• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2018 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_UTIL_SMALL_VECTOR_H_
16 #define SOURCE_UTIL_SMALL_VECTOR_H_
17 
18 #include <array>
19 #include <cassert>
20 #include <cstddef>
21 #include <iostream>
22 #include <memory>
23 #include <utility>
24 #include <vector>
25 
26 #include "source/util/make_unique.h"
27 
28 namespace spvtools {
29 namespace utils {
30 
31 // The |SmallVector| class is intended to be a drop-in replacement for
32 // |std::vector|.  The difference is in the implementation. A |SmallVector| is
33 // optimized for when the number of elements in the vector are small.  Small is
34 // defined by the template parameter |small_size|.
35 //
36 // Note that |SmallVector| is not always faster than an |std::vector|, so you
37 // should experiment with different values for |small_size| and compare to
38 // using and |std::vector|.
39 //
40 // TODO: I have implemented the public member functions from |std::vector| that
41 // I needed.  If others are needed they should be implemented. Do not implement
42 // public member functions that are not defined by std::vector.
43 template <class T, size_t small_size>
44 class SmallVector {
45  public:
46   using iterator = T*;
47   using const_iterator = const T*;
48 
SmallVector()49   SmallVector()
50       : size_(0),
51         small_data_(reinterpret_cast<T*>(buffer)),
52         large_data_(nullptr) {}
53 
SmallVector(const SmallVector & that)54   SmallVector(const SmallVector& that) : SmallVector() { *this = that; }
55 
SmallVector(SmallVector && that)56   SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); }
57 
SmallVector(const std::vector<T> & vec)58   SmallVector(const std::vector<T>& vec) : SmallVector() {
59     if (vec.size() > small_size) {
60       large_data_ = MakeUnique<std::vector<T>>(vec);
61     } else {
62       size_ = vec.size();
63       for (uint32_t i = 0; i < size_; i++) {
64         new (small_data_ + i) T(vec[i]);
65       }
66     }
67   }
68 
69   template <class InputIt>
SmallVector(InputIt first,InputIt last)70   SmallVector(InputIt first, InputIt last) : SmallVector() {
71     insert(end(), first, last);
72   }
73 
SmallVector(std::vector<T> && vec)74   SmallVector(std::vector<T>&& vec) : SmallVector() {
75     if (vec.size() > small_size) {
76       large_data_ = MakeUnique<std::vector<T>>(std::move(vec));
77     } else {
78       size_ = vec.size();
79       for (uint32_t i = 0; i < size_; i++) {
80         new (small_data_ + i) T(std::move(vec[i]));
81       }
82     }
83     vec.clear();
84   }
85 
SmallVector(std::initializer_list<T> init_list)86   SmallVector(std::initializer_list<T> init_list) : SmallVector() {
87     if (init_list.size() < small_size) {
88       for (auto it = init_list.begin(); it != init_list.end(); ++it) {
89         new (small_data_ + (size_++)) T(std::move(*it));
90       }
91     } else {
92       large_data_ = MakeUnique<std::vector<T>>(std::move(init_list));
93     }
94   }
95 
SmallVector(size_t s,const T & v)96   SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); }
97 
~SmallVector()98   virtual ~SmallVector() {
99     for (T* p = small_data_; p < small_data_ + size_; ++p) {
100       p->~T();
101     }
102   }
103 
104   SmallVector& operator=(const SmallVector& that) {
105     assert(small_data_);
106     if (that.large_data_) {
107       if (large_data_) {
108         *large_data_ = *that.large_data_;
109       } else {
110         large_data_ = MakeUnique<std::vector<T>>(*that.large_data_);
111       }
112     } else {
113       large_data_.reset(nullptr);
114       size_t i = 0;
115       // Do a copy for any element in |this| that is already constructed.
116       for (; i < size_ && i < that.size_; ++i) {
117         small_data_[i] = that.small_data_[i];
118       }
119 
120       if (i >= that.size_) {
121         // If the size of |this| becomes smaller after the assignment, then
122         // destroy any extra elements.
123         for (; i < size_; ++i) {
124           small_data_[i].~T();
125         }
126       } else {
127         // If the size of |this| becomes larger after the assignement, copy
128         // construct the new elements that are needed.
129         for (; i < that.size_; ++i) {
130           new (small_data_ + i) T(that.small_data_[i]);
131         }
132       }
133       size_ = that.size_;
134     }
135     return *this;
136   }
137 
138   SmallVector& operator=(SmallVector&& that) {
139     if (that.large_data_) {
140       large_data_.reset(that.large_data_.release());
141     } else {
142       large_data_.reset(nullptr);
143       size_t i = 0;
144       // Do a move for any element in |this| that is already constructed.
