1 // Copyright (c) 2018 Google LLC.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file implements the SSA rewriting algorithm proposed in
16 //
17 // Simple and Efficient Construction of Static Single Assignment Form.
18 // Braun M., Buchwald S., Hack S., Leißa R., Mallon C., Zwinkau A. (2013)
19 // In: Jhala R., De Bosschere K. (eds)
20 // Compiler Construction. CC 2013.
21 // Lecture Notes in Computer Science, vol 7791.
22 // Springer, Berlin, Heidelberg
23 //
24 // https://link.springer.com/chapter/10.1007/978-3-642-37051-9_6
25 //
26 // In contrast to common eager algorithms based on dominance and dominance
27 // frontier information, this algorithm works backwards from load operations.
28 //
29 // When a target variable is loaded, it queries the variable's reaching
30 // definition. If the reaching definition is unknown at the current location,
31 // it searches backwards in the CFG, inserting Phi instructions at join points
32 // in the CFG along the way until it finds the desired store instruction.
33 //
34 // The algorithm avoids repeated lookups using memoization.
35 //
36 // For reducible CFGs, which are a superset of the structured CFGs in SPIRV,
37 // this algorithm is proven to produce minimal SSA. That is, it inserts the
38 // minimal number of Phi instructions required to ensure the SSA property, but
39 // some Phi instructions may be dead
40 // (https://en.wikipedia.org/wiki/Static_single_assignment_form).
41
42 #include "source/opt/ssa_rewrite_pass.h"
43
44 #include <memory>
45 #include <sstream>
46
47 #include "source/opcode.h"
48 #include "source/opt/cfg.h"
49 #include "source/opt/mem_pass.h"
50 #include "source/opt/types.h"
51
52 // Debug logging (0: Off, 1-N: Verbosity level). Replace this with the
53 // implementation done for
54 // https://github.com/KhronosGroup/SPIRV-Tools/issues/1351
55 // #define SSA_REWRITE_DEBUGGING_LEVEL 3
56
57 #ifdef SSA_REWRITE_DEBUGGING_LEVEL
58 #include <ostream>
59 #else
60 #define SSA_REWRITE_DEBUGGING_LEVEL 0
61 #endif
62
63 namespace spvtools {
64 namespace opt {
65 namespace {
66 constexpr uint32_t kStoreValIdInIdx = 1;
67 constexpr uint32_t kVariableInitIdInIdx = 1;
68 } // namespace
69
PrettyPrint(const CFG * cfg) const70 std::string SSARewriter::PhiCandidate::PrettyPrint(const CFG* cfg) const {
71 std::ostringstream str;
72 str << "%" << result_id_ << " = Phi[%" << var_id_ << ", BB %" << bb_->id()
73 << "](";
74 if (phi_args_.size() > 0) {
75 uint32_t arg_ix = 0;
76 for (uint32_t pred_label : cfg->preds(bb_->id())) {
77 uint32_t arg_id = phi_args_[arg_ix++];
78 str << "[%" << arg_id << ", bb(%" << pred_label << ")] ";
79 }
80 }
81 str << ")";
82 if (copy_of_ != 0) {
83 str << " [COPY OF " << copy_of_ << "]";
84 }
85 str << ((is_complete_) ? " [COMPLETE]" : " [INCOMPLETE]");
86
87 return str.str();
88 }
89
CreatePhiCandidate(uint32_t var_id,BasicBlock * bb)90 SSARewriter::PhiCandidate& SSARewriter::CreatePhiCandidate(uint32_t var_id,
91 BasicBlock* bb) {
92 // TODO(1841): Handle id overflow.
93 uint32_t phi_result_id = pass_->context()->TakeNextId();
94 auto result = phi_candidates_.emplace(
95 phi_result_id, PhiCandidate(var_id, phi_result_id, bb));
96 PhiCandidate& phi_candidate = result.first->second;
97 return phi_candidate;
98 }
99
ReplacePhiUsersWith(const PhiCandidate & phi_to_remove,uint32_t repl_id)100 void SSARewriter::ReplacePhiUsersWith(const PhiCandidate& phi_to_remove,
101 uint32_t repl_id) {
102 for (uint32_t user_id : phi_to_remove.users()) {
103 PhiCandidate* user_phi = GetPhiCandidate(user_id);
104 BasicBlock* bb = pass_->context()->get_instr_block(user_id);
105 if (user_phi) {
106 // If the user is a Phi candidate, replace all arguments that refer to
107 // |phi_to_remove.result_id()| with |repl_id|.
