• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #include <string>
28 
29 #include "../globals-vixl.h"
30 #include "../utils-vixl.h"
31 
32 #include "decoder-aarch64.h"
33 #include "decoder-constants-aarch64.h"
34 
35 namespace vixl {
36 namespace aarch64 {
37 
Decode(const Instruction * instr)38 void Decoder::Decode(const Instruction* instr) {
39 #ifndef PANDA_BUILD
40     std::list<DecoderVisitor*>::iterator it;
41 #else
42     List<DecoderVisitor*>::iterator it;
43 #endif
44 
45   for (it = visitors_.begin(); it != visitors_.end(); it++) {
46     VIXL_ASSERT((*it)->IsConstVisitor());
47   }
48   VIXL_ASSERT(compiled_decoder_root_ != NULL);
49   compiled_decoder_root_->Decode(instr);
50 }
51 
Decode(Instruction * instr)52 void Decoder::Decode(Instruction* instr) {
53   compiled_decoder_root_->Decode(const_cast<const Instruction*>(instr));
54 }
55 
AddDecodeNode(const DecodeNode & node)56 void Decoder::AddDecodeNode(const DecodeNode& node) {
57   if (decode_nodes_.count(node.GetName()) == 0) {
58     decode_nodes_.insert(std::make_pair(node.GetName(), node));
59   }
60 }
61 
GetDecodeNode(const String & name)62 DecodeNode* Decoder::GetDecodeNode(const String& name) {
63   auto elem{decode_nodes_.find(name)};
64   if (elem == decode_nodes_.end()) {
65     auto msg = String("Can't find decode node ", GetAllocator().Adapter()) + name.data() + ".\n";
66     VIXL_ABORT_WITH_MSG(msg.c_str());
67   }
68   return &elem->second;
69 }
70 
ConstructDecodeGraph()71 void Decoder::ConstructDecodeGraph() {
72   // Add all of the decoding nodes to the Decoder.
73   for (unsigned i = 0; i < ArrayLength(kDecodeMapping); i++) {
74     AddDecodeNode(DecodeNode(kDecodeMapping[i], this));
75 
76     // Add a node for each instruction form named, identified by having no '_'
77     // prefix on the node name.
78     const DecodeMapping& map = kDecodeMapping[i];
79     for (unsigned j = 0; j < map.mapping.size(); j++) {
80       if ((map.mapping[j].handler != NULL) &&
81           (map.mapping[j].handler[0] != '_')) {
82         AddDecodeNode(DecodeNode(map.mapping[j].handler, this));
83       }
84     }
85   }
86 
87   // Add an "unallocated" node, used when an instruction encoding is not
88   // recognised by the decoding graph.
89   AddDecodeNode(DecodeNode("unallocated", this));
90 
91   // Compile the graph from the root.
92   auto root_node{String("Root", GetAllocator().Adapter())};
93   compiled_decoder_root_ = GetDecodeNode(root_node)->Compile(this);
94 }
95 
AppendVisitor(DecoderVisitor * new_visitor)96 void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
97   visitors_.push_back(new_visitor);
98 }
99 
100 
PrependVisitor(DecoderVisitor * new_visitor)101 void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
102   visitors_.push_front(new_visitor);
103 }
104 
105 
InsertVisitorBefore(DecoderVisitor * new_visitor,DecoderVisitor * registered_visitor)106 void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
107                                   DecoderVisitor* registered_visitor) {
108 #ifndef PANDA_BUILD
109   std::list<DecoderVisitor*>::iterator it;
110 #else
111   List<DecoderVisitor*>::iterator it;
112 #endif
113   for (it = visitors_.begin(); it != visitors_.end(); it++) {
114     if (*it == registered_visitor) {
115       visitors_.insert(it, new_visitor);
116       return;
117     }
118   }
119   // We reached the end of the list. The last element must be
120   // registered_visitor.
121   VIXL_ASSERT(*it == registered_visitor);
122   visitors_.insert(it, new_visitor);
123 }
124 
125 
InsertVisitorAfter(DecoderVisitor * new_visitor,DecoderVisitor * registered_visitor)126 void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
127                                  DecoderVisitor* registered_visitor) {
128 #ifndef PANDA_BUILD
129   std::list<DecoderVisitor*>::iterator it;
130 #else
131   List<DecoderVisitor*>::iterator it;
132 #endif
133   for (it = visitors_.begin(); it != visitors_.end(); it++) {
134     if (*it == registered_visitor) {
135       it++;
136       visitors_.insert(it, new_visitor);
137       return;
138     }
139   }
140   // We reached the end of the list. The last element must be
141   // registered_visitor.
