1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2016 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file vktSparseResourcesMipmapSparseResidency.cpp
21 * \brief Sparse partially resident images with mipmaps tests
22 *//*--------------------------------------------------------------------*/
23
24 #include "vktSparseResourcesMipmapSparseResidency.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45
46 #include <string>
47 #include <vector>
48
49 using namespace vk;
50
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57
58 class MipmapSparseResidencyCase : public TestCase
59 {
60 public:
61 MipmapSparseResidencyCase (tcu::TestContext& testCtx,
62 const std::string& name,
63 const ImageType imageType,
64 const tcu::UVec3& imageSize,
65 const VkFormat format,
66 const bool useDeviceGroups);
67
68 TestInstance* createInstance (Context& context) const;
69 virtual void checkSupport (Context& context) const;
70
71 private:
72 const bool m_useDeviceGroups;
73 const ImageType m_imageType;
74 const tcu::UVec3 m_imageSize;
75 const VkFormat m_format;
76 };
77
MipmapSparseResidencyCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)78 MipmapSparseResidencyCase::MipmapSparseResidencyCase (tcu::TestContext& testCtx,
79 const std::string& name,
80 const ImageType imageType,
81 const tcu::UVec3& imageSize,
82 const VkFormat format,
83 const bool useDeviceGroups)
84 : TestCase (testCtx, name)
85 , m_useDeviceGroups (useDeviceGroups)
86 , m_imageType (imageType)
87 , m_imageSize (imageSize)
88 , m_format (format)
89 {
90 }
91
checkSupport(Context & context) const92 void MipmapSparseResidencyCase::checkSupport (Context& context) const
93 {
94 const InstanceInterface& instance = context.getInstanceInterface();
95 const VkPhysicalDevice physicalDevice = context.getPhysicalDevice();
96
97 // Check if image size does not exceed device limits
98 if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
99 TCU_THROW(NotSupportedError, "Image size not supported for device");
100
101 // Check if device supports sparse operations for image type
102 if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
103 TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
104
105 if (formatIsR64(m_format))
106 {
107 context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
108
109 if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
110 {
111 TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
112 }
113 }
114 }
115
116 class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance
117 {
118 public:
119 MipmapSparseResidencyInstance (Context& context,
120 const ImageType imageType,
121 const tcu::UVec3& imageSize,
122 const VkFormat format,
123 const bool useDeviceGroups);
124
125
126 tcu::TestStatus iterate (void);
127
128 private:
129 const bool m_useDeviceGroups;
130 const ImageType m_imageType;
131 const tcu::UVec3 m_imageSize;
132 const VkFormat m_format;
133 };
134
MipmapSparseResidencyInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)135 MipmapSparseResidencyInstance::MipmapSparseResidencyInstance (Context& context,
136 const ImageType imageType,
137 const tcu::UVec3& imageSize,
138 const VkFormat format,
139 const bool useDeviceGroups)
140 : SparseResourcesBaseInstance (context, useDeviceGroups)
141 , m_useDeviceGroups (useDeviceGroups)
142 , m_imageType (imageType)
143 , m_imageSize (imageSize)
144 , m_format (format)
145 {
146 }
147
iterate(void)148 tcu::TestStatus MipmapSparseResidencyInstance::iterate (void)
149 {
150 const InstanceInterface& instance = m_context.getInstanceInterface();
151 {
152 // Create logical device supporting both sparse and compute operations
153 QueueRequirementsVec queueRequirements;
154 queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
155 queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
156
157 createDeviceSupportingQueues(queueRequirements);
158 }
159
160 const VkPhysicalDevice physicalDevice = getPhysicalDevice();
161 VkImageCreateInfo imageSparseInfo;
162 std::vector<DeviceMemorySp> deviceMemUniquePtrVec;
163
164 const DeviceInterface& deviceInterface = getDeviceInterface();
165 const Queue& sparseQueue = getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
166 const Queue& computeQueue = getQueue(VK_QUEUE_COMPUTE_BIT, 0);
167 const PlanarFormatDescription formatDescription = getPlanarFormatDescription(m_format);
168
169 // Go through all physical devices
170 for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
171 {
172 const deUint32 firstDeviceID = physDevID;
173 const deUint32 secondDeviceID = (firstDeviceID + 1) % m_numPhysicalDevices;
174
175 imageSparseInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
176 imageSparseInfo.pNext = DE_NULL;
177 imageSparseInfo.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
178 imageSparseInfo.imageType = mapImageType(m_imageType);
179 imageSparseInfo.format = m_format;
180 imageSparseInfo.extent = makeExtent3D(getLayerSize(m_imageType, m_imageSize));
181 imageSparseInfo.arrayLayers = getNumLayers(m_imageType, m_imageSize);
182 imageSparseInfo.samples = VK_SAMPLE_COUNT_1_BIT;
183 imageSparseInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
184 imageSparseInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
185 imageSparseInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT |
186 VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
187 imageSparseInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
188 imageSparseInfo.queueFamilyIndexCount = 0u;