108 for (uint32_t& arg : user_phi->phi_args()) {
109 if (arg == phi_to_remove.result_id()) {
110 arg = repl_id;
111 }
112 }
113 } else if (bb->id() == user_id) {
114 // The phi candidate is the definition of the variable at basic block
115 // |bb|. We must change this to the replacement.
116 WriteVariable(phi_to_remove.var_id(), bb, repl_id);
117 } else {
118 // For regular loads, traverse the |load_replacement_| table looking for
119 // instances of |phi_to_remove|.
120 for (auto& it : load_replacement_) {
121 if (it.second == phi_to_remove.result_id()) {
122 it.second = repl_id;
123 }
124 }
125 }
126 }
127 }
128
TryRemoveTrivialPhi(PhiCandidate * phi_candidate)129 uint32_t SSARewriter::TryRemoveTrivialPhi(PhiCandidate* phi_candidate) {
130 uint32_t same_id = 0;
131 for (uint32_t arg_id : phi_candidate->phi_args()) {
132 if (arg_id == same_id || arg_id == phi_candidate->result_id()) {
133 // This is a self-reference operand or a reference to the same value ID.
134 continue;
135 }
136 if (same_id != 0) {
137 // This Phi candidate merges at least two values. Therefore, it is not
138 // trivial.
139 assert(phi_candidate->copy_of() == 0 &&
140 "Phi candidate transitioning from copy to non-copy.");
141 return phi_candidate->result_id();
142 }
143 same_id = arg_id;
144 }
145
146 // The previous logic has determined that this Phi candidate |phi_candidate|
147 // is trivial. It is essentially the copy operation phi_candidate->phi_result
148 // = Phi(same, same, same, ...). Since it is not necessary, we can re-route
149 // all the users of |phi_candidate->phi_result| to all its users, and remove
150 // |phi_candidate|.
151
152 // Mark the Phi candidate as a trivial copy of |same_id|, so it won't be
153 // generated.
154 phi_candidate->MarkCopyOf(same_id);
155
156 assert(same_id != 0 && "Completed Phis cannot have %0 in their arguments");
157
158 // Since |phi_candidate| always produces |same_id|, replace all the users of
159 // |phi_candidate| with |same_id|.
160 ReplacePhiUsersWith(*phi_candidate, same_id);
161
162 return same_id;
163 }
164
AddPhiOperands(PhiCandidate * phi_candidate)165 uint32_t SSARewriter::AddPhiOperands(PhiCandidate* phi_candidate) {
166 assert(phi_candidate->phi_args().size() == 0 &&
167 "Phi candidate already has arguments");
168
169 bool found_0_arg = false;
170 for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
171 BasicBlock* pred_bb = pass_->cfg()->block(pred);
172
173 // If |pred_bb| is not sealed, use %0 to indicate that
174 // |phi_candidate| needs to be completed after the whole CFG has
175 // been processed.
176 //
177 // Note that we cannot call GetReachingDef() in these cases
178 // because this would generate an empty Phi candidate in
179 // |pred_bb|. When |pred_bb| is later processed, a new definition
180 // for |phi_candidate->var_id_| will be lost because
181 // |phi_candidate| will still be reached by the empty Phi.
182 //
183 // Consider:
184 //
185 // BB %23:
186 // %38 = Phi[%i](%int_0[%1], %39[%25])
187 //
188 // ...
189 //
190 // BB %25: [Starts unsealed]
191 // %39 = Phi[%i]()
192 // %34 = ...
193 // OpStore %i %34 -> Currdef(%i) at %25 is %34
194 // OpBranch %23
195 //
196 // When we first create the Phi in %38, we add an operandless Phi in
197 // %39 to hold the unknown reaching def for %i.
198 //
199 // But then, when we go to complete %39 at the end. The reaching def
200 // for %i in %25's predecessor is %38 itself. So we miss the fact
201 // that %25 has a def for %i that should be used.