142   VIXL_ASSERT(*it == registered_visitor);
143   visitors_.push_back(new_visitor);
144 }
145 
146 
RemoveVisitor(DecoderVisitor * visitor)147 void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
148   visitors_.remove(visitor);
149 }
150 
VisitNamedInstruction(const Instruction * instr,const std::string & name)151 void Decoder::VisitNamedInstruction(const Instruction* instr,
152                                     const std::string& name) {
153   std::list<DecoderVisitor*>::iterator it;
154   Metadata m = {{"form", name}};
155   for (it = visitors_.begin(); it != visitors_.end(); it++) {
156     (*it)->Visit(&m, instr);
157   }
158 }
159 
160 // Initialise empty vectors for sampled bits and pattern table.
161 const std::vector<uint8_t> DecodeNode::kEmptySampledBits;
162 const std::vector<DecodePattern> DecodeNode::kEmptyPatternTable;
163 
CompileNodeForBits(Decoder * decoder,const String & name,uint32_t bits)164 void DecodeNode::CompileNodeForBits(Decoder* decoder,
165                                     const String& name,
166                                     uint32_t bits) {
167   DecodeNode* n = decoder->GetDecodeNode(name);
168   VIXL_ASSERT(n != NULL);
169   if (!n->IsCompiled()) {
170     n->Compile(decoder);
171   }
172   VIXL_ASSERT(n->IsCompiled());
173   compiled_node_->SetNodeForBits(bits, n->GetCompiledNode());
174 }
175 
176 
177 #define INSTANTIATE_TEMPLATE_M(M)                      \
178   case 0x##M:                                          \
179     bit_extract_fn = &Instruction::ExtractBits<0x##M>; \
180     break;
181 #define INSTANTIATE_TEMPLATE_MV(M, V)                           \
182   case 0x##M##V:                                                \
183     bit_extract_fn = &Instruction::IsMaskedValue<0x##M, 0x##V>; \
184     break;
185 
GetBitExtractFunctionHelper(uint32_t x,uint32_t y)186 BitExtractFn DecodeNode::GetBitExtractFunctionHelper(uint32_t x, uint32_t y) {
187   // Instantiate a templated bit extraction function for every pattern we
188   // might encounter. If the assertion in the default clause is reached, add a
189   // new instantiation below using the information in the failure message.
190   BitExtractFn bit_extract_fn = NULL;
191 
192   // The arguments x and y represent the mask and value. If y is 0, x is the
193   // mask. Otherwise, y is the mask, and x is the value to compare against a
194   // masked result.
195   uint64_t signature = (static_cast<uint64_t>(y) << 32) | x;
196   switch (signature) {
197     INSTANTIATE_TEMPLATE_M(00000001);
198     INSTANTIATE_TEMPLATE_M(00000010);
199     INSTANTIATE_TEMPLATE_M(0000001f);
200     INSTANTIATE_TEMPLATE_M(00000060);
201     INSTANTIATE_TEMPLATE_M(00000100);
202     INSTANTIATE_TEMPLATE_M(00000200);
203     INSTANTIATE_TEMPLATE_M(00000400);
204     INSTANTIATE_TEMPLATE_M(00000800);
205     INSTANTIATE_TEMPLATE_M(00000c00);
206     INSTANTIATE_TEMPLATE_M(00000c10);
207     INSTANTIATE_TEMPLATE_M(00000fc0);
208     INSTANTIATE_TEMPLATE_M(00001000);
209     INSTANTIATE_TEMPLATE_M(00001400);
210     INSTANTIATE_TEMPLATE_M(00001800);
211     INSTANTIATE_TEMPLATE_M(00001c00);
