1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/date/date.h"
6
7 #include "src/base/overflowing-math.h"
8 #include "src/numbers/conversions.h"
9 #include "src/objects/objects-inl.h"
10 #ifdef V8_INTL_SUPPORT
11 #include "src/objects/intl-objects.h"
12 #endif
13 #include "src/strings/string-stream.h"
14
15 namespace v8 {
16 namespace internal {
17
18 static const int kDaysIn4Years = 4 * 365 + 1;
19 static const int kDaysIn100Years = 25 * kDaysIn4Years - 1;
20 static const int kDaysIn400Years = 4 * kDaysIn100Years + 1;
21 static const int kDays1970to2000 = 30 * 365 + 7;
22 static const int kDaysOffset =
23 1000 * kDaysIn400Years + 5 * kDaysIn400Years - kDays1970to2000;
24 static const int kYearsOffset = 400000;
25 static const char kDaysInMonths[] = {31, 28, 31, 30, 31, 30,
26 31, 31, 30, 31, 30, 31};
27
DateCache()28 DateCache::DateCache()
29 : stamp_(kNullAddress),
30 tz_cache_(
31 #ifdef V8_INTL_SUPPORT
32 Intl::CreateTimeZoneCache()
33 #else
34 base::OS::CreateTimezoneCache()
35 #endif
36 ) {
37 ResetDateCache(base::TimezoneCache::TimeZoneDetection::kSkip);
38 }
39
ResetDateCache(base::TimezoneCache::TimeZoneDetection time_zone_detection)40 void DateCache::ResetDateCache(
41 base::TimezoneCache::TimeZoneDetection time_zone_detection) {
42 if (stamp_.value() >= Smi::kMaxValue) {
43 stamp_ = Smi::zero();
44 } else {
45 stamp_ = Smi::FromInt(stamp_.value() + 1);
46 }
47 DCHECK(stamp_ != Smi::FromInt(kInvalidStamp));
48 for (int i = 0; i < kDSTSize; ++i) {
49 ClearSegment(&dst_[i]);
50 }
51 dst_usage_counter_ = 0;
52 before_ = &dst_[0];
53 after_ = &dst_[1];
54 ymd_valid_ = false;
55 #ifdef V8_INTL_SUPPORT
56 if (!FLAG_icu_timezone_data) {
57 #endif
58 local_offset_ms_ = kInvalidLocalOffsetInMs;
59 #ifdef V8_INTL_SUPPORT
60 }
61 #endif
62 tz_cache_->Clear(time_zone_detection);
63 tz_name_ = nullptr;
64 dst_tz_name_ = nullptr;
65 }
66
67 // ECMA 262 - ES#sec-timeclip TimeClip (time)
TimeClip(double time)68 double DateCache::TimeClip(double time) {
69 if (-kMaxTimeInMs <= time && time <= kMaxTimeInMs) {
70 return DoubleToInteger(time);
71 }
72 return std::numeric_limits<double>::quiet_NaN();
73 }
74
ClearSegment(DST * segment)75 void DateCache::ClearSegment(DST* segment) {
76 segment->start_sec = kMaxEpochTimeInSec;
77 segment->end_sec = -kMaxEpochTimeInSec;
78 segment->offset_ms = 0;
79 segment->last_used = 0;
80 }
81
YearMonthDayFromDays(int days,int * year,int * month,int * day)82 void DateCache::YearMonthDayFromDays(int days, int* year, int* month,
83 int* day) {
84 if (ymd_valid_) {
85 // Check conservatively if the given 'days' has
86 // the same year and month as the cached 'days'.