202 //
203 // By making the argument %0, we make |phi_candidate| incomplete,
204 // which will cause it to be completed after the whole CFG has
205 // been scanned.
206 uint32_t arg_id = IsBlockSealed(pred_bb)
207 ? GetReachingDef(phi_candidate->var_id(), pred_bb)
208 : 0;
209 phi_candidate->phi_args().push_back(arg_id);
210
211 if (arg_id == 0) {
212 found_0_arg = true;
213 } else {
214 // If this argument is another Phi candidate, add |phi_candidate| to the
215 // list of users for the defining Phi.
216 PhiCandidate* defining_phi = GetPhiCandidate(arg_id);
217 if (defining_phi && defining_phi != phi_candidate) {
218 defining_phi->AddUser(phi_candidate->result_id());
219 }
220 }
221 }
222
223 // If we could not fill-in all the arguments of this Phi, mark it incomplete
224 // so it gets completed after the whole CFG has been processed.
225 if (found_0_arg) {
226 phi_candidate->MarkIncomplete();
227 incomplete_phis_.push(phi_candidate);
228 return phi_candidate->result_id();
229 }
230
231 // Try to remove |phi_candidate|, if it's trivial.
232 uint32_t repl_id = TryRemoveTrivialPhi(phi_candidate);
233 if (repl_id == phi_candidate->result_id()) {
234 // |phi_candidate| is complete and not trivial. Add it to the
235 // list of Phi candidates to generate.
236 phi_candidate->MarkComplete();
237 phis_to_generate_.push_back(phi_candidate);
238 }
239
240 return repl_id;
241 }
242
GetValueAtBlock(uint32_t var_id,BasicBlock * bb)243 uint32_t SSARewriter::GetValueAtBlock(uint32_t var_id, BasicBlock* bb) {
244 assert(bb != nullptr);
245 const auto& bb_it = defs_at_block_.find(bb);
246 if (bb_it != defs_at_block_.end()) {
247 const auto& current_defs = bb_it->second;
248 const auto& var_it = current_defs.find(var_id);
249 if (var_it != current_defs.end()) {
250 return var_it->second;
251 }
252 }
253 return 0;
254 }
255
GetReachingDef(uint32_t var_id,BasicBlock * bb)256 uint32_t SSARewriter::GetReachingDef(uint32_t var_id, BasicBlock* bb) {
257 // If |var_id| has a definition in |bb|, return it.
258 uint32_t val_id = GetValueAtBlock(var_id, bb);
259 if (val_id != 0) return val_id;
260
261 // Otherwise, look up the value for |var_id| in |bb|'s predecessors.
262 auto& predecessors = pass_->cfg()->preds(bb->id());
263 if (predecessors.size() == 1) {
264 // If |bb| has exactly one predecessor, we look for |var_id|'s definition
265 // there.
266 val_id = GetReachingDef(var_id, pass_->cfg()->block(predecessors[0]));
267 } else if (predecessors.size() > 1) {
268 // If there is more than one predecessor, this is a join block which may
269 // require a Phi instruction. This will act as |var_id|'s current
270 // definition to break potential cycles.
271 PhiCandidate& phi_candidate = CreatePhiCandidate(var_id, bb);
272
273 // Set the value for |bb| to avoid an infinite recursion.
274 WriteVariable(var_id, bb, phi_candidate.result_id());
275 val_id = AddPhiOperands(&phi_candidate);
276 }
277
278 // If we could not find a store for this variable in the path from the root
279 // of the CFG, the variable is not defined, so we use undef.
