1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
6 #error This header must be included via macro-assembler.h
7 #endif
8
9 #ifndef V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
10 #define V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
11
12 #include "src/codegen/assembler.h"
13 #include "src/codegen/mips64/assembler-mips64.h"
14 #include "src/common/globals.h"
15 #include "src/objects/tagged-index.h"
16
17 namespace v8 {
18 namespace internal {
19
20 // Forward declarations.
21 enum class AbortReason : uint8_t;
22
23 // Reserved Register Usage Summary.
24 //
25 // Registers t8, t9, and at are reserved for use by the MacroAssembler.
26 //
27 // The programmer should know that the MacroAssembler may clobber these three,
28 // but won't touch other registers except in special cases.
29 //
30 // Per the MIPS ABI, register t9 must be used for indirect function call
31 // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when
32 // trying to update gp register for position-independent-code. Whenever
33 // MIPS generated code calls C code, it must be via t9 register.
34
35 // Flags used for LeaveExitFrame function.
36 enum LeaveExitFrameMode { EMIT_RETURN = true, NO_EMIT_RETURN = false };
37
38 // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls.
39 enum BranchDelaySlot { USE_DELAY_SLOT, PROTECT };
40
41 // Flags used for the li macro-assembler function.
42 enum LiFlags {
43 // If the constant value can be represented in just 16 bits, then
44 // optimize the li to use a single instruction, rather than lui/ori/dsll
45 // sequence. A number of other optimizations that emits less than
46 // maximum number of instructions exists.
47 OPTIMIZE_SIZE = 0,
48 // Always use 6 instructions (lui/ori/dsll sequence) for release 2 or 4
49 // instructions for release 6 (lui/ori/dahi/dati), even if the constant
50 // could be loaded with just one, so that this value is patchable later.
51 CONSTANT_SIZE = 1,
52 // For address loads only 4 instruction are required. Used to mark
53 // constant load that will be used as address without relocation
54 // information. It ensures predictable code size, so specific sites
55 // in code are patchable.
56 ADDRESS_LOAD = 2
57 };
58
59 enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved };
60
61 Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
62 Register reg3 = no_reg,
63 Register reg4 = no_reg,
64 Register reg5 = no_reg,
65 Register reg6 = no_reg);
66
67 // -----------------------------------------------------------------------------
68 // Static helper functions.
69
70 #if defined(V8_TARGET_LITTLE_ENDIAN)
71 #define SmiWordOffset(offset) (offset + kPointerSize / 2)
72 #else
73 #define SmiWordOffset(offset) offset
74 #endif
75
76 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)77 inline MemOperand FieldMemOperand(Register object, int offset) {
78 return MemOperand(object, offset - kHeapObjectTag);
79 }
80
81 // Generate a MemOperand for storing arguments 5..N on the stack
82 // when calling CallCFunction().
83 // TODO(plind): Currently ONLY used for O32. Should be fixed for
84 // n64, and used in RegExp code, and other places
85 // with more than 8 arguments.
CFunctionArgumentOperand(int index)86 inline MemOperand CFunctionArgumentOperand(int index) {
87 DCHECK_GT(index, kCArgSlotCount);
88 // Argument 5 takes the slot just past the four Arg-slots.
89 int offset = (index - 5) * kPointerSize + kCArgsSlotsSize;
90 return MemOperand(sp, offset);
91 }
92
93 class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
94 public:
95 using TurboAssemblerBase::TurboAssemblerBase;
96
97 // Activation support.
98 void EnterFrame(StackFrame::Type type);
EnterFrame(StackFrame::Type type,bool load_constant_pool_pointer_reg)99 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
100 // Out-of-line constant pool not implemented on mips.
101 UNREACHABLE();
102 }
103 void LeaveFrame(StackFrame::Type type);
104
AllocateStackSpace(Register bytes)105 void AllocateStackSpace(Register bytes) { Dsubu(sp, sp, bytes); }
106
AllocateStackSpace(int bytes)107 void AllocateStackSpace(int bytes) {
108 DCHECK_GE(bytes, 0);
109 if (bytes == 0) return;
110 Dsubu(sp, sp, Operand(bytes));
111 }
112
113 // Generates function and stub prologue code.
114 void StubPrologue(StackFrame::Type type);
115 void Prologue();
116
InitializeRootRegister()117 void InitializeRootRegister() {
118 ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
119 li(kRootRegister, Operand(isolate_root));
120 }
121
122 // Jump unconditionally to given label.
123 // We NEED a nop in the branch delay slot, as it used by v8, for example in
124 // CodeGenerator::ProcessDeferred().
125 // Currently the branch delay slot is filled by the MacroAssembler.
126 // Use rather b(Label) for code generation.
jmp(Label * L)127 void jmp(Label* L) { Branch(L); }
128
129 // -------------------------------------------------------------------------
130 // Debugging.
131
132 void Trap();
133 void DebugBreak();
134
135 // Calls Abort(msg) if the condition cc is not satisfied.
136 // Use --debug_code to enable.
137 void Assert(Condition cc, AbortReason reason, Register rs, Operand rt);
138
139 // Like Assert(), but always enabled.
140 void Check(Condition cc, AbortReason reason, Register rs, Operand rt);
141
142 // Print a message to stdout and abort execution.
143 void Abort(AbortReason msg);
144
145 // Arguments macros.
146 #define COND_TYPED_ARGS Condition cond, Register r1, const Operand &r2
147 #define COND_ARGS cond, r1, r2
148
149 // Cases when relocation is not needed.
