1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef GrFragmentProcessor_DEFINED
9 #define GrFragmentProcessor_DEFINED
10
11 #include "include/private/SkMacros.h"
12 #include "include/private/SkSLSampleUsage.h"
13 #include "include/private/SkSLString.h"
14 #include "src/gpu/GrProcessor.h"
15 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
16
17 #include <tuple>
18
19 class GrGLSLFPFragmentBuilder;
20 class GrGLSLProgramDataManager;
21 class GrPaint;
22 class GrPipeline;
23 class GrProcessorKeyBuilder;
24 class GrShaderCaps;
25 class GrSwizzle;
26 class GrTextureEffect;
27
28 /**
29 * Some fragment-processor creation methods have preconditions that might not be satisfied by the
30 * calling code. Those methods can return a `GrFPResult` from their factory methods. If creation
31 * succeeds, the new fragment processor is created and `success` is true. If a precondition is not
32 * met, `success` is set to false and the input FP is returned unchanged.
33 */
34 class GrFragmentProcessor;
35 using GrFPResult = std::tuple<bool /*success*/, std::unique_ptr<GrFragmentProcessor>>;
36
37 /** Provides custom fragment shader code. Fragment processors receive an input position and
38 produce an output color. They may contain uniforms and may have children fragment processors
39 that are sampled.
40 */
41 class GrFragmentProcessor : public GrProcessor {
42 public:
43 /**
44 * Every GrFragmentProcessor must be capable of creating a subclass of ProgramImpl. The
45 * ProgramImpl emits the fragment shader code that implements the GrFragmentProcessor, is
46 * attached to the generated backend API pipeline/program and used to extract uniform data from
47 * GrFragmentProcessor instances.
48 */
49 class ProgramImpl;
50
51 // Advanced Filter: Get Advanced Filter status, only GrSkSLFP overwrite isAFEnabled
isAFEnabled()52 virtual bool isAFEnabled() const
53 {
54 return false;
55 }
56
57 // Advanced Filter: Check Advanced Filter is enabled or not, by visiting its children recursively
58 // If one of its children enables AF, return true
59 bool checkAFRecursively() const;
60
61 /** Always returns 'color'. */
62 static std::unique_ptr<GrFragmentProcessor> MakeColor(SkPMColor4f color);
63
64 /**
65 * Returns the input color, modulated by the child's alpha.
66 *
67 * output = input * child.a
68 */
69 static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha(
70 std::unique_ptr<GrFragmentProcessor> child);
71
72 /**
73 * Invokes child with an opaque version of the input color, then applies the input alpha to
74 * the result. Used to incorporate paint alpha to the evaluation of an SkShader tree FP.
75 */
76 static std::unique_ptr<GrFragmentProcessor> ApplyPaintAlpha(
77 std::unique_ptr<GrFragmentProcessor> child);
78
79 /**
80 * Returns a fragment processor that generates the passed-in color, modulated by the child's
81 * RGBA color. The child's input color will be the parent's fInputColor. (Pass a null FP to use
82 * the color from fInputColor instead of a child FP.)
83 */
84 static std::unique_ptr<GrFragmentProcessor> ModulateRGBA(
85 std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color);
86
87 /**
88 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
89 * The parent will ignore its input color and instead feed the passed in color as input to the
90 * child.
91 */
92 static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>,
93 const SkPMColor4f&);
94
95 /**
96 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
97 * The parent will simply return the child's color, but disable the coverage-as-alpha
98 * optimization.
99 */
100 static std::unique_ptr<GrFragmentProcessor> DisableCoverageAsAlpha(
101 std::unique_ptr<GrFragmentProcessor>);
102
103 /**
104 * Returns a fragment processor which samples the passed-in fragment processor using
105 * `args.fDestColor` as its input color. Pass a null FP to access `args.fDestColor` directly.
106 * (This is only meaningful in contexts like blenders, which use a source and dest color.)
107 */
108 static std::unique_ptr<GrFragmentProcessor> UseDestColorAsInput(
109 std::unique_ptr<GrFragmentProcessor>);
110
111 /**
112 * Returns a fragment processor that calls the passed in fragment processor, and then swizzles
113 * the output.
114 */
115 static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>,
116 const GrSwizzle&);
117
118 /**
119 * Returns a fragment processor that calls the passed in fragment processor, and then clamps
120 * the output to [0, 1].
121 */
122 static std::unique_ptr<GrFragmentProcessor> ClampOutput(std::unique_ptr<GrFragmentProcessor>);
123
124 /**
125 * Returns a fragment processor that composes two fragment processors `f` and `g` into f(g(x)).
