• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* chunkcopy.h -- fast chunk copy and set operations
2  * Copyright (C) 2017 ARM, Inc.
3  * Copyright 2017 The Chromium Authors
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the Chromium source repository LICENSE file.
6  */
7 
8 #ifndef CHUNKCOPY_H
9 #define CHUNKCOPY_H
10 
11 #include <stdint.h>
12 #include "zutil.h"
13 
14 #define Z_STATIC_ASSERT(name, assert) typedef char name[(assert) ? 1 : -1]
15 
16 #if __STDC_VERSION__ >= 199901L
17 #define Z_RESTRICT restrict
18 #else
19 #define Z_RESTRICT
20 #endif
21 
22 #if defined(__clang__) || defined(__GNUC__) || defined(__llvm__)
23 #define Z_BUILTIN_MEMCPY __builtin_memcpy
24 #else
25 #define Z_BUILTIN_MEMCPY zmemcpy
26 #endif
27 
28 #if defined(INFLATE_CHUNK_SIMD_NEON)
29 #include <arm_neon.h>
30 typedef uint8x16_t z_vec128i_t;
31 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
32 #include <emmintrin.h>
33 typedef __m128i z_vec128i_t;
34 #else
35 #error chunkcopy.h inflate chunk SIMD is not defined for your build target
36 #endif
37 
38 /*
39  * Suppress MSan errors about copying uninitialized bytes (crbug.com/1376033).
40  */
41 #define Z_DISABLE_MSAN
42 #if defined(__has_feature)
43   #if __has_feature(memory_sanitizer)
44     #undef Z_DISABLE_MSAN
45     #define Z_DISABLE_MSAN __attribute__((no_sanitize("memory")))
46   #endif
47 #endif
48 
49 /*
50  * chunk copy type: the z_vec128i_t type size should be exactly 128-bits
51  * and equal to CHUNKCOPY_CHUNK_SIZE.
52  */
53 #define CHUNKCOPY_CHUNK_SIZE sizeof(z_vec128i_t)
54 
55 Z_STATIC_ASSERT(vector_128_bits_wide,
56                 CHUNKCOPY_CHUNK_SIZE == sizeof(int8_t) * 16);
57 
58 /*
59  * Ask the compiler to perform a wide, unaligned load with a machine
60  * instruction appropriate for the z_vec128i_t type.
61  */
loadchunk(const unsigned char FAR * s)62 static inline z_vec128i_t loadchunk(
63     const unsigned char FAR* s) Z_DISABLE_MSAN {
64   z_vec128i_t v;
65   Z_BUILTIN_MEMCPY(&v, s, sizeof(v));
66   return v;
67 }
68 
69 /*
70  * Ask the compiler to perform a wide, unaligned store with a machine
71  * instruction appropriate for the z_vec128i_t type.
72  */
storechunk(unsigned char FAR * d,const z_vec128i_t v)73 static inline void storechunk(
74     unsigned char FAR* d,
75     const z_vec128i_t v) {
76   Z_BUILTIN_MEMCPY(d, &v, sizeof(v));
77 }
78 
79 /*
80  * Perform a memcpy-like operation, assuming that length is non-zero and that
81  * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
82  * the length is shorter than this.
83  *
84  * It also guarantees that it will properly unroll the data if the distance
85  * between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
86  * in chunkcopy_relaxed().
87  *
88  * Aside from better memory bus utilisation, this means that short copies
89  * (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
90  * without iteration, which will hopefully make the branch prediction more
91  * reliable.
92  */
chunkcopy_core(unsigned char FAR * out,const unsigned char FAR * from,unsigned len)93 static inline unsigned char FAR* chunkcopy_core(
94     unsigned char FAR* out,
95     const unsigned char FAR* from,
96     unsigned len) Z_DISABLE_MSAN {
97   const int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
98   storechunk(out, loadchunk(from));
99   out += bump;
100   from += bump;
101   len /= CHUNKCOPY_CHUNK_SIZE;
102   while (len-- > 0) {
103     storechunk(out, loadchunk(from));
104     out += CHUNKCOPY_CHUNK_SIZE;
105     from += CHUNKCOPY_CHUNK_SIZE;
106   }
107   return out;
108 }
109 
110 /*
111  * Like chunkcopy_core(), but avoid writing beyond of legal output.