150 #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \
151 void Name(target_type target, BranchDelaySlot bd = PROTECT); \
152 inline void Name(BranchDelaySlot bd, target_type target) { \
153 Name(target, bd); \
154 } \
155 void Name(target_type target, COND_TYPED_ARGS, \
156 BranchDelaySlot bd = PROTECT); \
157 inline void Name(BranchDelaySlot bd, target_type target, COND_TYPED_ARGS) { \
158 Name(target, COND_ARGS, bd); \
159 }
160
161 #define DECLARE_BRANCH_PROTOTYPES(Name) \
162 DECLARE_NORELOC_PROTOTYPE(Name, Label*) \
163 DECLARE_NORELOC_PROTOTYPE(Name, int32_t)
164
165 DECLARE_BRANCH_PROTOTYPES(Branch)
DECLARE_BRANCH_PROTOTYPES(BranchAndLink)166 DECLARE_BRANCH_PROTOTYPES(BranchAndLink)
167 DECLARE_BRANCH_PROTOTYPES(BranchShort)
168
169 #undef DECLARE_BRANCH_PROTOTYPES
170 #undef COND_TYPED_ARGS
171 #undef COND_ARGS
172
173 // Floating point branches
174 void CompareF32(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
175 CompareF(S, cc, cmp1, cmp2);
176 }
177
CompareIsNanF32(FPURegister cmp1,FPURegister cmp2)178 void CompareIsNanF32(FPURegister cmp1, FPURegister cmp2) {
179 CompareIsNanF(S, cmp1, cmp2);
180 }
181
CompareF64(FPUCondition cc,FPURegister cmp1,FPURegister cmp2)182 void CompareF64(FPUCondition cc, FPURegister cmp1, FPURegister cmp2) {
183 CompareF(D, cc, cmp1, cmp2);
184 }
185
CompareIsNanF64(FPURegister cmp1,FPURegister cmp2)186 void CompareIsNanF64(FPURegister cmp1, FPURegister cmp2) {
187 CompareIsNanF(D, cmp1, cmp2);
188 }
189
190 void BranchTrueShortF(Label* target, BranchDelaySlot bd = PROTECT);
191 void BranchFalseShortF(Label* target, BranchDelaySlot bd = PROTECT);
192
193 void BranchTrueF(Label* target, BranchDelaySlot bd = PROTECT);
194 void BranchFalseF(Label* target, BranchDelaySlot bd = PROTECT);
195
196 // MSA branches
197 void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond,
198 MSARegister wt, BranchDelaySlot bd = PROTECT);
199
200 void BranchLong(int32_t offset, BranchDelaySlot bdslot = PROTECT);
201 void Branch(Label* L, Condition cond, Register rs, RootIndex index,
202 BranchDelaySlot bdslot = PROTECT);
203
204 static int InstrCountForLi64Bit(int64_t value);
205 inline void LiLower32BitHelper(Register rd, Operand j);
206 void li_optimized(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
207 // Load int32 in the rd register.
208 void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE);
209 inline void li(Register rd, int64_t j, LiFlags mode = OPTIMIZE_SIZE) {
210 li(rd, Operand(j), mode);
211 }
212 // inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) {
213 // li(rd, Operand(static_cast<int64_t>(j)), mode);
214 // }
215 void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE);
216 void li(Register dst, ExternalReference value, LiFlags mode = OPTIMIZE_SIZE);
217 void li(Register dst, const StringConstantBase* string,
218 LiFlags mode = OPTIMIZE_SIZE);
219
220 void LoadFromConstantsTable(Register destination, int constant_index) final;
221 void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
222 void LoadRootRelative(Register destination, int32_t offset) final;
223
Move(Register output,MemOperand operand)224 inline void Move(Register output, MemOperand operand) { Ld(output, operand); }
225
226 // Jump, Call, and Ret pseudo instructions implementing inter-working.
227 #define COND_ARGS \
228 Condition cond = al, Register rs = zero_reg, \
229 const Operand &rt = Operand(zero_reg), \
230 BranchDelaySlot bd = PROTECT
231
232 void Jump(Register target, COND_ARGS);
233 void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS);
234 void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS);
235 // Deffer from li, this method save target to the memory, and then load
236 // it to register use ld, it can be used in wasm jump table for concurrent
237 // patching.
238 void PatchAndJump(Address target);
239 void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS);
240 void Jump(const ExternalReference& reference);
241 void Call(Register target, COND_ARGS);
242 void Call(Address target, RelocInfo::Mode rmode, COND_ARGS);
243 void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
244 COND_ARGS);
245 void Call(Label* target);
246 void LoadAddress(Register dst, Label* target);
247
248 // Load the builtin given by the Smi in |builtin_index| into the same
249 // register.
250 void LoadEntryFromBuiltinIndex(Register builtin);
251 void LoadEntryFromBuiltin(Builtin builtin, Register destination);
252 MemOperand EntryFromBuiltinAsOperand(Builtin builtin);
253
254 void CallBuiltinByIndex(Register builtin);
255 void CallBuiltin(Builtin builtin);
256
257 void LoadCodeObjectEntry(Register destination, Register code_object);
258 void CallCodeObject(Register code_object);
259 void JumpCodeObject(Register code_object,
260 JumpMode jump_mode = JumpMode::kJump);
261
262 // Generates an instruction sequence s.t. the return address points to the
263 // instruction following the call.
264 // The return address on the stack is used by frame iteration.
265 void StoreReturnAddressAndCall(Register target);
266
267 void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
268 DeoptimizeKind kind, Label* ret,
269 Label* jump_deoptimization_entry_label);
270
271 void Ret(COND_ARGS);
272 inline void Ret(BranchDelaySlot bd, Condition cond = al,
273 Register rs = zero_reg,
274 const Operand& rt = Operand(zero_reg)) {
275 Ret(cond, rs, rt, bd);
276 }
277
278 // Emit code to discard a non-negative number of pointer-sized elements
279 // from the stack, clobbering only the sp register.
280 void Drop(int count, Condition cond = cc_always, Register reg = no_reg,
281 const Operand& op = Operand(no_reg));
282
283 enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
284 enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
285 void DropArguments(Register count, ArgumentsCountType type,
286 ArgumentsCountMode mode, Register scratch = no_reg);
287 void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
288 ArgumentsCountType type,
289 ArgumentsCountMode mode,
290 Register scratch = no_reg);
291
292 // Trivial case of DropAndRet that utilizes the delay slot.
293 void DropAndRet(int drop);
294
295 void DropAndRet(int drop, Condition cond, Register reg, const Operand& op);
296
297 void Ld(Register rd, const MemOperand& rs);
298 void Sd(Register rd, const MemOperand& rs);
299
push(Register src)300 void push(Register src) {
301 Daddu(sp, sp, Operand(-kPointerSize));
302 Sd(src, MemOperand(sp, 0));
303 }
Push(Register src)304 void Push(Register src) { push(src); }
305 void Push(Handle<HeapObject> handle);
306 void Push(Smi smi);
307
308 // Push two registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2)309 void Push(Register src1, Register src2) {
310 Dsubu(sp, sp, Operand(2 * kPointerSize));
311 Sd(src1, MemOperand(sp, 1 * kPointerSize));
312 Sd(src2, MemOperand(sp, 0 * kPointerSize));
313 }
314
315 // Push three registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3)316 void Push(Register src1, Register src2, Register src3) {
317 Dsubu(sp, sp, Operand(3 * kPointerSize));
318 Sd(src1, MemOperand(sp, 2 * kPointerSize));
319 Sd(src2, MemOperand(sp, 1 * kPointerSize));
320 Sd(src3, MemOperand(sp, 0 * kPointerSize));
321 }
322
323 // Push four registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4)324 void Push(Register src1, Register src2, Register src3, Register src4) {
325 Dsubu(sp, sp, Operand(4 * kPointerSize));
326 Sd(src1, MemOperand(sp, 3 * kPointerSize));
327 Sd(src2, MemOperand(sp, 2 * kPointerSize));
328 Sd(src3, MemOperand(sp, 1 * kPointerSize));
329 Sd(src4, MemOperand(sp, 0 * kPointerSize));
330 }
331
332 // Push five registers. Pushes leftmost register first (to highest address).