87 int new_day = ymd_day_ + (days - ymd_days_);
88 if (new_day >= 1 && new_day <= 28) {
89 ymd_day_ = new_day;
90 ymd_days_ = days;
91 *year = ymd_year_;
92 *month = ymd_month_;
93 *day = new_day;
94 return;
95 }
96 }
97 int save_days = days;
98
99 days += kDaysOffset;
100 *year = 400 * (days / kDaysIn400Years) - kYearsOffset;
101 days %= kDaysIn400Years;
102
103 DCHECK_EQ(save_days, DaysFromYearMonth(*year, 0) + days);
104
105 days--;
106 int yd1 = days / kDaysIn100Years;
107 days %= kDaysIn100Years;
108 *year += 100 * yd1;
109
110 days++;
111 int yd2 = days / kDaysIn4Years;
112 days %= kDaysIn4Years;
113 *year += 4 * yd2;
114
115 days--;
116 int yd3 = days / 365;
117 days %= 365;
118 *year += yd3;
119
120 bool is_leap = (!yd1 || yd2) && !yd3;
121
122 DCHECK_GE(days, -1);
123 DCHECK(is_leap || (days >= 0));
124 DCHECK((days < 365) || (is_leap && (days < 366)));
125 DCHECK(is_leap == ((*year % 4 == 0) && (*year % 100 || (*year % 400 == 0))));
126 DCHECK(is_leap || ((DaysFromYearMonth(*year, 0) + days) == save_days));
127 DCHECK(!is_leap || ((DaysFromYearMonth(*year, 0) + days + 1) == save_days));
128
129 days += is_leap;
130
131 // Check if the date is after February.
132 if (days >= 31 + 28 + (is_leap ? 1 : 0)) {
133 days -= 31 + 28 + (is_leap ? 1 : 0);
134 // Find the date starting from March.
135 for (int i = 2; i < 12; i++) {
136 if (days < kDaysInMonths[i]) {
137 *month = i;
138 *day = days + 1;
139 break;
140 }
141 days -= kDaysInMonths[i];
142 }
143 } else {
144 // Check January and February.
145 if (days < 31) {
146 *month = 0;
147 *day = days + 1;
148 } else {
149 *month = 1;
150 *day = days - 31 + 1;
151 }
152 }
153 DCHECK(DaysFromYearMonth(*year, *month) + *day - 1 == save_days);
154 ymd_valid_ = true;
155 ymd_year_ = *year;
156 ymd_month_ = *month;
157 ymd_day_ = *day;
158 ymd_days_ = save_days;
159 }
160
DaysFromYearMonth(int year,int month)161 int DateCache::DaysFromYearMonth(int year, int month) {
162 static const int day_from_month[] = {0, 31, 59, 90, 120, 151,
163 181, 212, 243, 273, 304, 334};
164 static const int day_from_month_leap[] = {0, 31, 60, 91, 121, 152,
165 182, 213, 244, 274, 305, 335};
166
167 year += month / 12;
168 month %= 12;
169 if (month < 0) {
170 year--;
171 month += 12;
172 }
173
174 DCHECK_GE(month, 0);
175 DCHECK_LT(month, 12);
176
177 // year_delta is an arbitrary number such that:
178 // a) year_delta = -1 (mod 400)
179 // b) year + year_delta > 0 for years in the range defined by
180 // ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
181 // Jan 1 1970. This is required so that we don't run into integer
182 // division of negative numbers.
183 // c) there shouldn't be an overflow for 32-bit integers in the following
184 // operations.
185 static const int year_delta = 399999;
186 static const int base_day =
187 365 * (1970 + year_delta) + (1970 + year_delta) / 4 -
188 (1970 + year_delta) / 100 + (1970 + year_delta) / 400;
189
190 int year1 = year + year_delta;
191 int day_from_year =
192 365 * year1 + year1 / 4 - year1 / 100 + year1 / 400 - base_day;
193
194 if ((year % 4 != 0) || (year % 100 == 0 && year % 400 != 0)) {
195 return day_from_year + day_from_month[month];
196 }
197 return day_from_year + day_from_month_leap[month];
198 }
199
BreakDownTime(int64_t time_ms,int * year,int * month,int * day,int * weekday,int * hour,int * min,int * sec,int * ms)200 void DateCache::BreakDownTime(int64_t time_ms, int* year, int* month, int* day,
201 int* weekday, int* hour, int* min, int* sec,
202 int* ms) {
203 int const days = DaysFromTime(time_ms);
204 int const time_in_day_ms = TimeInDay(time_ms, days);
205 YearMonthDayFromDays(days, year, month, day);
206 *weekday = Weekday(days);
207 *hour = time_in_day_ms / (60 * 60 * 1000);
208 *min = (time_in_day_ms / (60 * 1000)) % 60;
209 *sec = (time_in_day_ms / 1000) % 60;
210 *ms = time_in_day_ms % 1000;
211 }
212
213 // Implements LocalTimeZonedjustment(t, isUTC)
214 // ECMA 262 - ES#sec-local-time-zone-adjustment
GetLocalOffsetFromOS(int64_t time_ms,bool is_utc)215 int DateCache::GetLocalOffsetFromOS(int64_t time_ms, bool is_utc) {
216 double offset;
217 #ifdef V8_INTL_SUPPORT
218 if (FLAG_icu_timezone_data) {
219 offset = tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
220 } else {
221 #endif
222 // When ICU timezone data is not used, we need to compute the timezone
223 // offset for a given local time.