212     INSTANTIATE_TEMPLATE_M(00002000);
213     INSTANTIATE_TEMPLATE_M(00002010);
214     INSTANTIATE_TEMPLATE_M(00002400);
215     INSTANTIATE_TEMPLATE_M(00003000);
216     INSTANTIATE_TEMPLATE_M(00003020);
217     INSTANTIATE_TEMPLATE_M(00003400);
218     INSTANTIATE_TEMPLATE_M(00003800);
219     INSTANTIATE_TEMPLATE_M(00003c00);
220     INSTANTIATE_TEMPLATE_M(00013000);
221     INSTANTIATE_TEMPLATE_M(00020000);
222     INSTANTIATE_TEMPLATE_M(00020010);
223     INSTANTIATE_TEMPLATE_M(000203e0);
224     INSTANTIATE_TEMPLATE_M(000303e0);
225     INSTANTIATE_TEMPLATE_M(00060000);
226     INSTANTIATE_TEMPLATE_M(00061000);
227     INSTANTIATE_TEMPLATE_M(00070000);
228     INSTANTIATE_TEMPLATE_M(000703c0);
229     INSTANTIATE_TEMPLATE_M(00080000);
230     INSTANTIATE_TEMPLATE_M(00090000);
231     INSTANTIATE_TEMPLATE_M(000f0000);
232     INSTANTIATE_TEMPLATE_M(000f0010);
233     INSTANTIATE_TEMPLATE_M(00100000);
234     INSTANTIATE_TEMPLATE_M(00180000);
235     INSTANTIATE_TEMPLATE_M(001d1c00);
236     INSTANTIATE_TEMPLATE_M(001f0000);
237     INSTANTIATE_TEMPLATE_M(001f2000);
238     INSTANTIATE_TEMPLATE_M(001f3000);
239     INSTANTIATE_TEMPLATE_M(00400000);
240     INSTANTIATE_TEMPLATE_M(00400800);
241     INSTANTIATE_TEMPLATE_M(00403000);
242     INSTANTIATE_TEMPLATE_M(00500800);
243     INSTANTIATE_TEMPLATE_M(00583000);
244     INSTANTIATE_TEMPLATE_M(005f0000);
245     INSTANTIATE_TEMPLATE_M(00800000);
246     INSTANTIATE_TEMPLATE_M(00800400);
247     INSTANTIATE_TEMPLATE_M(00800c1e);
248     INSTANTIATE_TEMPLATE_M(0080101f);
249     INSTANTIATE_TEMPLATE_M(00801c00);
250     INSTANTIATE_TEMPLATE_M(00803000);
251     INSTANTIATE_TEMPLATE_M(00803c00);
252     INSTANTIATE_TEMPLATE_M(009f0000);
253     INSTANTIATE_TEMPLATE_M(009f2000);
254     INSTANTIATE_TEMPLATE_M(00c00000);
255     INSTANTIATE_TEMPLATE_M(00c00010);
256     INSTANTIATE_TEMPLATE_M(00c0001f);
257     INSTANTIATE_TEMPLATE_M(00c00200);
258     INSTANTIATE_TEMPLATE_M(00c00400);
259     INSTANTIATE_TEMPLATE_M(00c00c00);
260     INSTANTIATE_TEMPLATE_M(00c00c1c);
261     INSTANTIATE_TEMPLATE_M(00c01000);
262     INSTANTIATE_TEMPLATE_M(00c01400);
263     INSTANTIATE_TEMPLATE_M(00c01c00);
264     INSTANTIATE_TEMPLATE_M(00c02000);
265     INSTANTIATE_TEMPLATE_M(00c03000);
266     INSTANTIATE_TEMPLATE_M(00c03c00);
267     INSTANTIATE_TEMPLATE_M(00c83000);
268     INSTANTIATE_TEMPLATE_M(00cf0000);
269     INSTANTIATE_TEMPLATE_M(00d00200);
270     INSTANTIATE_TEMPLATE_M(00d80800);
271     INSTANTIATE_TEMPLATE_M(00d81800);
272     INSTANTIATE_TEMPLATE_M(00d81c00);
273     INSTANTIATE_TEMPLATE_M(00d82800);
274     INSTANTIATE_TEMPLATE_M(00d82c00);
275     INSTANTIATE_TEMPLATE_M(00d92400);
276     INSTANTIATE_TEMPLATE_M(00d93000);
277     INSTANTIATE_TEMPLATE_M(00db0000);
278     INSTANTIATE_TEMPLATE_M(00dc0000);
279     INSTANTIATE_TEMPLATE_M(00dc2000);
280     INSTANTIATE_TEMPLATE_M(00dd2000);
281     INSTANTIATE_TEMPLATE_M(00df0000);
282     INSTANTIATE_TEMPLATE_M(40000000);
283     INSTANTIATE_TEMPLATE_M(40000010);
284     INSTANTIATE_TEMPLATE_M(40000c00);
285     INSTANTIATE_TEMPLATE_M(40002000);
286     INSTANTIATE_TEMPLATE_M(40002010);