126 * This is equivalent to running them in series (`g`, then `f`). This is not the same as
127 * transfer-mode composition; there is no blending step.
128 */
129 static std::unique_ptr<GrFragmentProcessor> Compose(std::unique_ptr<GrFragmentProcessor> f,
130 std::unique_ptr<GrFragmentProcessor> g);
131
132 /*
133 * Returns a fragment processor that calls the passed in fragment processor, then runs the
134 * resulting color through the supplied color matrix.
135 */
136 static std::unique_ptr<GrFragmentProcessor> ColorMatrix(
137 std::unique_ptr<GrFragmentProcessor> child,
138 const float matrix[20],
139 bool unpremulInput,
140 bool clampRGBOutput,
141 bool premulOutput);
142
143 /**
144 * Returns a fragment processor that reads back the color on the surface being painted; that is,
145 * sampling this will return the color of the pixel that is currently being painted over.
146 */
147 static std::unique_ptr<GrFragmentProcessor> SurfaceColor();
148
149 /**
150 * Returns a fragment processor that calls the passed in fragment processor, but evaluates it
151 * in device-space (rather than local space).
152 */
153 static std::unique_ptr<GrFragmentProcessor> DeviceSpace(std::unique_ptr<GrFragmentProcessor>);
154
155 /**
156 * "Shape" FPs, often used for clipping. Each one evaluates a particular kind of shape (rect,
157 * circle, ellipse), and modulates the coverage of that shape against the results of the input
158 * FP. GrClipEdgeType is used to select inverse/normal fill, and AA or non-AA edges.
159 */
160 static std::unique_ptr<GrFragmentProcessor> Rect(std::unique_ptr<GrFragmentProcessor>,
161 GrClipEdgeType,
162 SkRect);
163
164 static GrFPResult Circle(std::unique_ptr<GrFragmentProcessor>,
165 GrClipEdgeType,
166 SkPoint center,
167 float radius);
168
169 #ifdef SKIA_OHOS
170 static GrFPResult CircleSDF(std::unique_ptr<GrFragmentProcessor>,
171 GrClipEdgeType, SkPoint center, float radius);
172 #endif
173
174 static GrFPResult Ellipse(std::unique_ptr<GrFragmentProcessor>,
175 GrClipEdgeType,
176 SkPoint center,
177 SkPoint radii,
178 const GrShaderCaps&);
179
180 /**
181 * Returns a fragment processor that calls the passed in fragment processor, but ensures the
182 * entire program is compiled with high-precision types.
183 */
184 static std::unique_ptr<GrFragmentProcessor> HighPrecision(std::unique_ptr<GrFragmentProcessor>);
185
186 /**
187 * Makes a copy of this fragment processor that draws equivalently to the original.
188 * If the processor has child processors they are cloned as well.
189 */
190 virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0;
191
192 // The FP this was registered with as a child function. This will be null if this is a root.
parent()193 const GrFragmentProcessor* parent() const { return fParent; }
194
195 std::unique_ptr<ProgramImpl> makeProgramImpl() const;
196
addToKey(const GrShaderCaps & caps,GrProcessorKeyBuilder * b)197 void addToKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const {
198 this->onAddToKey(caps, b);
199 for (const auto& child : fChildProcessors) {
200 if (child) {
201 child->addToKey(caps, b);
202 }
203 }
204 }
205
numChildProcessors()206 int numChildProcessors() const { return fChildProcessors.count(); }
207 int numNonNullChildProcessors() const;
208
childProcessor(int index)209 GrFragmentProcessor* childProcessor(int index) { return fChildProcessors[index].get(); }
childProcessor(int index)210 const GrFragmentProcessor* childProcessor(int index) const {
211 return fChildProcessors[index].get();
212 }
213
SkDEBUGCODE(bool isInstantiated ()const;)214 SkDEBUGCODE(bool isInstantiated() const;)
215
216 /** Do any of the FPs in this tree read back the color from the destination surface? */
217 bool willReadDstColor() const {
218 return SkToBool(fFlags & kWillReadDstColor_Flag);
219 }
220
221 /** Does the SkSL for this FP take two colors as its input arguments? */
isBlendFunction()222 bool isBlendFunction() const {
223 return SkToBool(fFlags & kIsBlendFunction_Flag);
224 }
225
226 /**
227 * True if this FP refers directly to the sample coordinate parameter of its function
228 * (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is decided at FP-tree construction
229 * time and is not affected by lifting coords to varyings.