224 //
225 // The following shows that using DST for (t - LocalTZA - hour) produces
226 // correct conversion where LocalTZA is the timezone offset in winter (no
227 // DST) and the timezone offset is assumed to have no historical change.
228 // Note that it does not work for the past and the future if LocalTZA (no
229 // DST) is different from the current LocalTZA (no DST). For instance,
230 // this will break for Europe/Moscow in 2012 ~ 2013 because LocalTZA was
231 // 4h instead of the current 3h (as of 2018).
232 //
233 // Consider transition to DST at local time L1.
234 // Let L0 = L1 - hour, L2 = L1 + hour,
235 // U1 = UTC time that corresponds to L1,
236 // U0 = U1 - hour.
237 // Transitioning to DST moves local clock one hour forward L1 => L2, so
238 // U0 = UTC time that corresponds to L0 = L0 - LocalTZA,
239 // U1 = UTC time that corresponds to L1 = L1 - LocalTZA,
240 // U1 = UTC time that corresponds to L2 = L2 - LocalTZA - hour.
241 // Note that DST(U0 - hour) = 0, DST(U0) = 0, DST(U1) = 1.
242 // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour),
243 // U1 = L1 - LocalTZA - DST(L1 - LocalTZA - hour),
244 // U1 = L2 - LocalTZA - DST(L2 - LocalTZA - hour).
245 //
246 // Consider transition from DST at local time L1.
247 // Let L0 = L1 - hour,
248 // U1 = UTC time that corresponds to L1,
249 // U0 = U1 - hour, U2 = U1 + hour.
250 // Transitioning from DST moves local clock one hour back L1 => L0, so
251 // U0 = UTC time that corresponds to L0 (before transition)
252 // = L0 - LocalTZA - hour.
253 // U1 = UTC time that corresponds to L0 (after transition)
254 // = L0 - LocalTZA = L1 - LocalTZA - hour
255 // U2 = UTC time that corresponds to L1 = L1 - LocalTZA.
256 // Note that DST(U0) = 1, DST(U1) = 0, DST(U2) = 0.
257 // U0 = L0 - LocalTZA - DST(L0 - LocalTZA - hour) = L0 - LocalTZA - DST(U0).
258 // U2 = L1 - LocalTZA - DST(L1 - LocalTZA - hour) = L1 - LocalTZA - DST(U1).
259 // It is impossible to get U1 from local time.
260 if (local_offset_ms_ == kInvalidLocalOffsetInMs) {
261 // This gets the constant LocalTZA (arguments are ignored).
262 local_offset_ms_ =
263 tz_cache_->LocalTimeOffset(static_cast<double>(time_ms), is_utc);
264 }
265 offset = local_offset_ms_;
266 if (!is_utc) {
267 const int kMsPerHour = 3600 * 1000;
268 time_ms -= (offset + kMsPerHour);
269 }
270 offset += DaylightSavingsOffsetInMs(time_ms);
271 #ifdef V8_INTL_SUPPORT
272 }
273 #endif
274 DCHECK_LT(offset, kInvalidLocalOffsetInMs);
275 return static_cast<int>(offset);
276 }
277
ExtendTheAfterSegment(int time_sec,int offset_ms)278 void DateCache::ExtendTheAfterSegment(int time_sec, int offset_ms) {
279 if (after_->offset_ms == offset_ms &&
280 after_->start_sec - kDefaultDSTDeltaInSec <= time_sec &&
281 time_sec <= after_->end_sec) {
282 // Extend the after_ segment.
283 after_->start_sec = time_sec;
284 } else {
285 // The after_ segment is either invalid or starts too late.
286 if (!InvalidSegment(after_)) {
287 // If the after_ segment is valid, replace it with a new segment.