112  *
113  * Accepts an additional pointer to the end of safe output.  A generic safe
114  * copy would use (out + len), but it's normally the case that the end of the
115  * output buffer is beyond the end of the current copy, and this can still be
116  * exploited.
117  */
chunkcopy_core_safe(unsigned char FAR * out,const unsigned char FAR * from,unsigned len,unsigned char FAR * limit)118 static inline unsigned char FAR* chunkcopy_core_safe(
119     unsigned char FAR* out,
120     const unsigned char FAR* from,
121     unsigned len,
122     unsigned char FAR* limit) {
123   Assert(out + len <= limit, "chunk copy exceeds safety limit");
124   if ((limit - out) < (ptrdiff_t)CHUNKCOPY_CHUNK_SIZE) {
125     const unsigned char FAR* Z_RESTRICT rfrom = from;
126     Assert((uintptr_t)out - (uintptr_t)from >= len,
127            "invalid restrict in chunkcopy_core_safe");
128     Assert((uintptr_t)from - (uintptr_t)out >= len,
129            "invalid restrict in chunkcopy_core_safe");
130     if (len & 8) {
131       Z_BUILTIN_MEMCPY(out, rfrom, 8);
132       out += 8;
133       rfrom += 8;
134     }
135     if (len & 4) {
136       Z_BUILTIN_MEMCPY(out, rfrom, 4);
137       out += 4;
138       rfrom += 4;
139     }
140     if (len & 2) {
141       Z_BUILTIN_MEMCPY(out, rfrom, 2);
142       out += 2;
143       rfrom += 2;
144     }
145     if (len & 1) {
146       *out++ = *rfrom++;
147     }
148     return out;
149   }
150   return chunkcopy_core(out, from, len);
151 }
152 
153 /*
154  * Perform short copies until distance can be rewritten as being at least
155  * CHUNKCOPY_CHUNK_SIZE.
156  *
157  * Assumes it's OK to overwrite at least the first 2*CHUNKCOPY_CHUNK_SIZE
158  * bytes of output even if the copy is shorter than this.  This assumption
159  * holds within zlib inflate_fast(), which starts every iteration with at
160  * least 258 bytes of output space available (258 being the maximum length
161  * output from a single token; see inffast.c).
162  */
chunkunroll_relaxed(unsigned char FAR * out,unsigned FAR * dist,unsigned FAR * len)163 static inline unsigned char FAR* chunkunroll_relaxed(
164     unsigned char FAR* out,
165     unsigned FAR* dist,
166     unsigned FAR* len) Z_DISABLE_MSAN {
167   const unsigned char FAR* from = out - *dist;
168   while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
169     storechunk(out, loadchunk(from));
170     out += *dist;
171     *len -= *dist;
172     *dist += *dist;
173   }
174   return out;
175 }
176 
177 #if defined(INFLATE_CHUNK_SIMD_NEON)
178 /*
179  * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
180  * every 64-bit component of the 128-bit result (64-bit int splat).
181  */
v_load64_dup(const void * src)182 static inline z_vec128i_t v_load64_dup(const void* src) {
183   return vcombine_u8(vld1_u8(src), vld1_u8(src));
184 }
185 
186 /*
187  * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
188  * every 32-bit component of the 128-bit result (32-bit int splat).
189  */
v_load32_dup(const void * src)190 static inline z_vec128i_t v_load32_dup(const void* src) {
191   int32_t i32;
192   Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
193   return vreinterpretq_u8_s32(vdupq_n_s32(i32));
194 }
195 
196 /*
197  * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
198  * every 16-bit component of the 128-bit result (16-bit int splat).