189 imageSparseInfo.pQueueFamilyIndices = DE_NULL;
190
191 if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
192 {
193 imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
194 }
195
196 // Check if device supports sparse operations for image format
197 if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
198 TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
199
200 {
201 VkImageFormatProperties imageFormatProperties;
202 if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
203 imageSparseInfo.format,
204 imageSparseInfo.imageType,
205 imageSparseInfo.tiling,
206 imageSparseInfo.usage,
207 imageSparseInfo.flags,
208 &imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
209 {
210 TCU_THROW(NotSupportedError, "Image format does not support sparse operations");
211 }
212
213 imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
214 }
215
216 // Create sparse image
217 const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
218
219 // Create sparse image memory bind semaphore
220 const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
221
222 std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements;
223
224 {
225 // Get sparse image general memory requirements
226 const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
227
228 // Check if required image memory size does not exceed device limits
229 if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
230 TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
231
232 DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
233
234 const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
235
236 if (memoryType == NO_MATCH_FOUND)
237 return tcu::TestStatus::fail("No matching memory type found");
238
239 if (firstDeviceID != secondDeviceID)
240 {
241 VkPeerMemoryFeatureFlags peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
242 const deUint32 heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
243 deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
244
245 if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
246 ((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
247 {
248 TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
249 }
250 }
251
252 // Get sparse image sparse memory requirements
253 sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
254 DE_ASSERT(sparseMemoryRequirements.size() != 0);
255
256 const deUint32 metadataAspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT);
257
258 std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds;
259 std::vector<VkSparseMemoryBind> imageMipTailMemoryBinds;
260
261 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
262 {
263 const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
264 const deUint32 aspectIndex = getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
265
266 if (aspectIndex == NO_MATCH_FOUND)
267 TCU_THROW(NotSupportedError, "Not supported image aspect");
268
269 VkSparseImageMemoryRequirements aspectRequirements = sparseMemoryRequirements[aspectIndex];
270
271 DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
272
273 VkExtent3D imageGranularity = aspectRequirements.formatProperties.imageGranularity;
274
275 // Bind memory for each layer
276 for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
277 {
278 for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
279 {
280 const VkExtent3D mipExtent = getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx);
281 const tcu::UVec3 sparseBlocks = alignedDivide(mipExtent, imageGranularity);
282 const deUint32 numSparseBlocks = sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
283 const VkImageSubresource subresource = { aspect, mipLevelNdx, layerNdx };
284
285 const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
286 imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
287
288 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
289
290 imageResidencyMemoryBinds.push_back(imageMemoryBind);
291 }
292
293 if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
294 {
295 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
296 aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
297
298 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
299
300 imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
301 }
302
303 // Metadata
304 if (metadataAspectIndex != NO_MATCH_FOUND)
305 {
306 const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
307
308 if (!(metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT))
309 {
310 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
311 metadataAspectRequirements.imageMipTailSize, memoryType,
312 metadataAspectRequirements.imageMipTailOffset + layerNdx * metadataAspectRequirements.imageMipTailStride,
313 VK_SPARSE_MEMORY_BIND_METADATA_BIT);
314
315 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
316
317 imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
318 }
319 }
320 }
321
322 if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
323 {
324 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
325 aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
326
327 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
328
329 imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
330 }
331 }
332
333 // Metadata
334 if (metadataAspectIndex != NO_MATCH_FOUND)
335 {
336 const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
337
338 if (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
339 {
340 const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