288 after_ = LeastRecentlyUsedDST(before_);
289 }
290 after_->start_sec = time_sec;
291 after_->end_sec = time_sec;
292 after_->offset_ms = offset_ms;
293 after_->last_used = ++dst_usage_counter_;
294 }
295 }
296
DaylightSavingsOffsetInMs(int64_t time_ms)297 int DateCache::DaylightSavingsOffsetInMs(int64_t time_ms) {
298 int time_sec = (time_ms >= 0 && time_ms <= kMaxEpochTimeInMs)
299 ? static_cast<int>(time_ms / 1000)
300 : static_cast<int>(EquivalentTime(time_ms) / 1000);
301
302 // Invalidate cache if the usage counter is close to overflow.
303 // Note that dst_usage_counter is incremented less than ten times
304 // in this function.
305 if (dst_usage_counter_ >= kMaxInt - 10) {
306 dst_usage_counter_ = 0;
307 for (int i = 0; i < kDSTSize; ++i) {
308 ClearSegment(&dst_[i]);
309 }
310 }
311
312 // Optimistic fast check.
313 if (before_->start_sec <= time_sec && time_sec <= before_->end_sec) {
314 // Cache hit.
315 before_->last_used = ++dst_usage_counter_;
316 return before_->offset_ms;
317 }
318
319 ProbeDST(time_sec);
320
321 DCHECK(InvalidSegment(before_) || before_->start_sec <= time_sec);
322 DCHECK(InvalidSegment(after_) || time_sec < after_->start_sec);
323
324 if (InvalidSegment(before_)) {
325 // Cache miss.
326 before_->start_sec = time_sec;
327 before_->end_sec = time_sec;
328 before_->offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
329 before_->last_used = ++dst_usage_counter_;
330 return before_->offset_ms;
331 }
332
333 if (time_sec <= before_->end_sec) {
334 // Cache hit.
335 before_->last_used = ++dst_usage_counter_;
336 return before_->offset_ms;
337 }
338
339 if (time_sec - kDefaultDSTDeltaInSec > before_->end_sec) {
340 // If the before_ segment ends too early, then just
341 // query for the offset of the time_sec
342 int offset_ms = GetDaylightSavingsOffsetFromOS(time_sec);
343 ExtendTheAfterSegment(time_sec, offset_ms);
344 // This swap helps the optimistic fast check in subsequent invocations.
345 DST* temp = before_;
346 before_ = after_;
347 after_ = temp;
348 return offset_ms;
349 }
350
351 // Now the time_sec is between
352 // before_->end_sec and before_->end_sec + default DST delta.
353 // Update the usage counter of before_ since it is going to be used.
354 before_->last_used = ++dst_usage_counter_;
355
356 // Check if after_ segment is invalid or starts too late.
357 // Note that start_sec of invalid segments is kMaxEpochTimeInSec.
358 int new_after_start_sec =
359 before_->end_sec < kMaxEpochTimeInSec - kDefaultDSTDeltaInSec
360 ? before_->end_sec + kDefaultDSTDeltaInSec
361 : kMaxEpochTimeInSec;
362 if (new_after_start_sec <= after_->start_sec) {
363 int new_offset_ms = GetDaylightSavingsOffsetFromOS(new_after_start_sec);
364 ExtendTheAfterSegment(new_after_start_sec, new_offset_ms);
365 } else {
366 DCHECK(!InvalidSegment(after_));
367 // Update the usage counter of after_ since it is going to be used.
368 after_->last_used = ++dst_usage_counter_;
369 }
370
371 // Now the time_sec is between before_->end_sec and after_->start_sec.
372 // Only one daylight savings offset change can occur in this interval.
373
374 if (before_->offset_ms == after_->offset_ms) {
375 // Merge two segments if they have the same offset.
376 before_->end_sec = after_->end_sec;
377 ClearSegment(after_);
378 return before_->offset_ms;
379 }
380
381 // Binary search for daylight savings offset change point,
382 // but give up if we don't find it in five iterations.
383 for (int i = 4; i >= 0; --i) {
384 int delta = after_->start_sec - before_->end_sec;
385 int middle_sec = (i == 0) ? time_sec : before_->end_sec + delta / 2;
386 int offset_ms = GetDaylightSavingsOffsetFromOS(middle_sec);
387 if (before_->offset_ms == offset_ms) {
388 before_->end_sec = middle_sec;
389 if (time_sec <= before_->end_sec) {
390 return offset_ms;
391 }
392 } else {
393 DCHECK(after_->offset_ms == offset_ms);
394 after_->start_sec = middle_sec;
395 if (time_sec >= after_->start_sec) {
396 // This swap helps the optimistic fast check in subsequent invocations.