287     INSTANTIATE_TEMPLATE_M(40003000);
288     INSTANTIATE_TEMPLATE_M(40003c00);
289     INSTANTIATE_TEMPLATE_M(400f0000);
290     INSTANTIATE_TEMPLATE_M(400f0400);
291     INSTANTIATE_TEMPLATE_M(401f2000);
292     INSTANTIATE_TEMPLATE_M(40400800);
293     INSTANTIATE_TEMPLATE_M(40400c00);
294     INSTANTIATE_TEMPLATE_M(40403c00);
295     INSTANTIATE_TEMPLATE_M(40800000);
296     INSTANTIATE_TEMPLATE_M(40800c00);
297     INSTANTIATE_TEMPLATE_M(40802000);
298     INSTANTIATE_TEMPLATE_M(40802010);
299     INSTANTIATE_TEMPLATE_M(40803400);
300     INSTANTIATE_TEMPLATE_M(40803c00);
301     INSTANTIATE_TEMPLATE_M(40c00000);
302     INSTANTIATE_TEMPLATE_M(40c00c00);
303     INSTANTIATE_TEMPLATE_M(40c00c10);
304     INSTANTIATE_TEMPLATE_M(40c01c00);
305     INSTANTIATE_TEMPLATE_M(40c02000);
306     INSTANTIATE_TEMPLATE_M(40c02010);
307     INSTANTIATE_TEMPLATE_M(40c02c00);
308     INSTANTIATE_TEMPLATE_M(40c03c00);
309     INSTANTIATE_TEMPLATE_M(40c80000);
310     INSTANTIATE_TEMPLATE_M(40c90000);
311     INSTANTIATE_TEMPLATE_M(40cf0000);
312     INSTANTIATE_TEMPLATE_M(40d02000);
313     INSTANTIATE_TEMPLATE_M(40d02010);
314     INSTANTIATE_TEMPLATE_M(40d80000);
315     INSTANTIATE_TEMPLATE_M(40d81800);
316     INSTANTIATE_TEMPLATE_M(bf20c000);
317     INSTANTIATE_TEMPLATE_MV(00000003, 00000000);
318     INSTANTIATE_TEMPLATE_MV(00000003, 00000003);
319     INSTANTIATE_TEMPLATE_MV(0000001f, 0000001f);
320     INSTANTIATE_TEMPLATE_MV(00000210, 00000000);
321     INSTANTIATE_TEMPLATE_MV(000003e0, 00000000);
322     INSTANTIATE_TEMPLATE_MV(000003e0, 000003e0);
323     INSTANTIATE_TEMPLATE_MV(000003e1, 000003e0);
324     INSTANTIATE_TEMPLATE_MV(000003e3, 000003e0);
325     INSTANTIATE_TEMPLATE_MV(000003e3, 000003e3);
326     INSTANTIATE_TEMPLATE_MV(00000c00, 00000000);
327     INSTANTIATE_TEMPLATE_MV(00000fc0, 00000000);
328     INSTANTIATE_TEMPLATE_MV(000013e0, 00001000);
329     INSTANTIATE_TEMPLATE_MV(00001c00, 00000000);
330     INSTANTIATE_TEMPLATE_MV(00002400, 00000000);
331     INSTANTIATE_TEMPLATE_MV(00003000, 00000000);
332     INSTANTIATE_TEMPLATE_MV(00003000, 00001000);
333     INSTANTIATE_TEMPLATE_MV(00003000, 00002000);
334     INSTANTIATE_TEMPLATE_MV(00003000, 00003000);
335     INSTANTIATE_TEMPLATE_MV(00003010, 00000000);
336     INSTANTIATE_TEMPLATE_MV(00060000, 00000000);
337     INSTANTIATE_TEMPLATE_MV(00061000, 00000000);
338     INSTANTIATE_TEMPLATE_MV(00070000, 00030000);
339     INSTANTIATE_TEMPLATE_MV(0007309f, 0000001f);
340     INSTANTIATE_TEMPLATE_MV(00073ee0, 00033060);
341     INSTANTIATE_TEMPLATE_MV(000f0000, 00000000);
342     INSTANTIATE_TEMPLATE_MV(000f0010, 00000000);
343     INSTANTIATE_TEMPLATE_MV(00100200, 00000000);
344     INSTANTIATE_TEMPLATE_MV(00100210, 00000000);
345     INSTANTIATE_TEMPLATE_MV(00160000, 00000000);
346     INSTANTIATE_TEMPLATE_MV(00170000, 00000000);
347     INSTANTIATE_TEMPLATE_MV(001c0000, 00000000);
348     INSTANTIATE_TEMPLATE_MV(001d0000, 00000000);
349     INSTANTIATE_TEMPLATE_MV(001e0000, 00000000);
350     INSTANTIATE_TEMPLATE_MV(001f0000, 00000000);
351     INSTANTIATE_TEMPLATE_MV(001f0000, 00010000);