Push(Register src1,Register src2,Register src3,Register src4,Register src5)333 void Push(Register src1, Register src2, Register src3, Register src4,
334 Register src5) {
335 Dsubu(sp, sp, Operand(5 * kPointerSize));
336 Sd(src1, MemOperand(sp, 4 * kPointerSize));
337 Sd(src2, MemOperand(sp, 3 * kPointerSize));
338 Sd(src3, MemOperand(sp, 2 * kPointerSize));
339 Sd(src4, MemOperand(sp, 1 * kPointerSize));
340 Sd(src5, MemOperand(sp, 0 * kPointerSize));
341 }
342
Push(Register src,Condition cond,Register tst1,Register tst2)343 void Push(Register src, Condition cond, Register tst1, Register tst2) {
344 // Since we don't have conditional execution we use a Branch.
345 Branch(3, cond, tst1, Operand(tst2));
346 Dsubu(sp, sp, Operand(kPointerSize));
347 Sd(src, MemOperand(sp, 0));
348 }
349
350 enum PushArrayOrder { kNormal, kReverse };
351 void PushArray(Register array, Register size, Register scratch,
352 Register scratch2, PushArrayOrder order = kNormal);
353
354 void MaybeSaveRegisters(RegList registers);
355 void MaybeRestoreRegisters(RegList registers);
356
357 void CallEphemeronKeyBarrier(Register object, Register slot_address,
358 SaveFPRegsMode fp_mode);
359
360 void CallRecordWriteStubSaveRegisters(
361 Register object, Register slot_address,
362 RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
363 StubCallMode mode = StubCallMode::kCallBuiltinPointer);
364 void CallRecordWriteStub(
365 Register object, Register slot_address,
366 RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
367 StubCallMode mode = StubCallMode::kCallBuiltinPointer);
368
369 // Push multiple registers on the stack.
370 // Registers are saved in numerical order, with higher numbered registers
371 // saved in higher memory addresses.
372 void MultiPush(RegList regs);
373 void MultiPushFPU(DoubleRegList regs);
374 void MultiPushMSA(DoubleRegList regs);
375
376 // Calculate how much stack space (in bytes) are required to store caller
377 // registers excluding those specified in the arguments.
378 int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
379 Register exclusion1 = no_reg,
380 Register exclusion2 = no_reg,
381 Register exclusion3 = no_reg) const;
382
383 // Push caller saved registers on the stack, and return the number of bytes
384 // stack pointer is adjusted.
385 int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
386 Register exclusion2 = no_reg,
387 Register exclusion3 = no_reg);
388 // Restore caller saved registers from the stack, and return the number of
389 // bytes stack pointer is adjusted.
390 int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
391 Register exclusion2 = no_reg,
392 Register exclusion3 = no_reg);
393
pop(Register dst)394 void pop(Register dst) {
395 Ld(dst, MemOperand(sp, 0));
396 Daddu(sp, sp, Operand(kPointerSize));
397 }
Pop(Register dst)398 void Pop(Register dst) { pop(dst); }
399
400 // Pop two registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2)401 void Pop(Register src1, Register src2) {
402 DCHECK(src1 != src2);
403 Ld(src2, MemOperand(sp, 0 * kPointerSize));
404 Ld(src1, MemOperand(sp, 1 * kPointerSize));
405 Daddu(sp, sp, 2 * kPointerSize);
406 }
407
408 // Pop three registers. Pops rightmost register first (from lower address).
Pop(Register src1,Register src2,Register src3)409 void Pop(Register src1, Register src2, Register src3) {
410 Ld(src3, MemOperand(sp, 0 * kPointerSize));
411 Ld(src2, MemOperand(sp, 1 * kPointerSize));
412 Ld(src1, MemOperand(sp, 2 * kPointerSize));
413 Daddu(sp, sp, 3 * kPointerSize);
414 }
415
416 void Pop(uint32_t count = 1) { Daddu(sp, sp, Operand(count * kPointerSize)); }
417
418 // Pops multiple values from the stack and load them in the
419 // registers specified in regs. Pop order is the opposite as in MultiPush.
420 void MultiPop(RegList regs);
421 void MultiPopFPU(DoubleRegList regs);
422 void MultiPopMSA(DoubleRegList regs);
423
424 #define DEFINE_INSTRUCTION(instr) \
425 void instr(Register rd, Register rs, const Operand& rt); \
426 void instr(Register rd, Register rs, Register rt) { \
427 instr(rd, rs, Operand(rt)); \
428 } \
429 void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); }
430
431 #define DEFINE_INSTRUCTION2(instr) \
432 void instr(Register rs, const Operand& rt); \
433 void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \
434 void instr(Register rs, int32_t j) { instr(rs, Operand(j)); }
435
436 DEFINE_INSTRUCTION(Addu)
DEFINE_INSTRUCTION(Daddu)437 DEFINE_INSTRUCTION(Daddu)
438 DEFINE_INSTRUCTION(Div)
439 DEFINE_INSTRUCTION(Divu)
440 DEFINE_INSTRUCTION(Ddivu)
441 DEFINE_INSTRUCTION(Mod)
442 DEFINE_INSTRUCTION(Modu)
443 DEFINE_INSTRUCTION(Ddiv)
444 DEFINE_INSTRUCTION(Subu)
445 DEFINE_INSTRUCTION(Dsubu)
446 DEFINE_INSTRUCTION(Dmod)
447 DEFINE_INSTRUCTION(Dmodu)
448 DEFINE_INSTRUCTION(Mul)
449 DEFINE_INSTRUCTION(Mulh)
450 DEFINE_INSTRUCTION(Mulhu)
451 DEFINE_INSTRUCTION(Dmul)
452 DEFINE_INSTRUCTION(Dmulh)
453 DEFINE_INSTRUCTION2(Mult)
454 DEFINE_INSTRUCTION2(Dmult)
455 DEFINE_INSTRUCTION2(Multu)
456 DEFINE_INSTRUCTION2(Dmultu)
457 DEFINE_INSTRUCTION2(Div)
458 DEFINE_INSTRUCTION2(Ddiv)
459 DEFINE_INSTRUCTION2(Divu)
460 DEFINE_INSTRUCTION2(Ddivu)
461
462 DEFINE_INSTRUCTION(And)
463 DEFINE_INSTRUCTION(Or)
464 DEFINE_INSTRUCTION(Xor)
465 DEFINE_INSTRUCTION(Nor)
466 DEFINE_INSTRUCTION2(Neg)
467
468 DEFINE_INSTRUCTION(Slt)
469 DEFINE_INSTRUCTION(Sltu)
470 DEFINE_INSTRUCTION(Sle)
471 DEFINE_INSTRUCTION(Sleu)
472 DEFINE_INSTRUCTION(Sgt)
473 DEFINE_INSTRUCTION(Sgtu)
474 DEFINE_INSTRUCTION(Sge)
475 DEFINE_INSTRUCTION(Sgeu)
476
477 // MIPS32 R2 instruction macro.