397 DST* temp = before_;
398 before_ = after_;
399 after_ = temp;
400 return offset_ms;
401 }
402 }
403 }
404 return 0;
405 }
406
ProbeDST(int time_sec)407 void DateCache::ProbeDST(int time_sec) {
408 DST* before = nullptr;
409 DST* after = nullptr;
410 DCHECK(before_ != after_);
411
412 for (int i = 0; i < kDSTSize; ++i) {
413 if (dst_[i].start_sec <= time_sec) {
414 if (before == nullptr || before->start_sec < dst_[i].start_sec) {
415 before = &dst_[i];
416 }
417 } else if (time_sec < dst_[i].end_sec) {
418 if (after == nullptr || after->end_sec > dst_[i].end_sec) {
419 after = &dst_[i];
420 }
421 }
422 }
423
424 // If before or after segments were not found,
425 // then set them to any invalid segment.
426 if (before == nullptr) {
427 before = InvalidSegment(before_) ? before_ : LeastRecentlyUsedDST(after);
428 }
429 if (after == nullptr) {
430 after = InvalidSegment(after_) && before != after_
431 ? after_
432 : LeastRecentlyUsedDST(before);
433 }
434
435 DCHECK_NOT_NULL(before);
436 DCHECK_NOT_NULL(after);
437 DCHECK(before != after);
438 DCHECK(InvalidSegment(before) || before->start_sec <= time_sec);
439 DCHECK(InvalidSegment(after) || time_sec < after->start_sec);
440 DCHECK(InvalidSegment(before) || InvalidSegment(after) ||
441 before->end_sec < after->start_sec);
442
443 before_ = before;
444 after_ = after;
445 }
446
LeastRecentlyUsedDST(DST * skip)447 DateCache::DST* DateCache::LeastRecentlyUsedDST(DST* skip) {
448 DST* result = nullptr;
449 for (int i = 0; i < kDSTSize; ++i) {
450 if (&dst_[i] == skip) continue;
451 if (result == nullptr || result->last_used > dst_[i].last_used) {
452 result = &dst_[i];
453 }
454 }
455 ClearSegment(result);
456 return result;
457 }
458
459 namespace {
460
461 // ES6 section 20.3.1.1 Time Values and Time Range
462 const double kMinYear = -1000000.0;
463 const double kMaxYear = -kMinYear;
464 const double kMinMonth = -10000000.0;
465 const double kMaxMonth = -kMinMonth;
466
467 const double kMsPerDay = 86400000.0;
468
469 const double kMsPerSecond = 1000.0;
470 const double kMsPerMinute = 60000.0;
471 const double kMsPerHour = 3600000.0;
472
473 } // namespace
474
MakeDate(double day,double time)475 double MakeDate(double day, double time) {
476 if (std::isfinite(day) && std::isfinite(time)) {
477 return time + day * kMsPerDay;
478 }
479 return std::numeric_limits<double>::quiet_NaN();
480 }
481
MakeDay(double year,double month,double date)482 double MakeDay(double year, double month, double date) {
483 if ((kMinYear <= year && year <= kMaxYear) &&
484 (kMinMonth <= month && month <= kMaxMonth) && std::isfinite(date)) {
485 int y = FastD2I(year);
486 int m = FastD2I(month);
487 y += m / 12;
488 m %= 12;
489 if (m < 0) {
490 m += 12;
491 y -= 1;
492 }
493 DCHECK_LE(0, m);
494 DCHECK_LT(m, 12);
495
496 // kYearDelta is an arbitrary number such that:
497 // a) kYearDelta = -1 (mod 400)
498 // b) year + kYearDelta > 0 for years in the range defined by
499 // ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
500 // Jan 1 1970. This is required so that we don't run into integer
501 // division of negative numbers.
502 // c) there shouldn't be an overflow for 32-bit integers in the following
503 // operations.