199  */
v_load16_dup(const void * src)200 static inline z_vec128i_t v_load16_dup(const void* src) {
201   int16_t i16;
202   Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
203   return vreinterpretq_u8_s16(vdupq_n_s16(i16));
204 }
205 
206 /*
207  * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
208  * component of the 128-bit result (8-bit int splat).
209  */
v_load8_dup(const void * src)210 static inline z_vec128i_t v_load8_dup(const void* src) {
211   return vld1q_dup_u8((const uint8_t*)src);
212 }
213 
214 /*
215  * v_store_128(): store the 128-bit vec in a memory destination (that might
216  * not be 16-byte aligned) void* out.
217  */
v_store_128(void * out,const z_vec128i_t vec)218 static inline void v_store_128(void* out, const z_vec128i_t vec) {
219   vst1q_u8(out, vec);
220 }
221 
222 #elif defined(INFLATE_CHUNK_SIMD_SSE2)
223 /*
224  * v_load64_dup(): load *src as an unaligned 64-bit int and duplicate it in
225  * every 64-bit component of the 128-bit result (64-bit int splat).
226  */
v_load64_dup(const void * src)227 static inline z_vec128i_t v_load64_dup(const void* src) {
228   int64_t i64;
229   Z_BUILTIN_MEMCPY(&i64, src, sizeof(i64));
230   return _mm_set1_epi64x(i64);
231 }
232 
233 /*
234  * v_load32_dup(): load *src as an unaligned 32-bit int and duplicate it in
235  * every 32-bit component of the 128-bit result (32-bit int splat).
236  */
v_load32_dup(const void * src)237 static inline z_vec128i_t v_load32_dup(const void* src) {
238   int32_t i32;
239   Z_BUILTIN_MEMCPY(&i32, src, sizeof(i32));
240   return _mm_set1_epi32(i32);
241 }
242 
243 /*
244  * v_load16_dup(): load *src as an unaligned 16-bit int and duplicate it in
245  * every 16-bit component of the 128-bit result (16-bit int splat).
246  */
v_load16_dup(const void * src)247 static inline z_vec128i_t v_load16_dup(const void* src) {
248   int16_t i16;
249   Z_BUILTIN_MEMCPY(&i16, src, sizeof(i16));
250   return _mm_set1_epi16(i16);
251 }
252 
253 /*
254  * v_load8_dup(): load the 8-bit int *src and duplicate it in every 8-bit
255  * component of the 128-bit result (8-bit int splat).
256  */
v_load8_dup(const void * src)257 static inline z_vec128i_t v_load8_dup(const void* src) {
258   return _mm_set1_epi8(*(const char*)src);
259 }
260 
261 /*
262  * v_store_128(): store the 128-bit vec in a memory destination (that might
263  * not be 16-byte aligned) void* out.
264  */
v_store_128(void * out,const z_vec128i_t vec)265 static inline void v_store_128(void* out, const z_vec128i_t vec) {
266   _mm_storeu_si128((__m128i*)out, vec);
267 }
268 #endif
269 
270 /*
271  * Perform an overlapping copy which behaves as a memset() operation, but
272  * supporting periods other than one, and assume that length is non-zero and
273  * that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
274  * even if the length is shorter than this.