145       for (; i < size_ && i < that.size_; ++i) {
146         small_data_[i] = std::move(that.small_data_[i]);
147       }
148 
149       if (i >= that.size_) {
150         // If the size of |this| becomes smaller after the assignment, then
151         // destroy any extra elements.
152         for (; i < size_; ++i) {
153           small_data_[i].~T();
154         }
155       } else {
156         // If the size of |this| becomes larger after the assignement, move
157         // construct the new elements that are needed.
158         for (; i < that.size_; ++i) {
159           new (small_data_ + i) T(std::move(that.small_data_[i]));
160         }
161       }
162       size_ = that.size_;
163     }
164 
165     // Reset |that| because all of the data has been moved to |this|.
166     that.DestructSmallData();
167     return *this;
168   }
169 
170   template <class OtherVector>
171   friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) {
172     if (lhs.size() != rhs.size()) {
173       return false;
174     }
175 
176     auto rit = rhs.begin();
177     for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) {
178       if (*lit != *rit) {
179         return false;
180       }
181     }
182     return true;
183   }
184 
185 // Avoid infinite recursion from rewritten operators in C++20
186 #if __cplusplus <= 201703L
187   friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) {
188     return rhs == lhs;
189   }
190 #endif
191 
192   friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) {
193     return !(lhs == rhs);
194   }
195 
196   friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) {
197     return rhs != lhs;
198   }
199 
200   T& operator[](size_t i) {
201     if (!large_data_) {
202       return small_data_[i];
203     } else {
204       return (*large_data_)[i];
205     }
206   }
207 
208   const T& operator[](size_t i) const {
209     if (!large_data_) {
210       return small_data_[i];
211     } else {
212       return (*large_data_)[i];
213     }
214   }
215 
size()216   size_t size() const {
217     if (!large_data_) {
218       return size_;
219     } else {
220       return large_data_->size();
221     }
222   }
223 
begin()224   iterator begin() {
225     if (large_data_) {
226       return large_data_->data();
227     } else {
228       return small_data_;
229     }
230   }
231 
begin()232   const_iterator begin() const {
233     if (large_data_) {
234       return large_data_->data();
235     } else {
236       return small_data_;
237     }
238   }
239 
cbegin()240   const_iterator cbegin() const { return begin(); }
241 
end()242   iterator end() {
243     if (large_data_) {
244       return large_data_->data() + large_data_->size();
245     } else {
246       return small_data_ + size_;
247     }
248   }
249 
end()250   const_iterator end() const {
251     if (large_data_) {
252       return large_data_->data() + large_data_->size();
253     } else {
254       return small_data_ + size_;
255     }
256   }
257 
cend()258   const_iterator cend() const { return end(); }
259 
data()260   T* data() { return begin(); }
261 
data()262   const T* data() const { return cbegin(); }
263 
front()264   T& front() { return (*this)[0]; }
265 
front()266   const T& front() const { return (*this)[0]; }
267 
erase(const_iterator pos)268   iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
269 
erase(const_iterator first,const_iterator last)270   iterator erase(const_iterator first, const_iterator last) {
271     if (large_data_) {
272       size_t start_index = first - large_data_->data();
273       size_t end_index = last - large_data_->data();
274       auto r = large_data_->erase(large_data_->begin() + start_index,
275                                   large_data_->begin() + end_index);
276       return large_data_->data() + (r - large_data_->begin());
277     }
278 
279     // Since C++11, std::vector has |const_iterator| for the parameters, so I
280     // follow that.  However, I need iterators to modify the current container,
281     // which is not const.  This is why I cast away the const.
282     iterator f = const_cast<iterator>(first);
283     iterator l = const_cast<iterator>(last);
284     iterator e = end();
285 
286     size_t num_of_del_elements = last - first;
287     iterator ret = f;
288     if (first == last) {
289       return ret;
290     }
291 
292     // Move |last| and any elements after it their earlier position.
293     while (l != e) {
294       *f = std::move(*l);
295       ++f;
296       ++l;
297     }
298 
299     // Destroy the elements that were supposed to be deleted.
300     while (f != l) {
301       f->~T();
302       ++f;
303     }
304 
305     // Update the size.
