1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2016 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file vktSparseResourcesBufferSparseBinding.cpp
21 * \brief Buffer Sparse Binding tests
22 *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44
45 #include <string>
46 #include <vector>
47
48 using namespace vk;
49
50 namespace vkt
51 {
52 namespace sparse
53 {
54 namespace
55 {
56
57 class BufferSparseBindingCase : public TestCase
58 {
59 public:
60 BufferSparseBindingCase (tcu::TestContext& testCtx,
61 const std::string& name,
62 const deUint32 bufferSize,
63 const bool useDeviceGroups);
64
65 TestInstance* createInstance (Context& context) const;
66 virtual void checkSupport (Context& context) const;
67
68 private:
69 const deUint32 m_bufferSize;
70 const bool m_useDeviceGroups;
71 };
72
BufferSparseBindingCase(tcu::TestContext & testCtx,const std::string & name,const deUint32 bufferSize,const bool useDeviceGroups)73 BufferSparseBindingCase::BufferSparseBindingCase (tcu::TestContext& testCtx,
74 const std::string& name,
75 const deUint32 bufferSize,
76 const bool useDeviceGroups)
77 : TestCase (testCtx, name)
78 , m_bufferSize (bufferSize)
79 , m_useDeviceGroups (useDeviceGroups)
80 {
81 }
82
checkSupport(Context & context) const83 void BufferSparseBindingCase::checkSupport (Context& context) const
84 {
85 context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
86 }
87
88 class BufferSparseBindingInstance : public SparseResourcesBaseInstance
89 {
90 public:
91 BufferSparseBindingInstance (Context& context,
92 const deUint32 bufferSize,
93 const bool useDeviceGroups);
94
95 tcu::TestStatus iterate (void);
96
97 private:
98 const deUint32 m_bufferSize;
99 const deUint32 m_useDeviceGroups;
100 };
101
BufferSparseBindingInstance(Context & context,const deUint32 bufferSize,const bool useDeviceGroups)102 BufferSparseBindingInstance::BufferSparseBindingInstance (Context& context,
103 const deUint32 bufferSize,
104 const bool useDeviceGroups)
105
106 : SparseResourcesBaseInstance (context, useDeviceGroups)
107 , m_bufferSize (bufferSize)
108 , m_useDeviceGroups (useDeviceGroups)
109 {
110 }
111
iterate(void)112 tcu::TestStatus BufferSparseBindingInstance::iterate (void)
113 {
114 const InstanceInterface& instance = m_context.getInstanceInterface();
115 {
116 // Create logical device supporting both sparse and compute operations
117 QueueRequirementsVec queueRequirements;
118 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
119 queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
120
121 createDeviceSupportingQueues(queueRequirements);
122 }
123 const vk::VkPhysicalDevice& physicalDevice = getPhysicalDevice();
124
125 const DeviceInterface& deviceInterface = getDeviceInterface();
126 const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
127 const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
128
129 // Go through all physical devices
130 for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
131 {
132 const deUint32 firstDeviceID = physDevID;
133 const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
134
135 VkBufferCreateInfo bufferCreateInfo;
136
137 bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; // VkStructureType sType;
138 bufferCreateInfo.pNext = DE_NULL; // const void* pNext;
139 bufferCreateInfo.flags = VK_BUFFER_CREATE_SPARSE_BINDING_BIT; // VkBufferCreateFlags flags;
140 bufferCreateInfo.size = m_bufferSize; // VkDeviceSize size;
141 bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
142 VK_BUFFER_USAGE_TRANSFER_DST_BIT; // VkBufferUsageFlags usage;
143 bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; // VkSharingMode sharingMode;
144 bufferCreateInfo.queueFamilyIndexCount = 0u; // deUint32 queueFamilyIndexCount;
145 bufferCreateInfo.pQueueFamilyIndices = DE_NULL; // const deUint32* pQueueFamilyIndices;
146
147 const deUint32 queueFamilyIndices[] = { sparseQueue.queueFamilyIndex, computeQueue.queueFamilyIndex };
148
149 if (sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex)
150 {
151 bufferCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT; // VkSharingMode sharingMode;
152 bufferCreateInfo.queueFamilyIndexCount = 2u; // deUint32 queueFamilyIndexCount;