230 */
usesSampleCoordsDirectly()231 bool usesSampleCoordsDirectly() const {
232 return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag);
233 }
234
235 /**
236 * True if this FP uses its input coordinates or if any descendant FP uses them through a chain
237 * of non-explicit sample usages. (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is
238 * decided at FP-tree construction time and is not affected by lifting coords to varyings.
239 */
usesSampleCoords()240 bool usesSampleCoords() const {
241 return SkToBool(fFlags & (kUsesSampleCoordsDirectly_Flag |
242 kUsesSampleCoordsIndirectly_Flag));
243 }
244
245 // The SampleUsage describing how this FP is invoked by its parent. This only reflects the
246 // immediate sampling from parent to this FP.
sampleUsage()247 const SkSL::SampleUsage& sampleUsage() const {
248 return fUsage;
249 }
250
251 /**
252 * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color
253 * output under the following scenario:
254 * * all the color fragment processors report true to this query,
255 * * all the coverage fragment processors report true to this query,
256 * * the blend mode arithmetic allows for it it.
257 * To be compatible a fragment processor's output must be a modulation of its input color or
258 * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color
259 * or alpha that is modulated against the input cannot depend on the input's alpha. The computed
260 * value cannot depend on the input's color channels unless it unpremultiplies the input color
261 * channels by the input alpha.
262 */
compatibleWithCoverageAsAlpha()263 bool compatibleWithCoverageAsAlpha() const {
264 return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag);
265 }
266
267 /**
268 * If this is true then all opaque input colors to the processor produce opaque output colors.
269 */
preservesOpaqueInput()270 bool preservesOpaqueInput() const {
271 return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag);
272 }
273
274 /**
275 * Tests whether given a constant input color the processor produces a constant output color
276 * (for all fragments). If true outputColor will contain the constant color produces for
277 * inputColor.
278 */
hasConstantOutputForConstantInput(SkPMColor4f inputColor,SkPMColor4f * outputColor)279 bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const {
280 if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) {
281 *outputColor = this->constantOutputForConstantInput(inputColor);
282 return true;
283 }
284 return false;
285 }
hasConstantOutputForConstantInput()286 bool hasConstantOutputForConstantInput() const {
287 return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag);
288 }
289
290 /** Returns true if this and other processor conservatively draw identically. It can only return
291 true when the two processor are of the same subclass (i.e. they return the same object from
292 from getFactory()).
293
294 A return value of true from isEqual() should not be used to test whether the processor would
295 generate the same shader code. To test for identical code generation use addToKey.
296 */
297 bool isEqual(const GrFragmentProcessor& that) const;
298
299 void visitProxies(const GrVisitProxyFunc&) const;
300
301 void visitTextureEffects(const std::function<void(const GrTextureEffect&)>&) const;
302
303 void visitWithImpls(const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>&,
304 ProgramImpl&) const;
305
306 GrTextureEffect* asTextureEffect();
307 const GrTextureEffect* asTextureEffect() const;
308
309 #if GR_TEST_UTILS
310 // Generates debug info for this processor tree by recursively calling dumpInfo() on this
311 // processor and its children.
312 SkString dumpTreeInfo() const;
313 #endif
314
315 protected:
316 enum OptimizationFlags : uint32_t {
317 kNone_OptimizationFlags,
318 kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1,
319 kPreservesOpaqueInput_OptimizationFlag = 0x2,
320 kConstantOutputForConstantInput_OptimizationFlag = 0x4,
321 kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag |
322 kPreservesOpaqueInput_OptimizationFlag |
323 kConstantOutputForConstantInput_OptimizationFlag
324 };
SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)325 SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)
326
327 /**
328 * Can be used as a helper to decide which fragment processor OptimizationFlags should be set.
329 * This assumes that the subclass output color will be a modulation of the input color with a
330 * value read from a texture of the passed color type and that the texture contains
331 * premultiplied color or alpha values that are in range.
332 *
333 * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped,
334 * callers must determine on their own if the sampling uses a decal strategy in any way, in
335 * which case the texture may become transparent regardless of the color type.