504 static const int kYearDelta = 399999;
505 static const int kBaseDay =
506 365 * (1970 + kYearDelta) + (1970 + kYearDelta) / 4 -
507 (1970 + kYearDelta) / 100 + (1970 + kYearDelta) / 400;
508 int day_from_year = 365 * (y + kYearDelta) + (y + kYearDelta) / 4 -
509 (y + kYearDelta) / 100 + (y + kYearDelta) / 400 -
510 kBaseDay;
511 if ((y % 4 != 0) || (y % 100 == 0 && y % 400 != 0)) {
512 static const int kDayFromMonth[] = {0, 31, 59, 90, 120, 151,
513 181, 212, 243, 273, 304, 334};
514 day_from_year += kDayFromMonth[m];
515 } else {
516 static const int kDayFromMonth[] = {0, 31, 60, 91, 121, 152,
517 182, 213, 244, 274, 305, 335};
518 day_from_year += kDayFromMonth[m];
519 }
520 return static_cast<double>(day_from_year - 1) + DoubleToInteger(date);
521 }
522 return std::numeric_limits<double>::quiet_NaN();
523 }
524
MakeTime(double hour,double min,double sec,double ms)525 double MakeTime(double hour, double min, double sec, double ms) {
526 if (std::isfinite(hour) && std::isfinite(min) && std::isfinite(sec) &&
527 std::isfinite(ms)) {
528 double const h = DoubleToInteger(hour);
529 double const m = DoubleToInteger(min);
530 double const s = DoubleToInteger(sec);
531 double const milli = DoubleToInteger(ms);
532 return h * kMsPerHour + m * kMsPerMinute + s * kMsPerSecond + milli;
533 }
534 return std::numeric_limits<double>::quiet_NaN();
535 }
536
537 namespace {
538
539 const char* kShortWeekDays[] = {"Sun", "Mon", "Tue", "Wed",
540 "Thu", "Fri", "Sat"};
541 const char* kShortMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
542 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
543
544 template <class... Args>
FormatDate(const char * format,Args...args)545 DateBuffer FormatDate(const char* format, Args... args) {
546 DateBuffer buffer;
547 SmallStringOptimizedAllocator<DateBuffer::kInlineSize> allocator(&buffer);
548 StringStream sstream(&allocator);
549 sstream.Add(format, args...);
550 buffer.resize_no_init(sstream.length());
551 return buffer;
552 }
553
554 } // namespace
555
ToDateString(double time_val,DateCache * date_cache,ToDateStringMode mode)556 DateBuffer ToDateString(double time_val, DateCache* date_cache,
557 ToDateStringMode mode) {
558 if (std::isnan(time_val)) {
559 return FormatDate("Invalid Date");
560 }
561 int64_t time_ms = static_cast<int64_t>(time_val);
562 int64_t local_time_ms = mode != ToDateStringMode::kUTCDateAndTime
563 ? date_cache->ToLocal(time_ms)
564 : time_ms;
565 int year, month, day, weekday, hour, min, sec, ms;
566 date_cache->BreakDownTime(local_time_ms, &year, &month, &day, &weekday, &hour,
567 &min, &sec, &ms);
568 int timezone_offset = -date_cache->TimezoneOffset(time_ms);
569 int timezone_hour = std::abs(timezone_offset) / 60;
570 int timezone_min = std::abs(timezone_offset) % 60;
571 const char* local_timezone = date_cache->LocalTimezone(time_ms);
572 switch (mode) {
573 case ToDateStringMode::kLocalDate:
574 return FormatDate((year < 0) ? "%s %s %02d %05d" : "%s %s %02d %04d",
575 kShortWeekDays[weekday], kShortMonths[month], day,
576 year);
577 case ToDateStringMode::kLocalTime:
578 return FormatDate("%02d:%02d:%02d GMT%c%02d%02d (%s)", hour, min, sec,
579 (timezone_offset < 0) ? '-' : '+', timezone_hour,
580 timezone_min, local_timezone);
581 case ToDateStringMode::kLocalDateAndTime:
582 return FormatDate(
583 (year < 0) ? "%s %s %02d %05d %02d:%02d:%02d GMT%c%02d%02d (%s)"
584 : "%s %s %02d %04d %02d:%02d:%02d GMT%c%02d%02d (%s)",
585 kShortWeekDays[weekday], kShortMonths[month], day, year, hour, min,
586 sec, (timezone_offset < 0) ? '-' : '+', timezone_hour, timezone_min,
587 local_timezone);
588 case ToDateStringMode::kUTCDateAndTime:
589 return FormatDate((year < 0) ? "%s, %02d %s %05d %02d:%02d:%02d GMT"
590 : "%s, %02d %s %04d %02d:%02d:%02d GMT",
591 kShortWeekDays[weekday], day, kShortMonths[month], year,
592 hour, min, sec);
593 }
594 UNREACHABLE();
595 }
596
597 } // namespace internal
598 } // namespace v8
599