280 if (val_id == 0) {
281 val_id = pass_->GetUndefVal(var_id);
282 if (val_id == 0) {
283 return 0;
284 }
285 }
286
287 WriteVariable(var_id, bb, val_id);
288
289 return val_id;
290 }
291
SealBlock(BasicBlock * bb)292 void SSARewriter::SealBlock(BasicBlock* bb) {
293 auto result = sealed_blocks_.insert(bb);
294 (void)result;
295 assert(result.second == true &&
296 "Tried to seal the same basic block more than once.");
297 }
298
ProcessStore(Instruction * inst,BasicBlock * bb)299 void SSARewriter::ProcessStore(Instruction* inst, BasicBlock* bb) {
300 auto opcode = inst->opcode();
301 assert((opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) &&
302 "Expecting a store or a variable definition instruction.");
303
304 uint32_t var_id = 0;
305 uint32_t val_id = 0;
306 if (opcode == spv::Op::OpStore) {
307 (void)pass_->GetPtr(inst, &var_id);
308 val_id = inst->GetSingleWordInOperand(kStoreValIdInIdx);
309 } else if (inst->NumInOperands() >= 2) {
310 var_id = inst->result_id();
311 val_id = inst->GetSingleWordInOperand(kVariableInitIdInIdx);
312 }
313 if (pass_->IsTargetVar(var_id)) {
314 WriteVariable(var_id, bb, val_id);
315 pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
316 inst, var_id, val_id, inst);
317
318 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
319 std::cerr << "\tFound store '%" << var_id << " = %" << val_id << "': "
320 << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
321 << "\n";
322 #endif
323 }
324 }
325
ProcessLoad(Instruction * inst,BasicBlock * bb)326 bool SSARewriter::ProcessLoad(Instruction* inst, BasicBlock* bb) {
327 // Get the pointer that we are using to load from.
328 uint32_t var_id = 0;
329 (void)pass_->GetPtr(inst, &var_id);
330
331 // Get the immediate reaching definition for |var_id|.
332 //
333 // In the presence of variable pointers, the reaching definition may be
334 // another pointer. For example, the following fragment:
335 //
336 // %2 = OpVariable %_ptr_Input_float Input
337 // %11 = OpVariable %_ptr_Function__ptr_Input_float Function
338 // OpStore %11 %2
339 // %12 = OpLoad %_ptr_Input_float %11
340 // %13 = OpLoad %float %12
341 //
342 // corresponds to the pseudo-code:
343 //
344 // layout(location = 0) in flat float *%2
345 // float %13;
346 // float *%12;
347 // float **%11;
348 // *%11 = %2;
349 // %12 = *%11;
350 // %13 = *%12;
351 //
352 // which ultimately, should correspond to:
353 //
354 // %13 = *%2;
355 //
356 // During rewriting, the pointer %12 is found to be replaceable by %2 (i.e.,
357 // load_replacement_[12] is 2). However, when processing the load
358 // %13 = *%12, the type of %12's reaching definition is another float
359 // pointer (%2), instead of a float value.
360 //
361 // When this happens, we need to continue looking up the reaching definition
362 // chain until we get to a float value or a non-target var (i.e. a variable
363 // that cannot be SSA replaced, like %2 in this case since it is a function
364 // argument).
365 analysis::DefUseManager* def_use_mgr = pass_->context()->get_def_use_mgr();
366 analysis::TypeManager* type_mgr = pass_->context()->get_type_mgr();
367 analysis::Type* load_type = type_mgr->GetType(inst->type_id());
368 uint32_t val_id = 0;
369 bool found_reaching_def = false;
370 while (!found_reaching_def) {
371 if (!pass_->IsTargetVar(var_id)) {
372 // If the variable we are loading from is not an SSA target (globals,
373 // function parameters), do nothing.
374 return true;
375 }
376
377 val_id = GetReachingDef(var_id, bb);
378 if (val_id == 0) {
379 return false;
380 }
381
382 // If the reaching definition is a pointer type different than the type of
383 // the instruction we are analyzing, then it must be a reference to another
384 // pointer (otherwise, this would be invalid SPIRV). We continue
385 // de-referencing it by making |val_id| be |var_id|.
386 //
387 // NOTE: if there is no reaching definition instruction, it means |val_id|
388 // is an undef.
389 Instruction* reaching_def_inst = def_use_mgr->GetDef(val_id);
390 if (reaching_def_inst &&
391 !type_mgr->GetType(reaching_def_inst->type_id())->IsSame(load_type)) {
392 var_id = val_id;
393 } else {
394 found_reaching_def = true;
395 }
396 }
397
398 // Schedule a replacement for the result of this load instruction with
399 // |val_id|. After all the rewriting decisions are made, every use of
400 // this load will be replaced with |val_id|.