336 */
337 static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) {
338 if (samplingDecal) {
339 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
340 } else {
341 return ModulateForClampedSamplerOptFlags(alphaType);
342 }
343 }
344
345 // As above, but callers should somehow ensure or assert their sampler still uses clamping
ModulateForClampedSamplerOptFlags(SkAlphaType alphaType)346 static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) {
347 if (alphaType == kOpaque_SkAlphaType) {
348 return kCompatibleWithCoverageAsAlpha_OptimizationFlag |
349 kPreservesOpaqueInput_OptimizationFlag;
350 } else {
351 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
352 }
353 }
354
GrFragmentProcessor(ClassID classID,OptimizationFlags optimizationFlags)355 GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags)
356 : INHERITED(classID), fFlags(optimizationFlags) {
357 SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0);
358 }
359
GrFragmentProcessor(const GrFragmentProcessor & src)360 explicit GrFragmentProcessor(const GrFragmentProcessor& src)
361 : INHERITED(src.classID()), fFlags(src.fFlags) {
362 this->cloneAndRegisterAllChildProcessors(src);
363 }
364
optimizationFlags()365 OptimizationFlags optimizationFlags() const {
366 return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags);
367 }
368
369 /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/
ProcessorOptimizationFlags(const GrFragmentProcessor * fp)370 static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) {
371 return fp ? fp->optimizationFlags() : kAll_OptimizationFlags;
372 }
373
374 /**
375 * This allows one subclass to access another subclass's implementation of
376 * constantOutputForConstantInput. It must only be called when
377 * hasConstantOutputForConstantInput() is known to be true.
378 */
ConstantOutputForConstantInput(const GrFragmentProcessor * fp,const SkPMColor4f & input)379 static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor* fp,
380 const SkPMColor4f& input) {
381 if (fp) {
382 SkASSERT(fp->hasConstantOutputForConstantInput());
383 return fp->constantOutputForConstantInput(input);
384 } else {
385 return input;
386 }
387 }
388
389 /**
390 * FragmentProcessor subclasses call this from their constructor to register any child
391 * FragmentProcessors they have. This must be called AFTER all texture accesses and coord
392 * transforms have been added.
393 * This is for processors whose shader code will be composed of nested processors whose output
394 * colors will be combined somehow to produce its output color. Registering these child
395 * processors will allow the ProgramBuilder to automatically handle their transformed coords and
396 * texture accesses and mangle their uniform and output color names.
397 *
398 * The SampleUsage parameter describes all of the ways that the child is sampled by the parent.
399 */
400 void registerChild(std::unique_ptr<GrFragmentProcessor> child,
401 SkSL::SampleUsage sampleUsage = SkSL::SampleUsage::PassThrough());
402
403 /**
404 * This method takes an existing fragment processor, clones all of its children, and registers
405 * the clones as children of this fragment processor.
406 */
407 void cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src);
408
409 // FP implementations must call this function if their matching ProgramImpl's emitCode()
410 // function uses the EmitArgs::fSampleCoord variable in generated SkSL.
setUsesSampleCoordsDirectly()411 void setUsesSampleCoordsDirectly() {
412 fFlags |= kUsesSampleCoordsDirectly_Flag;
413 }
414
415 // FP implementations must set this flag if their ProgramImpl's emitCode() function calls
416 // dstColor() to read back the framebuffer.
setWillReadDstColor()417 void setWillReadDstColor() {
418 fFlags |= kWillReadDstColor_Flag;
419 }
420
421 // FP implementations must set this flag if their ProgramImpl's emitCode() function emits a
422 // blend function (taking two color inputs instead of just one).
setIsBlendFunction()423 void setIsBlendFunction() {
424 fFlags |= kIsBlendFunction_Flag;
425 }
426
mergeOptimizationFlags(OptimizationFlags flags)427 void mergeOptimizationFlags(OptimizationFlags flags) {
428 SkASSERT((flags & ~kAll_OptimizationFlags) == 0);
429 fFlags &= (flags | ~kAll_OptimizationFlags);
430 }
431
432 private:
constantOutputForConstantInput(const SkPMColor4f &)433 virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const {
434 SK_ABORT("Subclass must override this if advertising this optimization.");
435 }
436
437 /**
438 * Returns a new instance of the appropriate ProgramImpl subclass for the given
439 * GrFragmentProcessor. It will emit the appropriate code and live with the cached program
440 * to setup uniform data for each draw that uses the program.
441 */
442 virtual std::unique_ptr<ProgramImpl> onMakeProgramImpl() const = 0;
443
444 virtual void onAddToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0;
445
446 /**
447 * Subclass implements this to support isEqual(). It will only be called if it is known that
448 * the two processors are of the same subclass (i.e. have the same ClassID).