478 DEFINE_INSTRUCTION(Ror)
479 DEFINE_INSTRUCTION(Dror)
480
481 #undef DEFINE_INSTRUCTION
482 #undef DEFINE_INSTRUCTION2
483 #undef DEFINE_INSTRUCTION3
484
485 void SmiTag(Register dst, Register src) {
486 STATIC_ASSERT(kSmiTag == 0);
487 if (SmiValuesAre32Bits()) {
488 dsll32(dst, src, 0);
489 } else {
490 DCHECK(SmiValuesAre31Bits());
491 Addu(dst, src, src);
492 }
493 }
494
SmiTag(Register reg)495 void SmiTag(Register reg) { SmiTag(reg, reg); }
496
497 void SmiUntag(Register dst, const MemOperand& src);
SmiUntag(Register dst,Register src)498 void SmiUntag(Register dst, Register src) {
499 if (SmiValuesAre32Bits()) {
500 dsra32(dst, src, kSmiShift - 32);
501 } else {
502 DCHECK(SmiValuesAre31Bits());
503 sra(dst, src, kSmiShift);
504 }
505 }
506
SmiUntag(Register reg)507 void SmiUntag(Register reg) { SmiUntag(reg, reg); }
508
509 // Left-shifted from int32 equivalent of Smi.
SmiScale(Register dst,Register src,int scale)510 void SmiScale(Register dst, Register src, int scale) {
511 if (SmiValuesAre32Bits()) {
512 // The int portion is upper 32-bits of 64-bit word.
513 dsra(dst, src, kSmiShift - scale);
514 } else {
515 DCHECK(SmiValuesAre31Bits());
516 DCHECK_GE(scale, kSmiTagSize);
517 sll(dst, src, scale - kSmiTagSize);
518 }
519 }
520
521 // On MIPS64, we should sign-extend 32-bit values.
SmiToInt32(Register smi)522 void SmiToInt32(Register smi) {
523 if (FLAG_enable_slow_asserts) {
524 AssertSmi(smi);
525 }
526 DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
527 SmiUntag(smi);
528 }
529
530 // Abort execution if argument is a smi, enabled via --debug-code.
531 void AssertNotSmi(Register object);
532 void AssertSmi(Register object);
533
534 int CalculateStackPassedWords(int num_reg_arguments,
535 int num_double_arguments);
536
537 // Before calling a C-function from generated code, align arguments on stack
538 // and add space for the four mips argument slots.
539 // After aligning the frame, non-register arguments must be stored on the
540 // stack, after the argument-slots using helper: CFunctionArgumentOperand().
541 // The argument count assumes all arguments are word sized.
542 // Some compilers/platforms require the stack to be aligned when calling
543 // C++ code.
544 // Needs a scratch register to do some arithmetic. This register will be
545 // trashed.
546 void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
547 Register scratch);
548 void PrepareCallCFunction(int num_reg_arguments, Register scratch);
549
550 // Arguments 1-4 are placed in registers a0 through a3 respectively.
551 // Arguments 5..n are stored to stack using following:
552 // Sw(a4, CFunctionArgumentOperand(5));
553
554 // Calls a C function and cleans up the space for arguments allocated
555 // by PrepareCallCFunction. The called function is not allowed to trigger a
556 // garbage collection, since that might move the code and invalidate the
557 // return address (unless this is somehow accounted for by the called
558 // function).
559 void CallCFunction(ExternalReference function, int num_arguments);
560 void CallCFunction(Register function, int num_arguments);
561 void CallCFunction(ExternalReference function, int num_reg_arguments,
562 int num_double_arguments);
563 void CallCFunction(Register function, int num_reg_arguments,
564 int num_double_arguments);
565 void MovFromFloatResult(DoubleRegister dst);
566 void MovFromFloatParameter(DoubleRegister dst);
567
568 // There are two ways of passing double arguments on MIPS, depending on
569 // whether soft or hard floating point ABI is used. These functions
570 // abstract parameter passing for the three different ways we call
571 // C functions from generated code.
572 void MovToFloatParameter(DoubleRegister src);
573 void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
574 void MovToFloatResult(DoubleRegister src);
575
576 // See comments at the beginning of Builtins::Generate_CEntry.
PrepareCEntryArgs(int num_args)577 inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); }
PrepareCEntryFunction(const ExternalReference & ref)578 inline void PrepareCEntryFunction(const ExternalReference& ref) {
579 li(a1, ref);
580 }
581
582 void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
583 Label* condition_met);
584 #undef COND_ARGS
585
586 // Performs a truncating conversion of a floating point number as used by
587 // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
588 // Exits with 'result' holding the answer.
589 void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
590 DoubleRegister double_input, StubCallMode stub_mode);
591
592 // Conditional move.
593 void Movz(Register rd, Register rs, Register rt);
594 void Movn(Register rd, Register rs, Register rt);
595 void Movt(Register rd, Register rs, uint16_t cc = 0);
596 void Movf(Register rd, Register rs, uint16_t cc = 0);
597
598 void LoadZeroIfFPUCondition(Register dest);
599 void LoadZeroIfNotFPUCondition(Register dest);
600
601 void LoadZeroIfConditionNotZero(Register dest, Register condition);
602 void LoadZeroIfConditionZero(Register dest, Register condition);
603 void LoadZeroOnCondition(Register rd, Register rs, const Operand& rt,
604 Condition cond);
605
606 void Clz(Register rd, Register rs);
607 void Dclz(Register rd, Register rs);
608 void Ctz(Register rd, Register rs);
609 void Dctz(Register rd, Register rs);
610 void Popcnt(Register rd, Register rs);
611 void Dpopcnt(Register rd, Register rs);
612
613 // MIPS64 R2 instruction macro.
614 void Ext(Register rt, Register rs, uint16_t pos, uint16_t size);
615 void Dext(Register rt, Register rs, uint16_t pos, uint16_t size);
616 void Ins(Register rt, Register rs, uint16_t pos, uint16_t size);
617 void Dins(Register rt, Register rs, uint16_t pos, uint16_t size);
618 void ExtractBits(Register dest, Register source, Register pos, int size,
619 bool sign_extend = false);
620 void InsertBits(Register dest, Register source, Register pos, int size);
621 void Neg_s(FPURegister fd, FPURegister fs);
622 void Neg_d(FPURegister fd, FPURegister fs);
623
624 // MIPS64 R6 instruction macros.