401 uint32_t load_id = inst->result_id();
402 assert(load_replacement_.count(load_id) == 0);
403 load_replacement_[load_id] = val_id;
404 PhiCandidate* defining_phi = GetPhiCandidate(val_id);
405 if (defining_phi) {
406 defining_phi->AddUser(load_id);
407 }
408
409 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
410 std::cerr << "\tFound load: "
411 << inst->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
412 << " (replacement for %" << load_id << " is %" << val_id << ")\n";
413 #endif
414
415 return true;
416 }
417
PrintPhiCandidates() const418 void SSARewriter::PrintPhiCandidates() const {
419 std::cerr << "\nPhi candidates:\n";
420 for (const auto& phi_it : phi_candidates_) {
421 std::cerr << "\tBB %" << phi_it.second.bb()->id() << ": "
422 << phi_it.second.PrettyPrint(pass_->cfg()) << "\n";
423 }
424 std::cerr << "\n";
425 }
426
PrintReplacementTable() const427 void SSARewriter::PrintReplacementTable() const {
428 std::cerr << "\nLoad replacement table\n";
429 for (const auto& it : load_replacement_) {
430 std::cerr << "\t%" << it.first << " -> %" << it.second << "\n";
431 }
432 std::cerr << "\n";
433 }
434
GenerateSSAReplacements(BasicBlock * bb)435 bool SSARewriter::GenerateSSAReplacements(BasicBlock* bb) {
436 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
437 std::cerr << "Generating SSA replacements for block: " << bb->id() << "\n";
438 std::cerr << bb->PrettyPrint(SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
439 << "\n";
440 #endif
441
442 for (auto& inst : *bb) {
443 auto opcode = inst.opcode();
444 if (opcode == spv::Op::OpStore || opcode == spv::Op::OpVariable) {
445 ProcessStore(&inst, bb);
446 } else if (inst.opcode() == spv::Op::OpLoad) {
447 if (!ProcessLoad(&inst, bb)) {
448 return false;
449 }
450 }
451 }
452
453 // Seal |bb|. This means that all the stores in it have been scanned and
454 // it's ready to feed them into its successors.
455 SealBlock(bb);
456
457 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
458 PrintPhiCandidates();
459 PrintReplacementTable();
460 std::cerr << "\n\n";
461 #endif
462 return true;
463 }
464
GetReplacement(std::pair<uint32_t,uint32_t> repl)465 uint32_t SSARewriter::GetReplacement(std::pair<uint32_t, uint32_t> repl) {
466 uint32_t val_id = repl.second;
467 auto it = load_replacement_.find(val_id);
468 while (it != load_replacement_.end()) {
469 val_id = it->second;
470 it = load_replacement_.find(val_id);
471 }
472 return val_id;
473 }
474
GetPhiArgument(const PhiCandidate * phi_candidate,uint32_t ix)475 uint32_t SSARewriter::GetPhiArgument(const PhiCandidate* phi_candidate,
476 uint32_t ix) {
477 assert(phi_candidate->IsReady() &&
478 "Tried to get the final argument from an incomplete/trivial Phi");
479
480 uint32_t arg_id = phi_candidate->phi_args()[ix];
481 while (arg_id != 0) {
482 PhiCandidate* phi_user = GetPhiCandidate(arg_id);
483 if (phi_user == nullptr || phi_user->IsReady()) {
484 // If the argument is not a Phi or it's a Phi candidate ready to be
485 // emitted, return it.
486 return arg_id;
487 }
488 arg_id = phi_user->copy_of();
489 }
490
491 assert(false &&
492 "No Phi candidates in the copy-of chain are ready to be generated");
493
494 return 0;
495 }
496
ApplyReplacements()497 bool SSARewriter::ApplyReplacements() {
498 bool modified = false;
499
500 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
501 std::cerr << "\n\nApplying replacement decisions to IR\n\n";
502 PrintPhiCandidates();
503 PrintReplacementTable();
504 std::cerr << "\n\n";
505 #endif
506
507 // Add Phi instructions from completed Phi candidates.