449 */
450 virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
451
452 enum PrivateFlags {
453 kFirstPrivateFlag = kAll_OptimizationFlags + 1,
454
455 // Propagates up the FP tree to either root or first explicit sample usage.
456 kUsesSampleCoordsIndirectly_Flag = kFirstPrivateFlag,
457
458 // Does not propagate at all. It means this FP uses its input sample coords in some way.
459 // Note passthrough and matrix sampling of children don't count as a usage of the coords.
460 // Because indirect sampling stops at an explicit sample usage it is imperative that a FP
461 // that calculates explicit coords for its children using its own sample coords sets this.
462 kUsesSampleCoordsDirectly_Flag = kFirstPrivateFlag << 1,
463
464 // Does not propagate at all.
465 kIsBlendFunction_Flag = kFirstPrivateFlag << 2,
466
467 // Propagates up the FP tree to the root.
468 kWillReadDstColor_Flag = kFirstPrivateFlag << 3,
469 };
470
471 SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors;
472 const GrFragmentProcessor* fParent = nullptr;
473 uint32_t fFlags = 0;
474 SkSL::SampleUsage fUsage;
475
476 using INHERITED = GrProcessor;
477 };
478
479 //////////////////////////////////////////////////////////////////////////////
480
481 class GrFragmentProcessor::ProgramImpl {
482 public:
483 ProgramImpl() = default;
484
485 virtual ~ProgramImpl() = default;
486
487 using UniformHandle = GrGLSLUniformHandler::UniformHandle;
488 using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
489
490 /** Called when the program stage should insert its code into the shaders. The code in each
491 shader will be in its own block ({}) and so locally scoped names will not collide across
492 stages.
493
494 @param fragBuilder Interface used to emit code in the shaders.
495 @param uniformHandler Interface used for accessing information about our uniforms
496 @param caps The capabilities of the GPU which will render this FP
497 @param fp The processor that generated this program stage.
498 @param inputColor A half4 that holds the input color to the stage in the FS (or the
499 source color, for blend processors). nullptr inputs are converted
500 to "half4(1.0)" (solid white) during construction.
501 TODO: Better system for communicating optimization info
502 (e.g. input color is solid white, trans black, known to be opaque,
503 etc.) that allows the processor to communicate back similar known
504 info about its output.
505 @param destColor A half4 that holds the dest color to the stage. Only meaningful
506 when the "is blend processor" FP flag is set.
507 @param sampleCoord The name of a local coord reference to a float2 variable. Only
508 meaningful when the "references sample coords" FP flag is set.
509 */
510 struct EmitArgs {
EmitArgsEmitArgs511 EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
512 GrGLSLUniformHandler* uniformHandler,
513 const GrShaderCaps* caps,
514 const GrFragmentProcessor& fp,
515 const char* inputColor,
516 const char* destColor,
517 const char* sampleCoord)
518 : fFragBuilder(fragBuilder)
519 , fUniformHandler(uniformHandler)
520 , fShaderCaps(caps)
521 , fFp(fp)
522 , fInputColor(inputColor ? inputColor : "half4(1.0)")
523 , fDestColor(destColor)
524 , fSampleCoord(sampleCoord) {}
525 GrGLSLFPFragmentBuilder* fFragBuilder;
526 GrGLSLUniformHandler* fUniformHandler;
527 const GrShaderCaps* fShaderCaps;
528 const GrFragmentProcessor& fFp;
529 const char* fInputColor;
530 const char* fDestColor;
531 const char* fSampleCoord;
532 };
533
534 virtual void emitCode(EmitArgs&) = 0;
535
536 // This does not recurse to any attached child processors. Recursing the entire processor tree
537 // is the responsibility of the caller.
