593 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
594 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
595 DCHECK(scaled_w.e() ==
596 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
597 // In theory it would be possible to avoid some recomputations by computing
598 // the difference between w and boundary_minus/plus (a power of 2) and to
599 // compute scaled_boundary_minus/plus by subtracting/adding from
600 // scaled_w. However the code becomes much less readable and the speed
601 // enhancements are not terriffic.
602 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
603 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
604
605 // DigitGen will generate the digits of scaled_w. Therefore we have
606 // v == (double) (scaled_w * 10^-mk).
607 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
608 // integer than it will be updated. For instance if scaled_w == 1.23 then
609 // the buffer will be filled with "123" und the decimal_exponent will be
610 // decreased by 2.
611 int kappa;
612 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
613 buffer, length, &kappa);
614 *decimal_exponent = -mk + kappa;
615 return result;
616 }
617
618 // The "counted" version of grisu3 (see above) only generates requested_digits
619 // number of digits. This version does not generate the shortest representation,
620 // and with enough requested digits 0.1 will at some point print as 0.9999999...
621 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
622 // therefore the rounding strategy for halfway cases is irrelevant.
Grisu3Counted(double v,int requested_digits,Vector<char> buffer,int * length,int * decimal_exponent)623 static bool Grisu3Counted(double v, int requested_digits, Vector<char> buffer,
624 int* length, int* decimal_exponent) {
625 DiyFp w = Double(v).AsNormalizedDiyFp();
626 DiyFp ten_mk; // Cached power of ten: 10^-k
627 int mk; // -k
628 int ten_mk_minimal_binary_exponent =
629 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
630 int ten_mk_maximal_binary_exponent =
631 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
632 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
633 ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
634 &mk);
635 DCHECK(
636 (kMinimalTargetExponent <=
637 w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
638 (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
639 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
640 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
641
642 // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
643 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
644 // off by a small amount.
645 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
646 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
647 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
648 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
649
650 // We now have (double) (scaled_w * 10^-mk).
651 // DigitGen will generate the first requested_digits digits of scaled_w and
652 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
653 // will not always be exactly the same since DigitGenCounted only produces a
654 // limited number of digits.)
655 int kappa;
656 bool result =
657 DigitGenCounted(scaled_w, requested_digits, buffer, length, &kappa);
658 *decimal_exponent = -mk + kappa;
659 return result;
660 }
661
FastDtoa(double v,FastDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)662 bool FastDtoa(double v, FastDtoaMode mode, int requested_digits,
663 Vector<char> buffer, int* length, int* decimal_point) {
664 DCHECK_GT(v, 0);
665 DCHECK(!Double(v).IsSpecial());
666
667 bool result = false;
668 int decimal_exponent = 0;
669 switch (mode) {
670 case FAST_DTOA_SHORTEST:
671 result = Grisu3(v, buffer, length, &decimal_exponent);
672 break;
673 case FAST_DTOA_PRECISION:
674 result =
675 Grisu3Counted(v, requested_digits, buffer, length, &decimal_exponent);
676 break;
677 default:
678 UNREACHABLE();
679 }
680 if (result) {
681 *decimal_point = *length + decimal_exponent;
682 buffer[*length] = '\0';
683 }
684 return result;
685 }
686
687 } // namespace base
688 } // namespace v8
689