• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesMipmapSparseResidency.cpp
21  * \brief Sparse partially resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesMipmapSparseResidency.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 class MipmapSparseResidencyCase : public TestCase
59 {
60 public:
61 	MipmapSparseResidencyCase		(tcu::TestContext&	testCtx,
62 									 const std::string&	name,
63 									 const ImageType	imageType,
64 									 const tcu::UVec3&	imageSize,
65 									 const VkFormat		format,
66 									 const bool			useDeviceGroups);
67 
68 	TestInstance*	createInstance				(Context&					context) const;
69 	virtual void	checkSupport				(Context&					context) const;
70 
71 private:
72 	const bool			m_useDeviceGroups;
73 	const ImageType		m_imageType;
74 	const tcu::UVec3	m_imageSize;
75 	const VkFormat		m_format;
76 };
77 
MipmapSparseResidencyCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)78 MipmapSparseResidencyCase::MipmapSparseResidencyCase	(tcu::TestContext&	testCtx,
79 														 const std::string&	name,
80 														 const ImageType	imageType,
81 														 const tcu::UVec3&	imageSize,
82 														 const VkFormat		format,
83 														 const bool			useDeviceGroups)
84 	: TestCase			(testCtx, name)
85 	, m_useDeviceGroups	(useDeviceGroups)
86 	, m_imageType		(imageType)
87 	, m_imageSize		(imageSize)
88 	, m_format			(format)
89 {
90 }
91 
checkSupport(Context & context) const92 void MipmapSparseResidencyCase::checkSupport (Context& context) const
93 {
94 	const InstanceInterface&	instance		= context.getInstanceInterface();
95 	const VkPhysicalDevice		physicalDevice	= context.getPhysicalDevice();
96 
97 	// Check if image size does not exceed device limits
98 	if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
99 		TCU_THROW(NotSupportedError, "Image size not supported for device");
100 
101 	// Check if device supports sparse operations for image type
102 	if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
103 		TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
104 
105 	if (formatIsR64(m_format))
106 	 {
107 		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
108 
109 		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
110 		{
111 			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
112 		}
113 	}
114 }
115 
116 class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance
117 {
118 public:
119 	MipmapSparseResidencyInstance	(Context&			context,
120 									 const ImageType	imageType,
121 									 const tcu::UVec3&	imageSize,
122 									 const VkFormat		format,
123 									 const bool			useDeviceGroups);
124 
125 
126 	tcu::TestStatus	iterate			(void);
127 
128 private:
129 	const bool			m_useDeviceGroups;
130 	const ImageType		m_imageType;
131 	const tcu::UVec3	m_imageSize;
132 	const VkFormat		m_format;
133 };
134 
MipmapSparseResidencyInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)135 MipmapSparseResidencyInstance::MipmapSparseResidencyInstance	(Context&			context,
136 																 const ImageType	imageType,
137 																 const tcu::UVec3&	imageSize,
138 																 const VkFormat		format,
139 																 const bool			useDeviceGroups)
140 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
141 	, m_useDeviceGroups				(useDeviceGroups)
142 	, m_imageType					(imageType)
143 	, m_imageSize					(imageSize)
144 	, m_format						(format)
145 {
146 }
147 
iterate(void)148 tcu::TestStatus MipmapSparseResidencyInstance::iterate (void)
149 {
150 	const InstanceInterface&	instance		= m_context.getInstanceInterface();
151 	{
152 		// Create logical device supporting both sparse and compute operations
153 		QueueRequirementsVec queueRequirements;
154 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
155 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
156 
157 		createDeviceSupportingQueues(queueRequirements);
158 	}
159 
160 	const VkPhysicalDevice		physicalDevice	= getPhysicalDevice();
161 	VkImageCreateInfo			imageSparseInfo;
162 	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
163 
164 	const DeviceInterface&			deviceInterface		= getDeviceInterface();
165 	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
166 	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
167 	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
168 
169 	// Go through all physical devices
170 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
171 	{
172 		const deUint32	firstDeviceID			= physDevID;
173 		const deUint32	secondDeviceID			= (firstDeviceID + 1) % m_numPhysicalDevices;
174 
175 		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
176 		imageSparseInfo.pNext					= DE_NULL;
177 		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
178 		imageSparseInfo.imageType				= mapImageType(m_imageType);
179 		imageSparseInfo.format					= m_format;
180 		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
181 		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);
182 		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;
183 		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;
184 		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
185 		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_DST_BIT |
186 												  VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
187 		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
188 		imageSparseInfo.queueFamilyIndexCount	= 0u;
189 		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;
190 
191 		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
192 		{
193 			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
194 		}
195 
196 		// Check if device supports sparse operations for image format
197 		if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
198 			TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
199 
200 		{
201 			VkImageFormatProperties imageFormatProperties;
202 			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
203 				imageSparseInfo.format,
204 				imageSparseInfo.imageType,
205 				imageSparseInfo.tiling,
206 				imageSparseInfo.usage,
207 				imageSparseInfo.flags,
208 				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
209 			{
210 				TCU_THROW(NotSupportedError, "Image format does not support sparse operations");
211 			}
212 
213 			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
214 		}
215 
216 		// Create sparse image
217 		const Unique<VkImage>							imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
218 
219 		// Create sparse image memory bind semaphore
220 		const Unique<VkSemaphore>						imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
221 
222 		std::vector<VkSparseImageMemoryRequirements>	sparseMemoryRequirements;
223 
224 		{
225 			// Get sparse image general memory requirements
226 			const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
227 
228 			// Check if required image memory size does not exceed device limits
229 			if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
230 				TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
231 
232 			DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
233 
234 			const deUint32							memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
