• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesBufferMemoryAliasing.cpp
21  * \brief Sparse buffer memory aliasing tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesBufferMemoryAliasing.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkRefUtil.hpp"
35 #include "vkMemUtil.hpp"
36 #include "vkBarrierUtil.hpp"
37 #include "vkQueryUtil.hpp"
38 #include "vkBuilderUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 #include "vkObjUtil.hpp"
42 
43 #include "deStringUtil.hpp"
44 #include "deUniquePtr.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 enum ShaderParameters
59 {
60 	SIZE_OF_UINT_IN_SHADER	= 4u,
61 	MODULO_DIVISOR			= 1024u
62 };
63 
computeWorkGroupSize(const deUint32 numInvocations)64 tcu::UVec3 computeWorkGroupSize (const deUint32 numInvocations)
65 {
66 	const deUint32		maxComputeWorkGroupInvocations	= 128u;
67 	const tcu::UVec3	maxComputeWorkGroupSize			= tcu::UVec3(128u, 128u, 64u);
68 	deUint32			numInvocationsLeft				= numInvocations;
69 
70 	const deUint32 xWorkGroupSize = std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.x()), maxComputeWorkGroupInvocations);
71 	numInvocationsLeft = numInvocationsLeft / xWorkGroupSize + ((numInvocationsLeft % xWorkGroupSize) ? 1u : 0u);
72 
73 	const deUint32 yWorkGroupSize = std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.y()), maxComputeWorkGroupInvocations / xWorkGroupSize);
74 	numInvocationsLeft = numInvocationsLeft / yWorkGroupSize + ((numInvocationsLeft % yWorkGroupSize) ? 1u : 0u);
75 
76 	const deUint32 zWorkGroupSize = std::min(std::min(numInvocationsLeft, maxComputeWorkGroupSize.z()), maxComputeWorkGroupInvocations / (xWorkGroupSize*yWorkGroupSize));
77 	numInvocationsLeft = numInvocationsLeft / zWorkGroupSize + ((numInvocationsLeft % zWorkGroupSize) ? 1u : 0u);
78 
79 	return tcu::UVec3(xWorkGroupSize, yWorkGroupSize, zWorkGroupSize);
80 }
81 
82 class BufferSparseMemoryAliasingCase : public TestCase
83 {
84 public:
85 					BufferSparseMemoryAliasingCase	(tcu::TestContext&		testCtx,
86 													 const std::string&		name,
87 													 const deUint32			bufferSize,
88 													 const glu::GLSLVersion	glslVersion,
89 													 const bool				useDeviceGroups);
90 
91 	void			initPrograms					(SourceCollections&		sourceCollections) const;
92 	TestInstance*	createInstance					(Context&				context) const;
93 	virtual void	checkSupport					(Context&				context) const;
94 
95 private:
96 	const	deUint32			m_bufferSizeInBytes;
97 	const	glu::GLSLVersion	m_glslVersion;
98 	const	bool				m_useDeviceGroups;
99 };
100 
BufferSparseMemoryAliasingCase(tcu::TestContext & testCtx,const std::string & name,const deUint32 bufferSize,const glu::GLSLVersion glslVersion,const bool useDeviceGroups)101 BufferSparseMemoryAliasingCase::BufferSparseMemoryAliasingCase (tcu::TestContext&		testCtx,
102 																const std::string&		name,
103 																const deUint32			bufferSize,
104 																const glu::GLSLVersion	glslVersion,
105 																const bool				useDeviceGroups)
106 	: TestCase				(testCtx, name)
107 	, m_bufferSizeInBytes	(bufferSize)
108 	, m_glslVersion			(glslVersion)
109 	, m_useDeviceGroups		(useDeviceGroups)
110 {
111 }
112 
checkSupport(Context & context) const113 void BufferSparseMemoryAliasingCase::checkSupport (Context& context) const
114 {
115 	context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
116 	context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_RESIDENCY_ALIASED);
117 }
118 
initPrograms(SourceCollections & sourceCollections) const119 void BufferSparseMemoryAliasingCase::initPrograms (SourceCollections& sourceCollections) const
120 {
121 	// Create compute program
122 	const char* const versionDecl		= glu::getGLSLVersionDeclaration(m_glslVersion);
123 	const deUint32	  numInvocations	= m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER;
124 	const tcu::UVec3  workGroupSize		= computeWorkGroupSize(numInvocations);
125 
126 	std::ostringstream src;
127 	src << versionDecl << "\n"
128 		<< "layout (local_size_x = " << workGroupSize.x() << ", local_size_y = " << workGroupSize.y() << ", local_size_z = " << workGroupSize.z() << ") in;\n"
129 		<< "layout(set = 0, binding = 0, std430) writeonly buffer Output\n"
130 		<< "{\n"
131 		<< "	uint result[];\n"
132 		<< "} sb_out;\n"
133 		<< "\n"
134 		<< "void main (void)\n"
135 		<< "{\n"
136 		<< "	uint index = gl_GlobalInvocationID.x + (gl_GlobalInvocationID.y + gl_GlobalInvocationID.z*gl_NumWorkGroups.y*gl_WorkGroupSize.y)*gl_NumWorkGroups.x*gl_WorkGroupSize.x;\n"
137 		<< "	if ( index < " << m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER << "u )\n"
138 		<< "	{\n"
139 		<< "		sb_out.result[index] = index % " << MODULO_DIVISOR << "u;\n"
140 		<< "	}\n"
141 		<< "}\n";
142 