275  */
chunkset_core(unsigned char FAR * out,unsigned period,unsigned len)276 static inline unsigned char FAR* chunkset_core(
277     unsigned char FAR* out,
278     unsigned period,
279     unsigned len) {
280   z_vec128i_t v;
281   const int bump = ((len - 1) % sizeof(v)) + 1;
282 
283   switch (period) {
284     case 1:
285       v = v_load8_dup(out - 1);
286       v_store_128(out, v);
287       out += bump;
288       len -= bump;
289       while (len > 0) {
290         v_store_128(out, v);
291         out += sizeof(v);
292         len -= sizeof(v);
293       }
294       return out;
295     case 2:
296       v = v_load16_dup(out - 2);
297       v_store_128(out, v);
298       out += bump;
299       len -= bump;
300       if (len > 0) {
301         v = v_load16_dup(out - 2);
302         do {
303           v_store_128(out, v);
304           out += sizeof(v);
305           len -= sizeof(v);
306         } while (len > 0);
307       }
308       return out;
309     case 4:
310       v = v_load32_dup(out - 4);
311       v_store_128(out, v);
312       out += bump;
313       len -= bump;
314       if (len > 0) {
315         v = v_load32_dup(out - 4);
316         do {
317           v_store_128(out, v);
318           out += sizeof(v);
319           len -= sizeof(v);
320         } while (len > 0);
321       }
322       return out;
323     case 8:
324       v = v_load64_dup(out - 8);
325       v_store_128(out, v);
326       out += bump;
327       len -= bump;
328       if (len > 0) {
329         v = v_load64_dup(out - 8);
330         do {
331           v_store_128(out, v);
332           out += sizeof(v);
333           len -= sizeof(v);
334         } while (len > 0);
335       }
336       return out;
337   }
338   out = chunkunroll_relaxed(out, &period, &len);
339   return chunkcopy_core(out, out - period, len);
340 }
341 
342 /*
343  * Perform a memcpy-like operation, but assume that length is non-zero and that
344  * it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
345  * the length is shorter than this.
346  *
347  * Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
348  * of overlapping buffers, regardless of the distance between the pointers.
349  * This is reflected in the `restrict`-qualified pointers, allowing the
350  * compiler to re-order loads and stores.
351  */
chunkcopy_relaxed(unsigned char FAR * Z_RESTRICT out,const unsigned char FAR * Z_RESTRICT from,unsigned len)352 static inline unsigned char FAR* chunkcopy_relaxed(
353     unsigned char FAR* Z_RESTRICT out,
354     const unsigned char FAR* Z_RESTRICT from,
355     unsigned len) {
356   Assert((uintptr_t)out - (uintptr_t)from >= len,
357          "invalid restrict in chunkcopy_relaxed");
358   Assert((uintptr_t)from - (uintptr_t)out >= len,
359          "invalid restrict in chunkcopy_relaxed");
360   return chunkcopy_core(out, from, len);
361 }
362 
363 /*
364  * Like chunkcopy_relaxed(), but avoid writing beyond of legal output.
365  *
366  * Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
367  * behaviour of overlapping buffers, regardless of the distance between the
368  * pointers.  This is reflected in the `restrict`-qualified pointers, allowing
369  * the compiler to re-order loads and stores.
370  *
371  * Accepts an additional pointer to the end of safe output.  A generic safe
372  * copy would use (out + len), but it's normally the case that the end of the
373  * output buffer is beyond the end of the current copy, and this can still be
374  * exploited.
375  */
chunkcopy_safe(unsigned char FAR * out,const unsigned char FAR * Z_RESTRICT from,unsigned len,unsigned char FAR * limit)376 static inline unsigned char FAR* chunkcopy_safe(
377     unsigned char FAR* out,
378     const unsigned char FAR* Z_RESTRICT from,
379     unsigned len,
380     unsigned char FAR* limit) {
381   Assert(out + len <= limit, "chunk copy exceeds safety limit");
382   Assert((uintptr_t)out - (uintptr_t)from >= len,
383          "invalid restrict in chunkcopy_safe");
384   Assert((uintptr_t)from - (uintptr_t)out >= len,
385          "invalid restrict in chunkcopy_safe");
386 
387   return chunkcopy_core_safe(out, from, len, limit);
388 }
389 
390 /*
391  * Perform chunky copy within the same buffer, where the source and destination
392  * may potentially overlap.
393  *
394  * Assumes that len > 0 on entry, and that it's safe to write at least
395  * CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
396  */
chunkcopy_lapped_relaxed(unsigned char FAR * out,unsigned dist,unsigned len)397 static inline unsigned char FAR* chunkcopy_lapped_relaxed(
398     unsigned char FAR* out,
399     unsigned dist,
400     unsigned len) {
401   if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
402     return chunkset_core(out, dist, len);
403   }
404   return chunkcopy_core(out, out - dist, len);
405 }
406 
407 /*
408  * Behave like chunkcopy_lapped_relaxed(), but avoid writing beyond of legal
409  * output.