153 bufferCreateInfo.pQueueFamilyIndices = queueFamilyIndices; // const deUint32* pQueueFamilyIndices;
154 }
155
156 // Create sparse buffer
157 const Unique<VkBuffer> sparseBuffer(createBuffer(deviceInterface, getDevice(), &bufferCreateInfo));
158
159 // Create sparse buffer memory bind semaphore
160 const Unique<VkSemaphore> bufferMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
161
162 const VkMemoryRequirements bufferMemRequirement = getBufferMemoryRequirements(deviceInterface, getDevice(), *sparseBuffer);
163
164 if (bufferMemRequirement.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
165 TCU_THROW(NotSupportedError, "Required memory size for sparse resources exceeds device limits");
166
167 DE_ASSERT((bufferMemRequirement.size % bufferMemRequirement.alignment) == 0);
168
169 Move<VkDeviceMemory> sparseMemoryAllocation;
170
171 {
172 std::vector<VkSparseMemoryBind> sparseMemoryBinds;
173 const deUint32 numSparseBinds = static_cast<deUint32>(bufferMemRequirement.size / bufferMemRequirement.alignment);
174 const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), bufferMemRequirement, MemoryRequirement::Any);
175
176 if (memoryType == NO_MATCH_FOUND)
177 return tcu::TestStatus::fail("No matching memory type found");
178
179 if (firstDeviceID != secondDeviceID)
180 {
181 VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
182 const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
183 deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
184
185 if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
186 ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
187 {
188 TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
189 }
190 }
191
192 {
193 const VkMemoryAllocateInfo allocateInfo =
194 {
195 VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType;
196 DE_NULL, // const void* pNext;
197 bufferMemRequirement.size, // VkDeviceSize allocationSize;
198 memoryType, // uint32_t memoryTypeIndex;
199 };
200
201 sparseMemoryAllocation = allocateMemory(deviceInterface, getDevice(), &allocateInfo);
202 }
203
204 for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
205 {
206 const VkSparseMemoryBind sparseMemoryBind =
207 {
208 bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize resourceOffset;
209 bufferMemRequirement.alignment, // VkDeviceSize size;
210 *sparseMemoryAllocation, // VkDeviceMemory memory;
211 bufferMemRequirement.alignment * sparseBindNdx, // VkDeviceSize memoryOffset;
212 (VkSparseMemoryBindFlags)0, // VkSparseMemoryBindFlags flags;
213 };
214 sparseMemoryBinds.push_back(sparseMemoryBind);
215 }
216
217 const VkSparseBufferMemoryBindInfo sparseBufferBindInfo = makeSparseBufferMemoryBindInfo(*sparseBuffer, numSparseBinds, &sparseMemoryBinds[0]);
218
219 const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
220 {
221 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType;
222 DE_NULL, //const void* pNext;
223 firstDeviceID, //deUint32 resourceDeviceIndex;
224 secondDeviceID, //deUint32 memoryDeviceIndex;
225 };
226
227 const VkBindSparseInfo bindSparseInfo =
228 {
229 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
230 m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
231 0u, //deUint32 waitSemaphoreCount;
232 DE_NULL, //const VkSemaphore* pWaitSemaphores;
233 1u, //deUint32 bufferBindCount;
234 &sparseBufferBindInfo, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
235 0u, //deUint32 imageOpaqueBindCount;
236 DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
237 0u, //deUint32 imageBindCount;
238 DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
239 1u, //deUint32 signalSemaphoreCount;
240 &bufferMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
241 };
242
243 // Submit sparse bind commands for execution
244 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
245 }
246
247 // Create command buffer for transfer operations
248 const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
249 const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
250
251 // Start recording transfer commands
252 beginCommandBuffer(deviceInterface, *commandBuffer);
253
254 const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