306     size_ -= num_of_del_elements;
307     return ret;
308   }
309 
push_back(const T & value)310   void push_back(const T& value) {
311     if (!large_data_ && size_ == small_size) {
312       MoveToLargeData();
313     }
314 
315     if (large_data_) {
316       large_data_->push_back(value);
317       return;
318     }
319 
320     new (small_data_ + size_) T(value);
321     ++size_;
322   }
323 
push_back(T && value)324   void push_back(T&& value) {
325     if (!large_data_ && size_ == small_size) {
326       MoveToLargeData();
327     }
328 
329     if (large_data_) {
330       large_data_->push_back(std::move(value));
331       return;
332     }
333 
334     new (small_data_ + size_) T(std::move(value));
335     ++size_;
336   }
337 
pop_back()338   void pop_back() {
339     if (large_data_) {
340       large_data_->pop_back();
341     } else {
342       --size_;
343       small_data_[size_].~T();
344     }
345   }
346 
347   template <class InputIt>
insert(iterator pos,InputIt first,InputIt last)348   iterator insert(iterator pos, InputIt first, InputIt last) {
349     size_t element_idx = (pos - begin());
350     size_t num_of_new_elements = std::distance(first, last);
351     size_t new_size = size_ + num_of_new_elements;
352     if (!large_data_ && new_size > small_size) {
353       MoveToLargeData();
354     }
355 
356     if (large_data_) {
357       typename std::vector<T>::iterator new_pos =
358           large_data_->begin() + element_idx;
359       large_data_->insert(new_pos, first, last);
360       return begin() + element_idx;
361     }
362 
363     // Move |pos| and all of the elements after it over |num_of_new_elements|
364     // places.  We start at the end and work backwards, to make sure we do not
365     // overwrite data that we have not moved yet.
366     for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos;
367          --i, --j) {
368       if (i >= begin() + size_) {
369         new (i) T(std::move(*j));
370       } else {
371         *i = std::move(*j);
372       }
373     }
374 
375     // Copy the new elements into position.
376     iterator p = pos;
377     for (; first != last; ++p, ++first) {
378       if (p >= small_data_ + size_) {
379         new (p) T(*first);
380       } else {
381         *p = *first;
382       }
383     }
384 
385     // Update the size.
386     size_ += num_of_new_elements;
387     return pos;
388   }
389 
empty()390   bool empty() const {
391     if (large_data_) {
392       return large_data_->empty();
393     }
394     return size_ == 0;
395   }
396 
clear()397   void clear() {
398     if (large_data_) {
399       large_data_->clear();
400     } else {
401       DestructSmallData();
402     }
403   }
404 
405   template <class... Args>
emplace_back(Args &&...args)406   void emplace_back(Args&&... args) {
407     if (!large_data_ && size_ == small_size) {
408       MoveToLargeData();
409     }
410 
411     if (large_data_) {
412       large_data_->emplace_back(std::forward<Args>(args)...);
413     } else {
414       new (small_data_ + size_) T(std::forward<Args>(args)...);
415       ++size_;
416     }
417   }
418 
resize(size_t new_size,const T & v)419   void resize(size_t new_size, const T& v) {
420     if (!large_data_ && new_size > small_size) {
421       MoveToLargeData();
422     }
423 
424     if (large_data_) {
425       large_data_->resize(new_size, v);
426       return;
427     }
428 
429     // If |new_size| < |size_|, then destroy the extra elements.
430     for (size_t i = new_size; i < size_; ++i) {
431       small_data_[i].~T();
432     }
433 
434     // If |new_size| > |size_|, the copy construct the new elements.
435     for (size_t i = size_; i < new_size; ++i) {
436       new (small_data_ + i) T(v);
437     }
438 
439     // Update the size.
440     size_ = new_size;
441   }
442 
443  private:
444   // Moves all of the element from |small_data_| into a new std::vector that can
445   // be access through |large_data|.
MoveToLargeData()446   void MoveToLargeData() {
447     assert(!large_data_);
448     large_data_ = MakeUnique<std::vector<T>>();
449     for (size_t i = 0; i < size_; ++i) {
450       large_data_->emplace_back(std::move(small_data_[i]));
451     }
452     DestructSmallData();
453   }
454 
455   // Destroys all of the elements in |small_data_| that have been constructed.
DestructSmallData()456   void DestructSmallData() {
457     for (size_t i = 0; i < size_; ++i) {
458       small_data_[i].~T();
459     }
460     size_ = 0;
461   }
462 
463   // The number of elements in |small_data_| that have been constructed.
464   size_t size_;
465 
466   // A type with the same alignment and size as T, but will is POD.
467   struct alignas(T) PodType {
468     std::array<int8_t, sizeof(T)> data;
469   };
470 
471   // The actual data used to store the array elements.  It must never be used
472   // directly, but must only be accessed through |small_data_|.
473   PodType buffer[small_size];
474 
475   // The pointed used to access the array of elements when the number of
476   // elements is small.
477   T* small_data_;
478 
479   // A pointer to a vector that is used to store the elements of the vector when
480   // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data
481   // is stored in |small_data_|.  Otherwise, the data is stored in
482   // |large_data_|.
483   std::unique_ptr<std::vector<T>> large_data_;
484 };  // namespace utils
485 
486 }  // namespace utils
487 }  // namespace spvtools
488 
489 #endif  // SOURCE_UTIL_SMALL_VECTOR_H_
490