625 void Bovc(Register rt, Register rs, Label* L);
626 void Bnvc(Register rt, Register rs, Label* L);
627
628 // Convert single to unsigned word.
629 void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch);
630 void Trunc_uw_s(Register rd, FPURegister fs, FPURegister scratch);
631
632 // Change endianness
633 void ByteSwapSigned(Register dest, Register src, int operand_size);
634 void ByteSwapUnsigned(Register dest, Register src, int operand_size);
635
636 void Ulh(Register rd, const MemOperand& rs);
637 void Ulhu(Register rd, const MemOperand& rs);
638 void Ush(Register rd, const MemOperand& rs, Register scratch);
639
640 void Ulw(Register rd, const MemOperand& rs);
641 void Ulwu(Register rd, const MemOperand& rs);
642 void Usw(Register rd, const MemOperand& rs);
643
644 void Uld(Register rd, const MemOperand& rs);
645 void Usd(Register rd, const MemOperand& rs);
646
647 void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch);
648 void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch);
649
650 void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch);
651 void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch);
652
653 void Lb(Register rd, const MemOperand& rs);
654 void Lbu(Register rd, const MemOperand& rs);
655 void Sb(Register rd, const MemOperand& rs);
656
657 void Lh(Register rd, const MemOperand& rs);
658 void Lhu(Register rd, const MemOperand& rs);
659 void Sh(Register rd, const MemOperand& rs);
660
661 void Lw(Register rd, const MemOperand& rs);
662 void Lwu(Register rd, const MemOperand& rs);
663 void Sw(Register rd, const MemOperand& rs);
664
665 void Lwc1(FPURegister fd, const MemOperand& src);
666 void Swc1(FPURegister fs, const MemOperand& dst);
667
668 void Ldc1(FPURegister fd, const MemOperand& src);
669 void Sdc1(FPURegister fs, const MemOperand& dst);
670
671 void Ll(Register rd, const MemOperand& rs);
672 void Sc(Register rd, const MemOperand& rs);
673
674 void Lld(Register rd, const MemOperand& rs);
675 void Scd(Register rd, const MemOperand& rs);
676
677 // Perform a floating-point min or max operation with the
678 // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt.
679 // Some cases, typically NaNs or +/-0.0, are expected to be rare and are
680 // handled in out-of-line code. The specific behaviour depends on supported
681 // instructions.
682 //
683 // These functions assume (and assert) that src1!=src2. It is permitted
684 // for the result to alias either input register.
685 void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2,
686 Label* out_of_line);
687 void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2,
688 Label* out_of_line);
689 void Float64Max(FPURegister dst, FPURegister src1, FPURegister src2,
690 Label* out_of_line);
691 void Float64Min(FPURegister dst, FPURegister src1, FPURegister src2,
692 Label* out_of_line);
693
694 // Generate out-of-line cases for the macros above.
695 void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
696 void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
697 void Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
698 void Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2);
699
IsDoubleZeroRegSet()700 bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; }
701
mov(Register rd,Register rt)702 void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); }
703
Move(Register dst,Handle<HeapObject> handle)704 inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); }
Move(Register dst,Smi smi)705 inline void Move(Register dst, Smi smi) { li(dst, Operand(smi)); }
706
Move(Register dst,Register src)707 inline void Move(Register dst, Register src) {
708 if (dst != src) {
709 mov(dst, src);
710 }
711 }
712
Move(FPURegister dst,FPURegister src)713 inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); }
714
Move(Register dst_low,Register dst_high,FPURegister src)715 inline void Move(Register dst_low, Register dst_high, FPURegister src) {
716 mfc1(dst_low, src);
717 mfhc1(dst_high, src);
718 }
719
Move(Register dst,FPURegister src)720 inline void Move(Register dst, FPURegister src) { dmfc1(dst, src); }
721
Move(FPURegister dst,Register src)722 inline void Move(FPURegister dst, Register src) { dmtc1(src, dst); }
723
FmoveHigh(Register dst_high,FPURegister src)724 inline void FmoveHigh(Register dst_high, FPURegister src) {
725 mfhc1(dst_high, src);
726 }
727
FmoveHigh(FPURegister dst,Register src_high)728 inline void FmoveHigh(FPURegister dst, Register src_high) {
729 mthc1(src_high, dst);
730 }
731
FmoveLow(Register dst_low,FPURegister src)732 inline void FmoveLow(Register dst_low, FPURegister src) {
733 mfc1(dst_low, src);
734 }
735
736 void FmoveLow(FPURegister dst, Register src_low);
737
Move(FPURegister dst,Register src_low,Register src_high)738 inline void Move(FPURegister dst, Register src_low, Register src_high) {
739 mtc1(src_low, dst);
740 mthc1(src_high, dst);
741 }
742
Move_d(FPURegister dst,FPURegister src)743 inline void Move_d(FPURegister dst, FPURegister src) {
744 if (dst != src) {
745 mov_d(dst, src);
746 }
747 }
748
Move_s(FPURegister dst,FPURegister src)749 inline void Move_s(FPURegister dst, FPURegister src) {
750 if (dst != src) {
751 mov_s(dst, src);
752 }
753 }
754
Move(FPURegister dst,float imm)755 void Move(FPURegister dst, float imm) { Move(dst, bit_cast<uint32_t>(imm)); }
Move(FPURegister dst,double imm)756 void Move(FPURegister dst, double imm) { Move(dst, bit_cast<uint64_t>(imm)); }
757 void Move(FPURegister dst, uint32_t src);
758 void Move(FPURegister dst, uint64_t src);
759
760 // DaddOverflow sets overflow register to a negative value if
761 // overflow occured, otherwise it is zero or positive
762 void DaddOverflow(Register dst, Register left, const Operand& right,
763 Register overflow);
764 // DsubOverflow sets overflow register to a negative value if
765 // overflow occured, otherwise it is zero or positive
766 void DsubOverflow(Register dst, Register left, const Operand& right,
767 Register overflow);
768 // MulOverflow sets overflow register to zero if no overflow occured
769 void MulOverflow(Register dst, Register left, const Operand& right,
770 Register overflow);
771
772 // Number of instructions needed for calculation of switch table entry address
773 #ifdef _MIPS_ARCH_MIPS64R6
774 static const int kSwitchTablePrologueSize = 6;
775 #else
776 static const int kSwitchTablePrologueSize = 11;
777 #endif
778
779 // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a
780 // functor/function with 'Label *func(size_t index)' declaration.
781 template <typename Func>
782 void GenerateSwitchTable(Register index, size_t case_count,
783 Func GetLabelFunction);
784
785 // Load an object from the root table.