410  *
411  * Accepts an additional pointer to the end of safe output.  A generic safe
412  * copy would use (out + len), but it's normally the case that the end of the
413  * output buffer is beyond the end of the current copy, and this can still be
414  * exploited.
415  */
chunkcopy_lapped_safe(unsigned char FAR * out,unsigned dist,unsigned len,unsigned char FAR * limit)416 static inline unsigned char FAR* chunkcopy_lapped_safe(
417     unsigned char FAR* out,
418     unsigned dist,
419     unsigned len,
420     unsigned char FAR* limit) {
421   Assert(out + len <= limit, "chunk copy exceeds safety limit");
422   if ((limit - out) < (ptrdiff_t)(3 * CHUNKCOPY_CHUNK_SIZE)) {
423     /* TODO(cavalcantii): try harder to optimise this */
424     while (len-- > 0) {
425       *out = *(out - dist);
426       out++;
427     }
428     return out;
429   }
430   return chunkcopy_lapped_relaxed(out, dist, len);
431 }
432 
433 /* TODO(cavalcanti): see crbug.com/1110083. */
chunkcopy_safe_ugly(unsigned char FAR * out,unsigned dist,unsigned len,unsigned char FAR * limit)434 static inline unsigned char FAR* chunkcopy_safe_ugly(unsigned char FAR* out,
435                                                      unsigned dist,
436                                                      unsigned len,
437                                                      unsigned char FAR* limit) {
438 #if defined(__GNUC__) && !defined(__clang__)
439   /* Speed is the same as using chunkcopy_safe
440      w/ GCC on ARM (tested gcc 6.3 and 7.5) and avoids
441      undefined behavior.
442   */
443   return chunkcopy_core_safe(out, out - dist, len, limit);
444 #elif defined(__clang__) && defined(ARMV8_OS_ANDROID) && !defined(__aarch64__)
445   /* Seems to perform better on 32bit (i.e. Android). */
446   return chunkcopy_core_safe(out, out - dist, len, limit);
447 #else
448   /* Seems to perform better on 64bit. */
449   return chunkcopy_lapped_safe(out, dist, len, limit);
450 #endif
451 }
452 
453 /*
454  * The chunk-copy code above deals with writing the decoded DEFLATE data to
455  * the output with SIMD methods to increase decode speed. Reading the input
456  * to the DEFLATE decoder with a wide, SIMD method can also increase decode
457  * speed. This option is supported on little endian machines, and reads the
458  * input data in 64-bit (8 byte) chunks.
459  */
460 
461 #ifdef INFLATE_CHUNK_READ_64LE
462 /*
463  * Buffer the input in a uint64_t (8 bytes) in the wide input reading case.
464  */
465 typedef uint64_t inflate_holder_t;
466 
467 /*
468  * Ask the compiler to perform a wide, unaligned load of a uint64_t using a
469  * machine instruction appropriate for the uint64_t type.
470  */
read64le(const unsigned char FAR * in)471 static inline inflate_holder_t read64le(const unsigned char FAR *in) {
472     inflate_holder_t input;
473     Z_BUILTIN_MEMCPY(&input, in, sizeof(input));
474     return input;
475 }
476 #else
477 /*
478  * Otherwise, buffer the input bits using zlib's default input buffer type.
479  */
480 typedef unsigned long inflate_holder_t;
481 
482 #endif /* INFLATE_CHUNK_READ_64LE */
483 
484 #undef Z_STATIC_ASSERT
485 #undef Z_RESTRICT
486 #undef Z_BUILTIN_MEMCPY
487 #undef Z_DISABLE_MSAN
488 
489 #endif /* CHUNKCOPY_H */
490