341 metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset,
342 VK_SPARSE_MEMORY_BIND_METADATA_BIT);
343
344 deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
345
346 imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
347 }
348 }
349
350 const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
351 {
352 VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO, //VkStructureType sType;
353 DE_NULL, //const void* pNext;
354 firstDeviceID, //deUint32 resourceDeviceIndex;
355 secondDeviceID, //deUint32 memoryDeviceIndex;
356 };
357
358 VkBindSparseInfo bindSparseInfo =
359 {
360 VK_STRUCTURE_TYPE_BIND_SPARSE_INFO, //VkStructureType sType;
361 m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL, //const void* pNext;
362 0u, //deUint32 waitSemaphoreCount;
363 DE_NULL, //const VkSemaphore* pWaitSemaphores;
364 0u, //deUint32 bufferBindCount;
365 DE_NULL, //const VkSparseBufferMemoryBindInfo* pBufferBinds;
366 0u, //deUint32 imageOpaqueBindCount;
367 DE_NULL, //const VkSparseImageOpaqueMemoryBindInfo* pImageOpaqueBinds;
368 0u, //deUint32 imageBindCount;
369 DE_NULL, //const VkSparseImageMemoryBindInfo* pImageBinds;
370 1u, //deUint32 signalSemaphoreCount;
371 &imageMemoryBindSemaphore.get() //const VkSemaphore* pSignalSemaphores;
372 };
373
374 VkSparseImageMemoryBindInfo imageResidencyBindInfo;
375 VkSparseImageOpaqueMemoryBindInfo imageMipTailBindInfo;
376
377 if (imageResidencyMemoryBinds.size() > 0)
378 {
379 imageResidencyBindInfo.image = *imageSparse;
380 imageResidencyBindInfo.bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
381 imageResidencyBindInfo.pBinds = imageResidencyMemoryBinds.data();
382
383 bindSparseInfo.imageBindCount = 1u;
384 bindSparseInfo.pImageBinds = &imageResidencyBindInfo;
385 }
386
387 if (imageMipTailMemoryBinds.size() > 0)
388 {
389 imageMipTailBindInfo.image = *imageSparse;
390 imageMipTailBindInfo.bindCount = static_cast<deUint32>(imageMipTailMemoryBinds.size());
391 imageMipTailBindInfo.pBinds = imageMipTailMemoryBinds.data();
392
393 bindSparseInfo.imageOpaqueBindCount = 1u;
394 bindSparseInfo.pImageOpaqueBinds = &imageMipTailBindInfo;
395 }
396
397 // Submit sparse bind commands for execution
398 VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
399 }
400
401 deUint32 imageSizeInBytes = 0;
402
403 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
404 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
405 imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
406
407 std::vector <VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes*imageSparseInfo.mipLevels);
408 {
409 deUint32 bufferOffset = 0;
410
411 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
412 {
413 const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
414
415 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
416 {
417 bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
418 {
419 bufferOffset, // VkDeviceSize bufferOffset;
420 0u, // deUint32 bufferRowLength;
421 0u, // deUint32 bufferImageHeight;
422 makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers), // VkImageSubresourceLayers imageSubresource;
423 makeOffset3D(0, 0, 0), // VkOffset3D imageOffset;
424 vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx) // VkExtent3D imageExtent;
425 };
426 bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
427 }
428 }
429 }
430
431 // Create command buffer for compute and transfer operations
432 const Unique<VkCommandPool> commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
433 const Unique<VkCommandBuffer> commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
434
435 // Start recording commands
436 beginCommandBuffer(deviceInterface, *commandBuffer);
437
438 const VkBufferCreateInfo inputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
439 const Unique<VkBuffer> inputBuffer (createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
440 const de::UniquePtr<Allocation> inputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
441
442 std::vector<deUint8> referenceData(imageSizeInBytes);
443
444 const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
445
446 for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
447 {
448 referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
449 }
450
451 {
452 deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
453 flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
454
455 const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
456 (
457 VK_ACCESS_HOST_WRITE_BIT,
458 VK_ACCESS_TRANSFER_READ_BIT,
459 *inputBuffer,
460 0u,
461 imageSizeInBytes
462 );
463
464 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
465 }
466
467 {
468 std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
469
470 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
471 {
472 const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
473
474 imageSparseTransferDstBarriers.emplace_back ( makeImageMemoryBarrier
475 (
476 0u,
477 VK_ACCESS_TRANSFER_WRITE_BIT,
478 VK_IMAGE_LAYOUT_UNDEFINED,
479 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
480 *imageSparse,
481 makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
482 sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
483 sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
484 ));
485 }
486 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
487 }
488
489 deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
490
491 {
492 std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