786 void LoadRoot(Register destination, RootIndex index) final;
787 void LoadRoot(Register destination, RootIndex index, Condition cond,
788 Register src1, const Operand& src2);
789
790 void LoadMap(Register destination, Register object);
791
792 // If the value is a NaN, canonicalize the value else, do nothing.
793 void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
794
795 // ---------------------------------------------------------------------------
796 // FPU macros. These do not handle special cases like NaN or +- inf.
797
798 // Convert unsigned word to double.
799 void Cvt_d_uw(FPURegister fd, FPURegister fs);
800 void Cvt_d_uw(FPURegister fd, Register rs);
801
802 // Convert unsigned long to double.
803 void Cvt_d_ul(FPURegister fd, FPURegister fs);
804 void Cvt_d_ul(FPURegister fd, Register rs);
805
806 // Convert unsigned word to float.
807 void Cvt_s_uw(FPURegister fd, FPURegister fs);
808 void Cvt_s_uw(FPURegister fd, Register rs);
809
810 // Convert unsigned long to float.
811 void Cvt_s_ul(FPURegister fd, FPURegister fs);
812 void Cvt_s_ul(FPURegister fd, Register rs);
813
814 // Convert double to unsigned word.
815 void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch);
816 void Trunc_uw_d(Register rd, FPURegister fs, FPURegister scratch);
817
818 // Convert double to unsigned long.
819 void Trunc_ul_d(FPURegister fd, FPURegister fs, FPURegister scratch,
820 Register result = no_reg);
821 void Trunc_ul_d(Register rd, FPURegister fs, FPURegister scratch,
822 Register result = no_reg);
823
824 // Convert single to unsigned long.
825 void Trunc_ul_s(FPURegister fd, FPURegister fs, FPURegister scratch,
826 Register result = no_reg);
827 void Trunc_ul_s(Register rd, FPURegister fs, FPURegister scratch,
828 Register result = no_reg);
829
830 // Round double functions
831 void Trunc_d_d(FPURegister fd, FPURegister fs);
832 void Round_d_d(FPURegister fd, FPURegister fs);
833 void Floor_d_d(FPURegister fd, FPURegister fs);
834 void Ceil_d_d(FPURegister fd, FPURegister fs);
835
836 // Round float functions
837 void Trunc_s_s(FPURegister fd, FPURegister fs);
838 void Round_s_s(FPURegister fd, FPURegister fs);
839 void Floor_s_s(FPURegister fd, FPURegister fs);
840 void Ceil_s_s(FPURegister fd, FPURegister fs);
841
842 void LoadLane(MSASize sz, MSARegister dst, uint8_t laneidx, MemOperand src);
843 void StoreLane(MSASize sz, MSARegister src, uint8_t laneidx, MemOperand dst);
844 void ExtMulLow(MSADataType type, MSARegister dst, MSARegister src1,
845 MSARegister src2);
846 void ExtMulHigh(MSADataType type, MSARegister dst, MSARegister src1,
847 MSARegister src2);
848 void LoadSplat(MSASize sz, MSARegister dst, MemOperand src);
849 void ExtAddPairwise(MSADataType type, MSARegister dst, MSARegister src);
850 void MSARoundW(MSARegister dst, MSARegister src, FPURoundingMode mode);
851 void MSARoundD(MSARegister dst, MSARegister src, FPURoundingMode mode);
852
853 // Jump the register contains a smi.
854 void JumpIfSmi(Register value, Label* smi_label,
855 BranchDelaySlot bd = PROTECT);
856
JumpIfEqual(Register a,int32_t b,Label * dest)857 void JumpIfEqual(Register a, int32_t b, Label* dest) {
858 li(kScratchReg, Operand(b));
859 Branch(dest, eq, a, Operand(kScratchReg));
860 }
861
JumpIfLessThan(Register a,int32_t b,Label * dest)862 void JumpIfLessThan(Register a, int32_t b, Label* dest) {
863 li(kScratchReg, Operand(b));
864 Branch(dest, lt, a, Operand(kScratchReg));
865 }
866
867 // Push a standard frame, consisting of ra, fp, context and JS function.
868 void PushStandardFrame(Register function_reg);
869
870 // Get the actual activation frame alignment for target environment.
871 static int ActivationFrameAlignment();
872
873 // Load Scaled Address instructions. Parameter sa (shift argument) must be
874 // between [1, 31] (inclusive). On pre-r6 architectures the scratch register
875 // may be clobbered.
876 void Lsa(Register rd, Register rs, Register rt, uint8_t sa,
877 Register scratch = at);
878 void Dlsa(Register rd, Register rs, Register rt, uint8_t sa,
879 Register scratch = at);
880
881 // Compute the start of the generated instruction stream from the current PC.
882 // This is an alternative to embedding the {CodeObject} handle as a reference.
883 void ComputeCodeStartAddress(Register dst);
884
885 // Control-flow integrity:
886
887 // Define a function entrypoint. This doesn't emit any code for this
888 // architecture, as control-flow integrity is not supported for it.
CodeEntry()889 void CodeEntry() {}
890 // Define an exception handler.
ExceptionHandler()891 void ExceptionHandler() {}
892 // Define an exception handler and bind a label.
BindExceptionHandler(Label * label)893 void BindExceptionHandler(Label* label) { bind(label); }
894
895 protected:
896 inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch);
897 inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits);
898
899 private:
900 bool has_double_zero_reg_set_ = false;
901
902 // Performs a truncating conversion of a floating point number as used by
903 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
904 // succeeds, otherwise falls through if result is saturated. On return
905 // 'result' either holds answer, or is clobbered on fall through.
906 void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
907 Label* done);
908
909 void CompareF(SecondaryField sizeField, FPUCondition cc, FPURegister cmp1,
910 FPURegister cmp2);
911
912 void CompareIsNanF(SecondaryField sizeField, FPURegister cmp1,
913 FPURegister cmp2);
914
915 void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
916 MSARegister wt, BranchDelaySlot bd = PROTECT);
917
918 void CallCFunctionHelper(Register function, int num_reg_arguments,
919 int num_double_arguments);
920
921 // TODO(mips) Reorder parameters so out parameters come last.
922 bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits);
923 bool CalculateOffset(Label* L, int32_t* offset, OffsetSize bits,
924 Register* scratch, const Operand& rt);
925
926 void BranchShortHelperR6(int32_t offset, Label* L);
927 void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot);
928 bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond,
929 Register rs, const Operand& rt);
930 bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs,
931 const Operand& rt, BranchDelaySlot bdslot);
932 bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs,
933 const Operand& rt, BranchDelaySlot bdslot);
934
935 void BranchAndLinkShortHelperR6(int32_t offset, Label* L);
936 void BranchAndLinkShortHelper(int16_t offset, Label* L,
937 BranchDelaySlot bdslot);
938 void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT);
939 void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT);
940 bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond,
941 Register rs, const Operand& rt);
942 bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond,
943 Register rs, const Operand& rt,
944 BranchDelaySlot bdslot);
945 bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond,
946 Register rs, const Operand& rt,
947 BranchDelaySlot bdslot);
948 void BranchLong(Label* L, BranchDelaySlot bdslot);
949 void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot);
950
951 template <typename RoundFunc>
952 void RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode,
953 RoundFunc round);
954
955 template <typename RoundFunc>
956 void RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode,
957 RoundFunc round);
958
959 // Push a fixed frame, consisting of ra, fp.