255 const Unique<VkBuffer> inputBuffer(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
256 const de::UniquePtr<Allocation> inputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
257
258 std::vector<deUint8> referenceData;
259 referenceData.resize(m_bufferSize);
260
261 for (deUint32 valueNdx = 0; valueNdx < m_bufferSize; ++valueNdx)
262 {
263 referenceData[valueNdx] = static_cast<deUint8>((valueNdx % bufferMemRequirement.alignment) + 1u);
264 }
265
266 deMemcpy(inputBufferAlloc->getHostPtr(), &referenceData[0], m_bufferSize);
267
268 flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
269
270 {
271 const VkBufferMemoryBarrier inputBufferBarrier
272 = makeBufferMemoryBarrier(VK_ACCESS_HOST_WRITE_BIT,
273 VK_ACCESS_TRANSFER_READ_BIT,
274 *inputBuffer,
275 0u,
276 m_bufferSize);
277
278 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
279 }
280
281 {
282 const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize);
283
284 deviceInterface.cmdCopyBuffer(*commandBuffer, *inputBuffer, *sparseBuffer, 1u, &bufferCopy);
285 }
286
287 {
288 const VkBufferMemoryBarrier sparseBufferBarrier
289 = makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
290 VK_ACCESS_TRANSFER_READ_BIT,
291 *sparseBuffer,
292 0u,
293 m_bufferSize);
294
295 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &sparseBufferBarrier, 0u, DE_NULL);
296 }
297
298 const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(m_bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
299 const Unique<VkBuffer> outputBuffer(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
300 const de::UniquePtr<Allocation> outputBufferAlloc(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
301
302 {
303 const VkBufferCopy bufferCopy = makeBufferCopy(0u, 0u, m_bufferSize);
304
305 deviceInterface.cmdCopyBuffer(*commandBuffer, *sparseBuffer, *outputBuffer, 1u, &bufferCopy);
306 }
307
308 {
309 const VkBufferMemoryBarrier outputBufferBarrier
310 = makeBufferMemoryBarrier(VK_ACCESS_TRANSFER_WRITE_BIT,
311 VK_ACCESS_HOST_READ_BIT,
312 *outputBuffer,
313 0u,
314 m_bufferSize);
315
316 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
317 }
318
319 // End recording transfer commands
320 endCommandBuffer(deviceInterface, *commandBuffer);
321
322 const VkPipelineStageFlags waitStageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
323
324 // Submit transfer commands for execution and wait for completion
325 // In case of device groups, submit on the physical device with the resource
326 submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &bufferMemoryBindSemaphore.get(),
327 waitStageBits, 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
328
329 // Retrieve data from output buffer to host memory
330 invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
331
332 const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
333
334 // Wait for sparse queue to become idle
335 deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
336
337 // Compare output data with reference data
338 if (deMemCmp(&referenceData[0], outputData, m_bufferSize) != 0)
339 return tcu::TestStatus::fail("Failed");
340 }
341 return tcu::TestStatus::pass("Passed");
342 }
343
createInstance(Context & context) const344 TestInstance* BufferSparseBindingCase::createInstance (Context& context) const
345 {
346 return new BufferSparseBindingInstance(context, m_bufferSize, m_useDeviceGroups);
347 }
348
349 } // anonymous ns
350
addBufferSparseBindingTests(tcu::TestCaseGroup * group,const bool useDeviceGroups)351 void addBufferSparseBindingTests (tcu::TestCaseGroup* group, const bool useDeviceGroups)
352 {
353 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_10", 1 << 10, useDeviceGroups));
354 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_12", 1 << 12, useDeviceGroups));
355 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_16", 1 << 16, useDeviceGroups));
356 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_17", 1 << 17, useDeviceGroups));
357 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_20", 1 << 20, useDeviceGroups));
358 group->addChild(new BufferSparseBindingCase(group->getTestContext(), "buffer_size_2_24", 1 << 24, useDeviceGroups));
359 }
360
361 } // sparse
362 } // vkt
363