493
494 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
495 {
496 const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
497
498 imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier
499 (
500 VK_ACCESS_TRANSFER_WRITE_BIT,
501 VK_ACCESS_TRANSFER_READ_BIT,
502 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
503 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
504 *imageSparse,
505 makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
506 ));
507 }
508
509 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
510 }
511
512 const VkBufferCreateInfo outputBufferCreateInfo = makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
513 const Unique<VkBuffer> outputBuffer (createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
514 const de::UniquePtr<Allocation> outputBufferAlloc (bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
515
516 deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
517
518 {
519 const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
520 (
521 VK_ACCESS_TRANSFER_WRITE_BIT,
522 VK_ACCESS_HOST_READ_BIT,
523 *outputBuffer,
524 0u,
525 imageSizeInBytes
526 );
527
528 deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
529 }
530
531 // End recording commands
532 endCommandBuffer(deviceInterface, *commandBuffer);
533
534 const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
535
536 // Submit commands for execution and wait for completion
537 submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
538 0, DE_NULL, m_useDeviceGroups, firstDeviceID);
539
540 // Retrieve data from buffer to host memory
541 invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
542
543 const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
544
545 // Wait for sparse queue to become idle
546 deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
547
548 for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
549 {
550 for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
551 {
552 const deUint32 mipLevelSizeInBytes = getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
553 const deUint32 bufferOffset = static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
554
555 if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
556 return tcu::TestStatus::fail("Failed");
557 }
558 }
559 }
560 return tcu::TestStatus::pass("Passed");
561 }
562
createInstance(Context & context) const563 TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const
564 {
565 return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
566 }
567
568 } // anonymous ns
569
createMipmapSparseResidencyTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)570 tcu::TestCaseGroup* createMipmapSparseResidencyTestsCommon (tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
571 {
572 const std::vector<TestImageParameters> imageParameters
573 {
574 { IMAGE_TYPE_2D, { tcu::UVec3(512u, 256u, 1u), tcu::UVec3(1024u, 128u, 1u), tcu::UVec3(11u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_2D) },
575 { IMAGE_TYPE_2D_ARRAY, { tcu::UVec3(512u, 256u, 6u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_2D_ARRAY) },
576 { IMAGE_TYPE_CUBE, { tcu::UVec3(256u, 256u, 1u), tcu::UVec3(128u, 128u, 1u), tcu::UVec3(137u, 137u, 1u) }, getTestFormats(IMAGE_TYPE_CUBE) },
577 { IMAGE_TYPE_CUBE_ARRAY, { tcu::UVec3(256u, 256u, 6u), tcu::UVec3(128u, 128u, 8u), tcu::UVec3(137u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_CUBE_ARRAY) },
578 { IMAGE_TYPE_3D, { tcu::UVec3(256u, 256u, 16u), tcu::UVec3(1024u, 128u, 8u), tcu::UVec3(11u, 137u, 3u) }, getTestFormats(IMAGE_TYPE_3D) }
579 };
580
581 for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
582 {
583 const ImageType imageType = imageParameters[imageTypeNdx].imageType;
584 de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
585
586 for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
587 {
588 VkFormat format = imageParameters[imageTypeNdx].formats[formatNdx].format;
589 tcu::UVec3 imageSizeAlignment = getImageSizeAlignment(format);
590 de::MovePtr<tcu::TestCaseGroup> formatGroup (new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
591
592 for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
593 {
594 const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
595
596 // skip test for images with odd sizes for some YCbCr formats
597 if ((imageSize.x() % imageSizeAlignment.x()) != 0)
598 continue;
599 if ((imageSize.y() % imageSizeAlignment.y()) != 0)
600 continue;
601
602 std::ostringstream stream;
603 stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
604
605 formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), imageType, imageSize, format, useDeviceGroup));
606 }
607 imageTypeGroup->addChild(formatGroup.release());
608 }
609 testGroup->addChild(imageTypeGroup.release());
610 }
611
612 return testGroup.release();
613 }
614
createMipmapSparseResidencyTests(tcu::TestContext & testCtx)615 tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx)
616 {
617 de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency"));
618 return createMipmapSparseResidencyTestsCommon(testCtx, testGroup);
619 }
620
createDeviceGroupMipmapSparseResidencyTests(tcu::TestContext & testCtx)621 tcu::TestCaseGroup* createDeviceGroupMipmapSparseResidencyTests (tcu::TestContext& testCtx)
622 {
623 de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_mipmap_sparse_residency"));
624 return createMipmapSparseResidencyTestsCommon(testCtx, testGroup, true);
625 }
626
627 } // sparse
628 } // vkt
629