960 void PushCommonFrame(Register marker_reg = no_reg);
961 };
962
963 // MacroAssembler implements a collection of frequently used macros.
964 class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
965 public:
966 using TurboAssembler::TurboAssembler;
967
968 // It assumes that the arguments are located below the stack pointer.
969 // argc is the number of arguments not including the receiver.
970 // TODO(victorgomes): Remove this function once we stick with the reversed
971 // arguments order.
LoadReceiver(Register dest,Register argc)972 void LoadReceiver(Register dest, Register argc) {
973 Ld(dest, MemOperand(sp, 0));
974 }
975
StoreReceiver(Register rec,Register argc,Register scratch)976 void StoreReceiver(Register rec, Register argc, Register scratch) {
977 Sd(rec, MemOperand(sp, 0));
978 }
979
980 bool IsNear(Label* L, Condition cond, int rs_reg);
981
982 // Swap two registers. If the scratch register is omitted then a slightly
983 // less efficient form using xor instead of mov is emitted.
984 void Swap(Register reg1, Register reg2, Register scratch = no_reg);
985
PushRoot(RootIndex index)986 void PushRoot(RootIndex index) {
987 UseScratchRegisterScope temps(this);
988 Register scratch = temps.Acquire();
989 LoadRoot(scratch, index);
990 Push(scratch);
991 }
992
993 // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,RootIndex index,Label * if_equal)994 void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
995 UseScratchRegisterScope temps(this);
996 Register scratch = temps.Acquire();
997 LoadRoot(scratch, index);
998 Branch(if_equal, eq, with, Operand(scratch));
999 }
1000
1001 // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,RootIndex index,Label * if_not_equal)1002 void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
1003 UseScratchRegisterScope temps(this);
1004 Register scratch = temps.Acquire();
1005 LoadRoot(scratch, index);
1006 Branch(if_not_equal, ne, with, Operand(scratch));
1007 }
1008
1009 // Checks if value is in range [lower_limit, higher_limit] using a single
1010 // comparison.
1011 void JumpIfIsInRange(Register value, unsigned lower_limit,
1012 unsigned higher_limit, Label* on_in_range);
1013
1014 // ---------------------------------------------------------------------------
1015 // GC Support
1016
1017 // Notify the garbage collector that we wrote a pointer into an object.
1018 // |object| is the object being stored into, |value| is the object being
1019 // stored. value and scratch registers are clobbered by the operation.
1020 // The offset is the offset from the start of the object, not the offset from
1021 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
1022 void RecordWriteField(
1023 Register object, int offset, Register value, Register scratch,
1024 RAStatus ra_status, SaveFPRegsMode save_fp,
1025 RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
1026 SmiCheck smi_check = SmiCheck::kInline);
1027
1028 // For a given |object| notify the garbage collector that the slot |address|
1029 // has been written. |value| is the object being stored. The value and
1030 // address registers are clobbered by the operation.
1031 void RecordWrite(
1032 Register object, Register address, Register value, RAStatus ra_status,
1033 SaveFPRegsMode save_fp,
1034 RememberedSetAction remembered_set_action = RememberedSetAction::kEmit,
1035 SmiCheck smi_check = SmiCheck::kInline);
1036
1037 void Pref(int32_t hint, const MemOperand& rs);
1038
1039 // ---------------------------------------------------------------------------
1040 // Pseudo-instructions.
1041
1042 void LoadWordPair(Register rd, const MemOperand& rs, Register scratch = at);
1043 void StoreWordPair(Register rd, const MemOperand& rs, Register scratch = at);
1044
1045 // Convert double to unsigned long.
1046 void Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch);
1047
1048 void Trunc_l_d(FPURegister fd, FPURegister fs);
1049 void Round_l_d(FPURegister fd, FPURegister fs);
1050 void Floor_l_d(FPURegister fd, FPURegister fs);
1051 void Ceil_l_d(FPURegister fd, FPURegister fs);
1052
1053 void Trunc_w_d(FPURegister fd, FPURegister fs);
1054 void Round_w_d(FPURegister fd, FPURegister fs);
1055 void Floor_w_d(FPURegister fd, FPURegister fs);
1056 void Ceil_w_d(FPURegister fd, FPURegister fs);
1057
1058 void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1059 FPURegister scratch);
1060 void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1061 FPURegister scratch);
1062 void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1063 FPURegister scratch);
1064 void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft,
1065 FPURegister scratch);
1066
1067 void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond,
1068 MSARegister wt, BranchDelaySlot bd = PROTECT);
1069
1070 // Enter exit frame.
1071 // argc - argument count to be dropped by LeaveExitFrame.
1072 // save_doubles - saves FPU registers on stack, currently disabled.
1073 // stack_space - extra stack space.
1074 void EnterExitFrame(bool save_doubles, int stack_space = 0,
1075 StackFrame::Type frame_type = StackFrame::EXIT);
1076
1077 // Leave the current exit frame.
1078 void LeaveExitFrame(bool save_doubles, Register arg_count,
1079 bool do_return = NO_EMIT_RETURN,
1080 bool argument_count_is_length = false);
1081
1082 // Make sure the stack is aligned. Only emits code in debug mode.
1083 void AssertStackIsAligned();
1084
1085 // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)1086 void LoadGlobalProxy(Register dst) {
1087 LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
1088 }
1089
1090 void LoadNativeContextSlot(Register dst, int index);
1091
1092 // Load the initial map from the global function. The registers
1093 // function and map can be the same, function is then overwritten.
1094 void LoadGlobalFunctionInitialMap(Register function, Register map,
1095 Register scratch);
1096
1097 // -------------------------------------------------------------------------
1098 // JavaScript invokes.
1099
1100 // Invoke the JavaScript function code by either calling or jumping.
1101 void InvokeFunctionCode(Register function, Register new_target,
1102 Register expected_parameter_count,
1103 Register actual_parameter_count, InvokeType type);
1104
1105 // On function call, call into the debugger if necessary.
1106 void CheckDebugHook(Register fun, Register new_target,
1107 Register expected_parameter_count,
1108 Register actual_parameter_count);
1109
1110 // Invoke the JavaScript function in the given register. Changes the
1111 // current context to the context in the function before invoking.