352     INSTANTIATE_TEMPLATE_MV(001f0000, 00100000);
353     INSTANTIATE_TEMPLATE_MV(001f0000, 001f0000);
354     INSTANTIATE_TEMPLATE_MV(001f3000, 00000000);
355     INSTANTIATE_TEMPLATE_MV(001f3000, 001f0000);
356     INSTANTIATE_TEMPLATE_MV(001f300f, 0000000d);
357     INSTANTIATE_TEMPLATE_MV(001f301f, 0000000d);
358     INSTANTIATE_TEMPLATE_MV(001f33e0, 000103e0);
359     INSTANTIATE_TEMPLATE_MV(001f3800, 00000000);
360     INSTANTIATE_TEMPLATE_MV(00401000, 00400000);
361     INSTANTIATE_TEMPLATE_MV(00403000, 00000000);
362     INSTANTIATE_TEMPLATE_MV(005f3000, 001f0000);
363     INSTANTIATE_TEMPLATE_MV(005f3000, 001f1000);
364     INSTANTIATE_TEMPLATE_MV(00800010, 00000000);
365     INSTANTIATE_TEMPLATE_MV(00800400, 00000000);
366     INSTANTIATE_TEMPLATE_MV(00800410, 00000000);
367     INSTANTIATE_TEMPLATE_MV(00803000, 00002000);
368     INSTANTIATE_TEMPLATE_MV(00870000, 00000000);
369     INSTANTIATE_TEMPLATE_MV(009f0000, 00010000);
370     INSTANTIATE_TEMPLATE_MV(00c00000, 00000000);
371     INSTANTIATE_TEMPLATE_MV(00c00000, 00400000);
372     INSTANTIATE_TEMPLATE_MV(00c0001f, 00000000);
373     INSTANTIATE_TEMPLATE_MV(00c001ff, 00000000);
374     INSTANTIATE_TEMPLATE_MV(00c00200, 00400000);
375     INSTANTIATE_TEMPLATE_MV(00c0020f, 00400000);
376     INSTANTIATE_TEMPLATE_MV(00c003e0, 00000000);
377     INSTANTIATE_TEMPLATE_MV(00c00800, 00000000);
378     INSTANTIATE_TEMPLATE_MV(00d80800, 00000000);
379     INSTANTIATE_TEMPLATE_MV(00df0000, 00000000);
380     INSTANTIATE_TEMPLATE_MV(00df3800, 001f0800);
381     INSTANTIATE_TEMPLATE_MV(40002000, 40000000);
382     INSTANTIATE_TEMPLATE_MV(40003c00, 00000000);
383     INSTANTIATE_TEMPLATE_MV(40040000, 00000000);
384     INSTANTIATE_TEMPLATE_MV(40800c00, 40000400);
385     INSTANTIATE_TEMPLATE_MV(40c00000, 00000000);
386     INSTANTIATE_TEMPLATE_MV(40c00000, 00400000);
387     INSTANTIATE_TEMPLATE_MV(40c00000, 40000000);
388     INSTANTIATE_TEMPLATE_MV(40c00000, 40800000);
389     INSTANTIATE_TEMPLATE_MV(40df0000, 00000000);
390     default: {
391       static bool printed_preamble = false;
392       if (!printed_preamble) {
393         printf("One or more missing template instantiations.\n");
394         printf(
395             "Add the following to either GetBitExtractFunction() "
396             "implementations\n");
397         printf("in %s near line %d:\n", __FILE__, __LINE__);
398         printed_preamble = true;
399       }
400 
401       if (y == 0) {
402         printf("  INSTANTIATE_TEMPLATE_M(%08x);\n", x);
403         bit_extract_fn = &Instruction::ExtractBitsAbsent;
404       } else {
405         printf("  INSTANTIATE_TEMPLATE_MV(%08x, %08x);\n", y, x);
406         bit_extract_fn = &Instruction::IsMaskedValueAbsent;
407       }
408     }
409   }
410   return bit_extract_fn;
411 }
412 
413 #undef INSTANTIATE_TEMPLATE_M
414 #undef INSTANTIATE_TEMPLATE_MV
415 
TryCompileOptimisedDecodeTable(Decoder * decoder)416 bool DecodeNode::TryCompileOptimisedDecodeTable(Decoder* decoder) {
417   // EitherOr optimisation: if there are only one or two patterns in the table,
418   // try to optimise the node to exploit that.