538 void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
539
numChildProcessors()540 int numChildProcessors() const { return fChildProcessors.count(); }
541
childProcessor(int index)542 ProgramImpl* childProcessor(int index) const { return fChildProcessors[index].get(); }
543
setFunctionName(SkString name)544 void setFunctionName(SkString name) {
545 SkASSERT(fFunctionName.isEmpty());
546 fFunctionName = std::move(name);
547 }
548
functionName()549 const char* functionName() const {
550 SkASSERT(!fFunctionName.isEmpty());
551 return fFunctionName.c_str();
552 }
553
554 // Invoke the child with the default input and destination colors (solid white)
555 inline SkString invokeChild(int childIndex,
556 EmitArgs& parentArgs,
557 SkSL::String skslCoords = "") {
558 return this->invokeChild(childIndex,
559 /*inputColor=*/nullptr,
560 /*destColor=*/nullptr,
561 parentArgs,
562 skslCoords);
563 }
564
invokeChildWithMatrix(int childIndex,EmitArgs & parentArgs)565 inline SkString invokeChildWithMatrix(int childIndex, EmitArgs& parentArgs) {
566 return this->invokeChildWithMatrix(childIndex,
567 /*inputColor=*/nullptr,
568 /*destColor=*/nullptr,
569 parentArgs);
570 }
571
572 // Invoke the child with the default destination color (solid white)
573 inline SkString invokeChild(int childIndex,
574 const char* inputColor,
575 EmitArgs& parentArgs,
576 SkSL::String skslCoords = "") {
577 return this->invokeChild(childIndex,
578 inputColor,
579 /*destColor=*/nullptr,
580 parentArgs,
581 skslCoords);
582 }
583
invokeChildWithMatrix(int childIndex,const char * inputColor,EmitArgs & parentArgs)584 inline SkString invokeChildWithMatrix(int childIndex,
585 const char* inputColor,
586 EmitArgs& parentArgs) {
587 return this->invokeChildWithMatrix(childIndex,
588 inputColor,
589 /*destColor=*/nullptr,
590 parentArgs);
591 }
592
593 /** Invokes a child proc in its own scope. Pass in the parent's EmitArgs and invokeChild will
594 * automatically extract the coords and samplers of that child and pass them on to the child's
595 * emitCode(). Also, any uniforms or functions emitted by the child will have their names
596 * mangled to prevent redefinitions. The returned string contains the output color (as a call
597 * to the child's helper function). It is legal to pass nullptr as inputColor, since all
598 * fragment processors are required to work without an input color.
599 *
600 * When skslCoords is empty, the child is invoked at the sample coordinates from parentArgs.
601 * When skslCoords is not empty, is must be an SkSL expression that evaluates to a float2.
602 * That expression is passed to the child's processor function as the "_coords" argument.
603 */
604 SkString invokeChild(int childIndex,
605 const char* inputColor,
606 const char* destColor,
607 EmitArgs& parentArgs,
608 SkSL::String skslCoords = "");
609
610 /**
611 * As invokeChild, but transforms the coordinates according to the matrix expression attached
612 * to the child's SampleUsage object. This is only valid if the child is sampled with a
613 * const-uniform matrix.
614 */
615 SkString invokeChildWithMatrix(int childIndex,
616 const char* inputColor,
617 const char* destColor,
618 EmitArgs& parentArgs);
619
620 /**
621 * Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
622 * GLSLFPS. If initialized with an array color followed by coverage processors installed in a
623 * program thenthe iteration order will agree with a GrFragmentProcessor::Iter initialized with
624 * a GrPipeline that produces the same program key.
625 */
626 class Iter {
627 public:
628 Iter(std::unique_ptr<ProgramImpl> fps[], int cnt);
Iter(ProgramImpl & fp)629 Iter(ProgramImpl& fp) { fFPStack.push_back(&fp); }
630
631 ProgramImpl& operator*() const;
632 ProgramImpl* operator->() const;
633 Iter& operator++();
634 operator bool() const { return !fFPStack.empty(); }
635
636 // Because each iterator carries a stack we want to avoid copies.
637 Iter(const Iter&) = delete;
638 Iter& operator=(const Iter&) = delete;
639
640 private:
641 SkSTArray<4, ProgramImpl*, true> fFPStack;
642 };
643
644 private:
645 /**
646 * A ProgramImpl instance can be reused with any GrFragmentProcessor that produces the same
647 * the same key; this function reads data from a GrFragmentProcessor and uploads any
648 * uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
649 * parameter is guaranteed to be of the same type that created this ProgramImpl and
650 * to have an identical key as the one that created this ProgramImpl.
651 */
onSetData(const GrGLSLProgramDataManager &,const GrFragmentProcessor &)652 virtual void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) {}
653
654 // The (mangled) name of our entry-point function
655 SkString fFunctionName;
656
657 SkTArray<std::unique_ptr<ProgramImpl>, true> fChildProcessors;
658
659 friend class GrFragmentProcessor;
660 };
661
662 //////////////////////////////////////////////////////////////////////////////
663
SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)664 SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)
665
666 static inline GrFPResult GrFPFailure(std::unique_ptr<GrFragmentProcessor> fp) {
667 return {false, std::move(fp)};
668 }
GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp)669 static inline GrFPResult GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp) {
670 SkASSERT(fp);
671 return {true, std::move(fp)};
672 }
673
674 #endif
675