1112 void InvokeFunctionWithNewTarget(Register function, Register new_target,
1113 Register actual_parameter_count,
1114 InvokeType type);
1115 void InvokeFunction(Register function, Register expected_parameter_count,
1116 Register actual_parameter_count, InvokeType type);
1117
1118 // Exception handling.
1119
1120 // Push a new stack handler and link into stack handler chain.
1121 void PushStackHandler();
1122
1123 // Unlink the stack handler on top of the stack from the stack handler chain.
1124 // Must preserve the result register.
1125 void PopStackHandler();
1126
1127 // -------------------------------------------------------------------------
1128 // Support functions.
1129
1130 void GetObjectType(Register function, Register map, Register type_reg);
1131
1132 void GetInstanceTypeRange(Register map, Register type_reg,
1133 InstanceType lower_limit, Register range);
1134
1135 // -------------------------------------------------------------------------
1136 // Runtime calls.
1137
1138 // Call a runtime routine.
1139 void CallRuntime(const Runtime::Function* f, int num_arguments,
1140 SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore);
1141
1142 // Convenience function: Same as above, but takes the fid instead.
1143 void CallRuntime(Runtime::FunctionId fid,
1144 SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
1145 const Runtime::Function* function = Runtime::FunctionForId(fid);
1146 CallRuntime(function, function->nargs, save_doubles);
1147 }
1148
1149 // Convenience function: Same as above, but takes the fid instead.
1150 void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1151 SaveFPRegsMode save_doubles = SaveFPRegsMode::kIgnore) {
1152 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1153 }
1154
1155 // Convenience function: tail call a runtime routine (jump).
1156 void TailCallRuntime(Runtime::FunctionId fid);
1157
1158 // Jump to the builtin routine.
1159 void JumpToExternalReference(const ExternalReference& builtin,
1160 BranchDelaySlot bd = PROTECT,
1161 bool builtin_exit_frame = false);
1162
1163 // Generates a trampoline to jump to the off-heap instruction stream.
1164 void JumpToOffHeapInstructionStream(Address entry);
1165
1166 // ---------------------------------------------------------------------------
1167 // In-place weak references.
1168 void LoadWeakValue(Register out, Register in, Label* target_if_cleared);
1169
1170 // -------------------------------------------------------------------------
1171 // StatsCounter support.
1172
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)1173 void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1174 Register scratch2) {
1175 if (!FLAG_native_code_counters) return;
1176 EmitIncrementCounter(counter, value, scratch1, scratch2);
1177 }
1178 void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
1179 Register scratch2);
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)1180 void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1181 Register scratch2) {
1182 if (!FLAG_native_code_counters) return;
1183 EmitDecrementCounter(counter, value, scratch1, scratch2);
1184 }
1185 void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
1186 Register scratch2);
1187
1188 // -------------------------------------------------------------------------
1189 // Stack limit utilities
1190
1191 enum StackLimitKind { kInterruptStackLimit, kRealStackLimit };
1192 void LoadStackLimit(Register destination, StackLimitKind kind);
1193 void StackOverflowCheck(Register num_args, Register scratch1,
1194 Register scratch2, Label* stack_overflow);
1195
1196 // ---------------------------------------------------------------------------
1197 // Smi utilities.
1198
1199 // Test if the register contains a smi.
SmiTst(Register value,Register scratch)1200 inline void SmiTst(Register value, Register scratch) {
1201 And(scratch, value, Operand(kSmiTagMask));
1202 }
1203
1204 // Jump if the register contains a non-smi.
1205 void JumpIfNotSmi(Register value, Label* not_smi_label,
1206 BranchDelaySlot bd = PROTECT);
1207
1208 // Abort execution if argument is not a Constructor, enabled via --debug-code.
1209 void AssertConstructor(Register object);
1210
1211 // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1212 void AssertFunction(Register object);
1213
1214 // Abort execution if argument is not a callable JSFunction, enabled via
1215 // --debug-code.
1216 void AssertCallableFunction(Register object);
1217
1218 // Abort execution if argument is not a JSBoundFunction,
1219 // enabled via --debug-code.
1220 void AssertBoundFunction(Register object);
1221
1222 // Abort execution if argument is not a JSGeneratorObject (or subclass),
1223 // enabled via --debug-code.
1224 void AssertGeneratorObject(Register object);
1225
1226 // Abort execution if argument is not undefined or an AllocationSite, enabled
1227 // via --debug-code.
1228 void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1229
1230 template <typename Field>
DecodeField(Register dst,Register src)1231 void DecodeField(Register dst, Register src) {
1232 Ext(dst, src, Field::kShift, Field::kSize);
1233 }
1234
1235 template <typename Field>
DecodeField(Register reg)1236 void DecodeField(Register reg) {
1237 DecodeField<Field>(reg, reg);
1238 }
1239
1240 private:
1241 // Helper functions for generating invokes.
1242 void InvokePrologue(Register expected_parameter_count,
1243 Register actual_parameter_count, Label* done,
1244 InvokeType type);
1245
1246 DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
1247 };
1248
1249 template <typename Func>
GenerateSwitchTable(Register index,size_t case_count,Func GetLabelFunction)1250 void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count,
1251 Func GetLabelFunction) {
1252 // Ensure that dd-ed labels following this instruction use 8 bytes aligned
1253 // addresses.
1254 BlockTrampolinePoolFor(static_cast<int>(case_count) * 2 +
1255 kSwitchTablePrologueSize);
1256 UseScratchRegisterScope temps(this);
1257 Register scratch = temps.Acquire();
1258 if (kArchVariant >= kMips64r6) {
1259 // Opposite of Align(8) as we have odd number of instructions in this case.
1260 if ((pc_offset() & 7) == 0) {
1261 nop();
1262 }
1263 addiupc(scratch, 5);
1264 Dlsa(scratch, scratch, index, kPointerSizeLog2);
1265 Ld(scratch, MemOperand(scratch));
1266 } else {
1267 Label here;
1268 Align(8);
1269 push(ra);
1270 bal(&here);
1271 dsll(scratch, index, kPointerSizeLog2); // Branch delay slot.
1272 bind(&here);
1273 daddu(scratch, scratch, ra);
1274 pop(ra);
1275 Ld(scratch, MemOperand(scratch, 6 * v8::internal::kInstrSize));
1276 }
1277 jr(scratch);
1278 nop(); // Branch delay slot nop.
1279 for (size_t index = 0; index < case_count; ++index) {
1280 dd(GetLabelFunction(index));
1281 }
1282 }
1283
1284 #define ACCESS_MASM(masm) masm->
1285
1286 } // namespace internal
1287 } // namespace v8
1288
1289 #endif // V8_CODEGEN_MIPS64_MACRO_ASSEMBLER_MIPS64_H_
1290