143 	sourceCollections.glslSources.add("comp") << glu::ComputeSource(src.str());
144 }
145 
146 class BufferSparseMemoryAliasingInstance : public SparseResourcesBaseInstance
147 {
148 public:
149 					BufferSparseMemoryAliasingInstance	(Context&					context,
150 														 const deUint32				bufferSize,
151 														 const bool					useDeviceGroups);
152 
153 	tcu::TestStatus	iterate								(void);
154 
155 private:
156 	const deUint32			m_bufferSizeInBytes;
157 	const deUint32			m_useDeviceGroups;
158 
159 };
160 
BufferSparseMemoryAliasingInstance(Context & context,const deUint32 bufferSize,const bool useDeviceGroups)161 BufferSparseMemoryAliasingInstance::BufferSparseMemoryAliasingInstance (Context&		context,
162 																		const deUint32	bufferSize,
163 																		const bool		useDeviceGroups)
164 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
165 	, m_bufferSizeInBytes			(bufferSize)
166 	, m_useDeviceGroups				(useDeviceGroups)
167 {
168 }
169 
iterate(void)170 tcu::TestStatus BufferSparseMemoryAliasingInstance::iterate (void)
171 {
172 	const InstanceInterface&		instance		= m_context.getInstanceInterface();
173 	{
174 		// Create logical device supporting both sparse and compute operations
175 		QueueRequirementsVec queueRequirements;
176 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
177 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
178 
179 		createDeviceSupportingQueues(queueRequirements);
180 	}
181 	const vk::VkPhysicalDevice&	physicalDevice	= getPhysicalDevice();
182 	const DeviceInterface&		deviceInterface	= getDeviceInterface();
183 	const Queue&				sparseQueue		= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
184 	const Queue&				computeQueue	= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
185 
186 	// Go through all physical devices
187 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
188 	{
189 		const deUint32	firstDeviceID = physDevID;
190 		const deUint32	secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
191 
192 		VkBufferCreateInfo bufferCreateInfo =
193 		{
194 			VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,	// VkStructureType		sType;
195 			DE_NULL,								// const void*			pNext;
196 			VK_BUFFER_CREATE_SPARSE_BINDING_BIT |
197 			VK_BUFFER_CREATE_SPARSE_ALIASED_BIT,	// VkBufferCreateFlags	flags;
198 			m_bufferSizeInBytes,					// VkDeviceSize			size;
199 			VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
200 			VK_BUFFER_USAGE_TRANSFER_SRC_BIT,		// VkBufferUsageFlags	usage;
201 			VK_SHARING_MODE_EXCLUSIVE,				// VkSharingMode		sharingMode;
202 			0u,										// deUint32				queueFamilyIndexCount;
203 			DE_NULL									// const deUint32*		pQueueFamilyIndices;
204 		};
205 
206 		const deUint32 queueFamilyIndices[] = { sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex };
207 
208 		if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex)
209 		{
210 			bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
211 			bufferCreateInfo.queueFamilyIndexCount = 2u;
212 			bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
213 		}
214 
215 		// Create sparse buffers
216 		const Unique<VkBuffer> sparseBufferWrite(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
217 		const Unique<VkBuffer> sparseBufferRead(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
218 
219 		// Create sparse buffers memory bind semaphore
220 		const Unique<VkSemaphore> bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
221 
222 		const VkMemoryRequirements	bufferMemRequirements = getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBufferWrite);
223 
224 		if (bufferMemRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
225 			TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits");
226 
227 		DE_ASSERT((bufferMemRequirements.size % bufferMemRequirements.alignment) == 0);
228 
229 		const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), bufferMemRequirements, MemoryRequirement::Any);
230 
231 		if (memoryType == NO_MATCH_FOUND)
232 			return tcu::TestStatus::fail("No matching memory type found");
233 
234 		if (firstDeviceID != secondDeviceID)
235 		{
236 			VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
237 			const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
238 			deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
239 
240 			if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT)    == 0) ||
241 				((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT) == 0))
242 			{
243 				TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and GENERIC_DST");
244 			}
245 		}
246 
247 		const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(), bufferMemRequirements.size, memoryType, 0u);
248 
249 		Move<VkDeviceMemory> deviceMemoryPtr(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL));