508 std::vector<Instruction*> generated_phis;
509 for (const PhiCandidate* phi_candidate : phis_to_generate_) {
510 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
511 std::cerr << "Phi candidate: " << phi_candidate->PrettyPrint(pass_->cfg())
512 << "\n";
513 #endif
514
515 assert(phi_candidate->is_complete() &&
516 "Tried to instantiate a Phi instruction from an incomplete Phi "
517 "candidate");
518
519 auto* local_var = pass_->get_def_use_mgr()->GetDef(phi_candidate->var_id());
520
521 // Build the vector of operands for the new OpPhi instruction.
522 uint32_t type_id = pass_->GetPointeeTypeId(local_var);
523 std::vector<Operand> phi_operands;
524 uint32_t arg_ix = 0;
525 std::unordered_map<uint32_t, uint32_t> already_seen;
526 for (uint32_t pred_label : pass_->cfg()->preds(phi_candidate->bb()->id())) {
527 uint32_t op_val_id = GetPhiArgument(phi_candidate, arg_ix++);
528 if (already_seen.count(pred_label) == 0) {
529 phi_operands.push_back(
530 {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {op_val_id}});
531 phi_operands.push_back(
532 {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {pred_label}});
533 already_seen[pred_label] = op_val_id;
534 } else {
535 // It is possible that there are two edges from the same parent block.
536 // Since the OpPhi can have only one entry for each parent, we have to
537 // make sure the two edges are consistent with each other.
538 assert(already_seen[pred_label] == op_val_id &&
539 "Inconsistent value for duplicate edges.");
540 }
541 }
542
543 // Generate a new OpPhi instruction and insert it in its basic
544 // block.
545 std::unique_ptr<Instruction> phi_inst(
546 new Instruction(pass_->context(), spv::Op::OpPhi, type_id,
547 phi_candidate->result_id(), phi_operands));
548 generated_phis.push_back(phi_inst.get());
549 pass_->get_def_use_mgr()->AnalyzeInstDef(&*phi_inst);
550 pass_->context()->set_instr_block(&*phi_inst, phi_candidate->bb());
551 auto insert_it = phi_candidate->bb()->begin();
552 insert_it = insert_it.InsertBefore(std::move(phi_inst));
553 pass_->context()->get_decoration_mgr()->CloneDecorations(
554 phi_candidate->var_id(), phi_candidate->result_id(),
555 {spv::Decoration::RelaxedPrecision});
556
557 // Add DebugValue for the new OpPhi instruction.
558 insert_it->SetDebugScope(local_var->GetDebugScope());
559 pass_->context()->get_debug_info_mgr()->AddDebugValueForVariable(
560 &*insert_it, phi_candidate->var_id(), phi_candidate->result_id(),
561 &*insert_it);
562
563 modified = true;
564 }
565
566 // Scan uses for all inserted Phi instructions. Do this separately from the
567 // registration of the Phi instruction itself to avoid trying to analyze
568 // uses of Phi instructions that have not been registered yet.
569 for (Instruction* phi_inst : generated_phis) {
570 pass_->get_def_use_mgr()->AnalyzeInstUse(&*phi_inst);
571 }
572
573 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
574 std::cerr << "\n\nReplacing the result of load instructions with the "
575 "corresponding SSA id\n\n";
576 #endif
577
578 // Apply replacements from the load replacement table.
579 for (auto& repl : load_replacement_) {
580 uint32_t load_id = repl.first;
581 uint32_t val_id = GetReplacement(repl);
582 Instruction* load_inst =
583 pass_->context()->get_def_use_mgr()->GetDef(load_id);
584
585 #if SSA_REWRITE_DEBUGGING_LEVEL > 2
586 std::cerr << "\t"
587 << load_inst->PrettyPrint(
588 SPV_BINARY_TO_TEXT_OPTION_FRIENDLY_NAMES)
589 << " (%" << load_id << " -> %" << val_id << ")\n";
590 #endif
591
592 // Remove the load instruction and replace all the uses of this load's
593 // result with |val_id|. Kill any names or decorates using the load's
594 // result before replacing to prevent incorrect replacement in those
595 // instructions.