419   size_t table_size = pattern_table_.size();
420   if ((table_size <= 2) && (GetSampledBitsCount() > 1)) {
421     // TODO: support 'x' in this optimisation by dropping the sampled bit
422     // positions before making the mask/value.
423     if (!PatternContainsSymbol(pattern_table_[0].pattern,
424                                PatternSymbol::kSymbolX) &&
425         (table_size == 1)) {
426       // A pattern table consisting of a fixed pattern with no x's, and an
427       // "otherwise" or absent case. Optimise this into an instruction mask and
428       // value test.
429       uint32_t single_decode_mask = 0;
430       uint32_t single_decode_value = 0;
431       const auto& bits = GetSampledBits();
432 
433       // Construct the instruction mask and value from the pattern.
434       VIXL_ASSERT(bits.size() == GetPatternLength(pattern_table_[0].pattern));
435       for (size_t i = 0; i < bits.size(); i++) {
436         single_decode_mask |= 1U << bits[i];
437         if (GetSymbolAt(pattern_table_[0].pattern, i) ==
438             PatternSymbol::kSymbol1) {
439           single_decode_value |= 1U << bits[i];
440         }
441       }
442       BitExtractFn bit_extract_fn =
443           GetBitExtractFunction(single_decode_mask, single_decode_value);
444 
445       // Create a compiled node that contains a two entry table for the
446       // either/or cases.
447       CreateCompiledNode(bit_extract_fn, 2);
448 
449       // Set DecodeNode for when the instruction after masking doesn't match the
450       // value.
451       CompileNodeForBits(decoder, "unallocated", 0);
452 
453       // Set DecodeNode for when it does match.
454       CompileNodeForBits(decoder, String(pattern_table_[0].handler, GetAllocator().Adapter()), 1);
455 
456       return true;
457     }
458   }
459   return false;
460 }
461 
Compile(Decoder * decoder)462 CompiledDecodeNode* DecodeNode::Compile(Decoder* decoder) {
463   if (IsLeafNode()) {
464     // A leaf node is a simple wrapper around a visitor function, with no
465     // instruction decoding to do.
466     CreateVisitorNode();
467   } else if (!TryCompileOptimisedDecodeTable(decoder)) {
468     // The "otherwise" node is the default next node if no pattern matches.
469     String otherwise("unallocated", GetAllocator().Adapter());
470 
471     // For each pattern in pattern_table_, create an entry in matches that
472     // has a corresponding mask and value for the pattern.
473     Vector<MaskValuePair> matches(GetAllocator().Adapter());
474     for (size_t i = 0; i < pattern_table_.size(); i++) {
475       matches.push_back(GenerateMaskValuePair(
476           GenerateOrderedPattern(pattern_table_[i].pattern)));
477     }
478 
479     BitExtractFn bit_extract_fn =
480         GetBitExtractFunction(GenerateSampledBitsMask());
481 
482     // Create a compiled node that contains a table with an entry for every bit
483     // pattern.
484     CreateCompiledNode(bit_extract_fn, 1U << GetSampledBitsCount());
485     VIXL_ASSERT(compiled_node_ != NULL);
486 
487     // When we find a pattern matches the representation, set the node's decode
488     // function for that representation to the corresponding function.