250 
251 		{
252 			const VkSparseBufferMemoryBindInfo sparseBufferMemoryBindInfo[2] =
253 			{
254 				makeSparseBufferMemoryBindInfo
255 				(*sparseBufferWrite,	//VkBuffer					buffer;
256 				1u,						//deUint32					bindCount;
257 				&sparseMemoryBind		//const VkSparseMemoryBind*	Binds;
258 				),
259 
260 				makeSparseBufferMemoryBindInfo
261 				(*sparseBufferRead,		//VkBuffer					buffer;
262 				1u,						//deUint32					bindCount;
263 				&sparseMemoryBind		//const VkSparseMemoryBind*	Binds;
264 				)
265 			};
266 
267 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
268 			{
269 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
270 				DE_NULL,												//const void*								pNext;
271 				firstDeviceID,											//deUint32									resourceDeviceIndex;
272 				secondDeviceID,											//deUint32									memoryDeviceIndex;
273 			};
274 
275 			const VkBindSparseInfo bindSparseInfo =
276 			{
277 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
278 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
279 				0u,														//deUint32									waitSemaphoreCount;
280 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
281 				2u,														//deUint32									bufferBindCount;
282 				sparseBufferMemoryBindInfo,								//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
283 				0u,														//deUint32									imageOpaqueBindCount;
284 				DE_NULL,												//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
285 				0u,														//deUint32									imageBindCount;
286 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
287 				1u,														//deUint32									signalSemaphoreCount;
288 				&bufferMemoryBindSemaphore.get()						//const VkSemaphore*						pSignalSemaphores;
289 			};
290 
291 			// Submit sparse bind commands for execution
292 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
293 		}
294 
295 		// Create output buffer
296 		const VkBufferCreateInfo		outputBufferCreateInfo = makeBufferCreateInfo(m_bufferSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
297 		const Unique<VkBuffer>			outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
298 		const de::UniquePtr<Allocation>	outputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
299 
300 		// Create command buffer for compute and data transfer operations
301 		const Unique<VkCommandPool>	  commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
302 		const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
303 
304 		// Start recording commands
305 		beginCommandBuffer(deviceInterface, *commandBuffer);
306 
307 		// Create descriptor set
308 		const Unique<VkDescriptorSetLayout> descriptorSetLayout(
309 			DescriptorSetLayoutBuilder()
310 			.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT)
311 			.build(deviceInterface, getDevice()));
312 
313 		// Create compute pipeline
314 		const Unique<VkShaderModule>	shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get("comp"), DE_NULL));
315 		const Unique<VkPipelineLayout>	pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
316 		const Unique<VkPipeline>		computePipeline(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
317 
318 		deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *computePipeline);
319 
320 		// Create descriptor set
321 		const Unique<VkDescriptorPool> descriptorPool(
322 			DescriptorPoolBuilder()
323 			.addType(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1u)
324 			.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1u));
325 
326 		const Unique<VkDescriptorSet> descriptorSet(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
327 
328 		{
329 			const VkDescriptorBufferInfo sparseBufferInfo = makeDescriptorBufferInfo(*sparseBufferWrite, 0u, m_bufferSizeInBytes);
330 
331 			DescriptorSetUpdateBuilder()
332 				.writeSingle(*descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, &sparseBufferInfo)
333 				.update(deviceInterface, getDevice());
334 		}
335 
336 		deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet.get(), 0u, DE_NULL);
337 
338 		{
339 			deUint32		 numInvocationsLeft = m_bufferSizeInBytes / SIZE_OF_UINT_IN_SHADER;
340 			const tcu::UVec3 workGroupSize = computeWorkGroupSize(numInvocationsLeft);
341 			const tcu::UVec3 maxComputeWorkGroupCount = tcu::UVec3(65535u, 65535u, 65535u);
342 
343 			numInvocationsLeft -= workGroupSize.x()*workGroupSize.y()*workGroupSize.z();
344 
345 			const deUint32	xWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.x());
346 			numInvocationsLeft = numInvocationsLeft / xWorkGroupCount + ((numInvocationsLeft % xWorkGroupCount) ? 1u : 0u);
347 			const deUint32	yWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.y());
348 			numInvocationsLeft = numInvocationsLeft / yWorkGroupCount + ((numInvocationsLeft % yWorkGroupCount) ? 1u : 0u);