596 pass_->context()->KillNamesAndDecorates(load_id);
597 pass_->context()->ReplaceAllUsesWith(load_id, val_id);
598 pass_->context()->KillInst(load_inst);
599 modified = true;
600 }
601
602 return modified;
603 }
604
FinalizePhiCandidate(PhiCandidate * phi_candidate)605 void SSARewriter::FinalizePhiCandidate(PhiCandidate* phi_candidate) {
606 assert(phi_candidate->phi_args().size() > 0 &&
607 "Phi candidate should have arguments");
608
609 uint32_t ix = 0;
610 for (uint32_t pred : pass_->cfg()->preds(phi_candidate->bb()->id())) {
611 BasicBlock* pred_bb = pass_->cfg()->block(pred);
612 uint32_t& arg_id = phi_candidate->phi_args()[ix++];
613 if (arg_id == 0) {
614 // If |pred_bb| is still not sealed, it means it's unreachable. In this
615 // case, we just use Undef as an argument.
616 arg_id = IsBlockSealed(pred_bb)
617 ? GetReachingDef(phi_candidate->var_id(), pred_bb)
618 : pass_->GetUndefVal(phi_candidate->var_id());
619 }
620 }
621
622 // This candidate is now completed.
623 phi_candidate->MarkComplete();
624
625 // If |phi_candidate| is not trivial, add it to the list of Phis to
626 // generate.
627 if (TryRemoveTrivialPhi(phi_candidate) == phi_candidate->result_id()) {
628 // If we could not remove |phi_candidate|, it means that it is complete
629 // and not trivial. Add it to the list of Phis to generate.
630 assert(!phi_candidate->copy_of() && "A completed Phi cannot be trivial.");
631 phis_to_generate_.push_back(phi_candidate);
632 }
633 }
634
FinalizePhiCandidates()635 void SSARewriter::FinalizePhiCandidates() {
636 #if SSA_REWRITE_DEBUGGING_LEVEL > 1
637 std::cerr << "Finalizing Phi candidates:\n\n";
638 PrintPhiCandidates();
639 std::cerr << "\n";
640 #endif
641
642 // Now, complete the collected candidates.
643 while (incomplete_phis_.size() > 0) {
644 PhiCandidate* phi_candidate = incomplete_phis_.front();
645 incomplete_phis_.pop();
646 FinalizePhiCandidate(phi_candidate);
647 }
648 }
649
RewriteFunctionIntoSSA(Function * fp)650 Pass::Status SSARewriter::RewriteFunctionIntoSSA(Function* fp) {
651 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
652 std::cerr << "Function before SSA rewrite:\n"
653 << fp->PrettyPrint(0) << "\n\n\n";
654 #endif
655
656 // Collect variables that can be converted into SSA IDs.
657 pass_->CollectTargetVars(fp);
658
659 // Generate all the SSA replacements and Phi candidates. This will
660 // generate incomplete and trivial Phis.
661 bool succeeded = pass_->cfg()->WhileEachBlockInReversePostOrder(
662 fp->entry().get(), [this](BasicBlock* bb) {
663 if (!GenerateSSAReplacements(bb)) {
664 return false;
665 }
666 return true;
667 });
668
669 if (!succeeded) {
670 return Pass::Status::Failure;
671 }
672
673 // Remove trivial Phis and add arguments to incomplete Phis.
674 FinalizePhiCandidates();
675
676 // Finally, apply all the replacements in the IR.
677 bool modified = ApplyReplacements();
678
679 #if SSA_REWRITE_DEBUGGING_LEVEL > 0
680 std::cerr << "\n\n\nFunction after SSA rewrite:\n"
681 << fp->PrettyPrint(0) << "\n";
682 #endif
683
684 return modified ? Pass::Status::SuccessWithChange
685 : Pass::Status::SuccessWithoutChange;
686 }
687
Process()688 Pass::Status SSARewritePass::Process() {
689 Status status = Status::SuccessWithoutChange;
690 for (auto& fn : *get_module()) {
691 if (fn.IsDeclaration()) {
692 continue;
693 }
694 status =
695 CombineStatus(status, SSARewriter(this).RewriteFunctionIntoSSA(&fn));
696 // Kill DebugDeclares for target variables.
697 for (auto var_id : seen_target_vars_) {
698 context()->get_debug_info_mgr()->KillDebugDeclares(var_id);
699 }
700 if (status == Status::Failure) {
701 break;
702 }
703 }
704 return status;
705 }
706
707 } // namespace opt
708 } // namespace spvtools
709