489     for (uint32_t bits = 0; bits < (1U << GetSampledBitsCount()); bits++) {
490       for (size_t i = 0; i < matches.size(); i++) {
491         if ((bits & matches[i].first) == matches[i].second) {
492           // Only one instruction class should match for each value of bits, so
493           // if we get here, the node pointed to should still be unallocated.
494           VIXL_ASSERT(compiled_node_->GetNodeForBits(bits) == NULL);
495           CompileNodeForBits(decoder, String(pattern_table_[i].handler, GetAllocator().Adapter()), bits);
496           break;
497         }
498       }
499 
500       // If the decode_table_ entry for these bits is still NULL, the
501       // instruction must be handled by the "otherwise" case, which by default
502       // is the Unallocated visitor.
503       if (compiled_node_->GetNodeForBits(bits) == NULL) {
504         CompileNodeForBits(decoder, String(otherwise, GetAllocator().Adapter()), bits);
505       }
506     }
507   }
508 
509   VIXL_ASSERT(compiled_node_ != NULL);
510   return compiled_node_;
511 }
512 
Decode(const Instruction * instr) const513 void CompiledDecodeNode::Decode(const Instruction* instr) const {
514   if (IsLeafNode()) {
515     // If this node is a leaf, call the registered visitor function.
516     VIXL_ASSERT(decoder_ != NULL);
517     decoder_->VisitNamedInstruction(instr, instruction_name_);
518   } else {
519     // Otherwise, using the sampled bit extractor for this node, look up the
520     // next node in the decode tree, and call its Decode method.
521     VIXL_ASSERT(bit_extract_fn_ != NULL);
522     VIXL_ASSERT((instr->*bit_extract_fn_)() < decode_table_size_);
523     VIXL_ASSERT(decode_table_[(instr->*bit_extract_fn_)()] != NULL);
524     decode_table_[(instr->*bit_extract_fn_)()]->Decode(instr);
525   }
526 }
527 
GenerateMaskValuePair(uint32_t pattern) const528 DecodeNode::MaskValuePair DecodeNode::GenerateMaskValuePair(
529     uint32_t pattern) const {
530   uint32_t mask = 0, value = 0;
531   for (size_t i = 0; i < GetPatternLength(pattern); i++) {
532     PatternSymbol sym = GetSymbolAt(pattern, i);
533     mask = (mask << 1) | ((sym == PatternSymbol::kSymbolX) ? 0 : 1);
534     value = (value << 1) | (static_cast<uint32_t>(sym) & 1);
535   }
536   return std::make_pair(mask, value);
537 }
538 
GenerateOrderedPattern(uint32_t pattern) const539 uint32_t DecodeNode::GenerateOrderedPattern(uint32_t pattern) const {
540   const std::vector<uint8_t>& sampled_bits = GetSampledBits();
541   uint64_t temp = 0xffffffffffffffff;
542 
543   // Place symbols into the field of set bits. Symbols are two bits wide and
544   // take values 0, 1 or 2, so 3 will represent "no symbol".
545   for (size_t i = 0; i < sampled_bits.size(); i++) {
546     int shift = sampled_bits[i] * 2;
547     temp ^= static_cast<uint64_t>(kEndOfPattern) << shift;
548     temp |= static_cast<uint64_t>(GetSymbolAt(pattern, i)) << shift;
549   }
550 
551   // Iterate over temp and extract new pattern ordered by sample position.
552   uint32_t result = kEndOfPattern;  // End of pattern marker.
553 
554   // Iterate over the pattern one symbol (two bits) at a time.
555   for (int i = 62; i >= 0; i -= 2) {
556     uint32_t sym = (temp >> i) & kPatternSymbolMask;
557 
558     // If this is a valid symbol, shift into the result.
559     if (sym != kEndOfPattern) {
560       result = (result << 2) | sym;
561     }
562   }
563 
564   // The length of the ordered pattern must be the same as the input pattern,
565   // and the number of sampled bits.
566   VIXL_ASSERT(GetPatternLength(result) == GetPatternLength(pattern));
567   VIXL_ASSERT(GetPatternLength(result) == sampled_bits.size());
568 
569   return result;
570 }
571 
GenerateSampledBitsMask() const572 uint32_t DecodeNode::GenerateSampledBitsMask() const {
573   uint32_t mask = 0;
574   for (int bit : GetSampledBits()) {
575     mask |= 1 << bit;
576   }
577   return mask;
578 }
579 
580 }  // namespace aarch64
581 }  // namespace vixl
582