349 			const deUint32	zWorkGroupCount = std::min(numInvocationsLeft, maxComputeWorkGroupCount.z());
350 			numInvocationsLeft = numInvocationsLeft / zWorkGroupCount + ((numInvocationsLeft % zWorkGroupCount) ? 1u : 0u);
351 
352 			if (numInvocationsLeft != 1u)
353 				TCU_THROW(NotSupportedError, "Buffer size is not supported");
354 
355 			deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
356 		}
357 
358 		{
359 			const VkBufferMemoryBarrier sparseBufferWriteBarrier
360 				= makeBufferMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT,
361 					VK_ACCESS_TRANSFER_READ_BIT,
362 					*sparseBufferWrite,
363 					0ull,
364 					m_bufferSizeInBytes);
365 
366 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &sparseBufferWriteBarrier, 0u, DE_NULL);
367 		}
368 
369 		{
370 			const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSizeInBytes);
371 
372 			deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBufferRead, *outputBuffer, 1u, &bufferCopy);
373 		}
374 
375 		{
376 			const VkBufferMemoryBarrier outputBufferHostBarrier
377 				= makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
378 					VK_ACCESS_HOST_READ_BIT,
379 					*outputBuffer,
380 					0ull,
381 					m_bufferSizeInBytes);
382 
383 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferHostBarrier, 0u, DE_NULL);
384 		}
385 
386 		// End recording commands
387 		endCommandBuffer(deviceInterface, *commandBuffer);
388 
389 		// The stage at which execution is going to wait for finish of sparse binding operations
390 		const VkPipelineStageFlags waitStageBits[] = { VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT };
391 
392 		// Submit commands for execution and wait for completion
393 		// In case of device groups, submit on the physical device with the resource
394 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &bufferMemoryBindSemaphore.get(),
395 			waitStageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
396 
397 		// Retrieve data from output buffer to host memory
398 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
399 
400 		const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
401 
402 		// Wait for sparse queue to become idle
403 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
404 
405 		// Prepare reference data
406 		std::vector<deUint8> referenceData;
407 		referenceData.resize(m_bufferSizeInBytes);
408 
409 		std::vector<deUint32> referenceDataBlock;
410 		referenceDataBlock.resize(MODULO_DIVISOR);
411 
412 		for (deUint32 valueNdx = 0; valueNdx < MODULO_DIVISOR; ++valueNdx)
413 		{
414 			referenceDataBlock[valueNdx] = valueNdx % MODULO_DIVISOR;
415 		}
416 
417 		const deUint32 fullBlockSizeInBytes = MODULO_DIVISOR * SIZE_OF_UINT_IN_SHADER;
418 		const deUint32 lastBlockSizeInBytes = m_bufferSizeInBytes % fullBlockSizeInBytes;
419 		const deUint32 numberOfBlocks = m_bufferSizeInBytes / fullBlockSizeInBytes + (lastBlockSizeInBytes ? 1u : 0u);
420 
421 		for (deUint32 blockNdx = 0; blockNdx < numberOfBlocks; ++blockNdx)
422 		{
423 			const deUint32 offset = blockNdx * fullBlockSizeInBytes;
424 			deMemcpy(&referenceData[0] + offset, &referenceDataBlock[0], ((offset + fullBlockSizeInBytes) <= m_bufferSizeInBytes) ? fullBlockSizeInBytes : lastBlockSizeInBytes);
425 		}
426 
427 		// Compare reference data with output data
428 		if (deMemCmp(&referenceData[0], outputData, m_bufferSizeInBytes) != 0)
429 			return tcu::TestStatus::fail("Failed");
430 	}
431 	return tcu::TestStatus::pass("Passed");
432 }
433 
createInstance(Context & context) const434 TestInstance* BufferSparseMemoryAliasingCase::createInstance (Context& context) const
435 {
436 	return new BufferSparseMemoryAliasingInstance(context, m_bufferSizeInBytes, m_useDeviceGroups);
437 }
438 
439 } // anonymous ns
440 
addBufferSparseMemoryAliasingTests(tcu::TestCaseGroup * group,const bool useDeviceGroups)441 void addBufferSparseMemoryAliasingTests(tcu::TestCaseGroup* group, const bool useDeviceGroups)
442 {
443 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_10", 1 << 10, glu::GLSL_VERSION_440, useDeviceGroups));
444 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_12", 1 << 12, glu::GLSL_VERSION_440, useDeviceGroups));
445 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_16", 1 << 16, glu::GLSL_VERSION_440, useDeviceGroups));
446 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_17", 1 << 17, glu::GLSL_VERSION_440, useDeviceGroups));
447 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_20", 1 << 20, glu::GLSL_VERSION_440, useDeviceGroups));
448 	group->addChild(new BufferSparseMemoryAliasingCase(group->getTestContext(), "buffer_size_2_24", 1 << 24, glu::GLSL_VERSION_440, useDeviceGroups));
449 }
450 
451 } // sparse
452 } // vkt
453