235 
236 			if (memoryType == NO_MATCH_FOUND)
237 				return tcu::TestStatus::fail("No matching memory type found");
238 
239 			if (firstDeviceID != secondDeviceID)
240 			{
241 				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
242 				const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
243 				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
244 
245 				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
246 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
247 				{
248 					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
249 				}
250 			}
251 
252 			// Get sparse image sparse memory requirements
253 			sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
254 			DE_ASSERT(sparseMemoryRequirements.size() != 0);
255 
256 			const deUint32 metadataAspectIndex	= getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT);
257 
258 			std::vector<VkSparseImageMemoryBind>	imageResidencyMemoryBinds;
259 			std::vector<VkSparseMemoryBind>			imageMipTailMemoryBinds;
260 
261 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
262 			{
263 				const VkImageAspectFlags		aspect				= (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
264 				const deUint32					aspectIndex			= getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
265 
266 				if (aspectIndex == NO_MATCH_FOUND)
267 					TCU_THROW(NotSupportedError, "Not supported image aspect");
268 
269 				VkSparseImageMemoryRequirements	aspectRequirements	= sparseMemoryRequirements[aspectIndex];
270 
271 				DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
272 
273 				VkExtent3D						imageGranularity	= aspectRequirements.formatProperties.imageGranularity;
274 
275 				// Bind memory for each layer
276 				for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
277 				{
278 					for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
279 					{
280 						const VkExtent3D			mipExtent			= getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx);
281 						const tcu::UVec3			sparseBlocks		= alignedDivide(mipExtent, imageGranularity);
282 						const deUint32				numSparseBlocks		= sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
283 						const VkImageSubresource	subresource			= { aspect, mipLevelNdx, layerNdx };
284 
285 						const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
286 							imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
287 
288 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
289 
290 						imageResidencyMemoryBinds.push_back(imageMemoryBind);
291 					}
292 
293 					if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
294 					{
295 						const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
296 							aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
297 
298 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
299 
300 						imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
301 					}
302 
303 					// Metadata
304 					if (metadataAspectIndex != NO_MATCH_FOUND)
305 					{
306 						const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
307 
308 						if (!(metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT))
309 						{
310 							const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
311 								metadataAspectRequirements.imageMipTailSize, memoryType,
312 								metadataAspectRequirements.imageMipTailOffset + layerNdx * metadataAspectRequirements.imageMipTailStride,
313 								VK_SPARSE_MEMORY_BIND_METADATA_BIT);
314 
315 							deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
316 
317 							imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
318 						}
319 					}
320 				}
321 
322 				if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
323 				{
324 					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
325 						aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
326 
327 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
328 
329 					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
330 				}
331 			}
332 
333 			// Metadata
334 			if (metadataAspectIndex != NO_MATCH_FOUND)
335 			{
336 				const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
337 
338 				if (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
339 				{
340 					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
341 						metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset,
342 						VK_SPARSE_MEMORY_BIND_METADATA_BIT);
343 
344 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
345 
346 					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
347 				}
348 			}
349 
350 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
351 			{
352 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
353 				DE_NULL,												//const void*								pNext;
354 				firstDeviceID,											//deUint32									resourceDeviceIndex;
355 				secondDeviceID,											//deUint32									memoryDeviceIndex;
356 			};
357 
358 			VkBindSparseInfo bindSparseInfo =
359 			{
360 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
361 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
362 				0u,														//deUint32									waitSemaphoreCount;
363 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
364 				0u,														//deUint32									bufferBindCount;
365 				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
366 				0u,														//deUint32									imageOpaqueBindCount;
367 				DE_NULL,												//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
368 				0u,														//deUint32									imageBindCount;
369 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
370 				1u,														//deUint32									signalSemaphoreCount;
371 				&imageMemoryBindSemaphore.get()							//const VkSemaphore*						pSignalSemaphores;
372 			};
373 
374 			VkSparseImageMemoryBindInfo			imageResidencyBindInfo;
375 			VkSparseImageOpaqueMemoryBindInfo	imageMipTailBindInfo;
376 
377 			if (imageResidencyMemoryBinds.size() > 0)
378 			{
379 				imageResidencyBindInfo.image		= *imageSparse;
380 				imageResidencyBindInfo.bindCount	= static_cast<deUint32>(imageResidencyMemoryBinds.size());
381 				imageResidencyBindInfo.pBinds		= imageResidencyMemoryBinds.data();
382 
383 				bindSparseInfo.imageBindCount		= 1u;
384 				bindSparseInfo.pImageBinds			= &imageResidencyBindInfo;
385 			}
386 
387 			if (imageMipTailMemoryBinds.size() > 0)
388 			{
389 				imageMipTailBindInfo.image			= *imageSparse;
390 				imageMipTailBindInfo.bindCount		= static_cast<deUint32>(imageMipTailMemoryBinds.size());
391 				imageMipTailBindInfo.pBinds			= imageMipTailMemoryBinds.data();
392 
393 				bindSparseInfo.imageOpaqueBindCount	= 1u;
394 				bindSparseInfo.pImageOpaqueBinds	= &imageMipTailBindInfo;
395 			}
396 
397 			// Submit sparse bind commands for execution
398 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
399 		}
400 
401 		deUint32 imageSizeInBytes = 0;
402 
403 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
404 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
405 				imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
406 
407 		std::vector <VkBufferImageCopy>	bufferImageCopy(formatDescription.numPlanes*imageSparseInfo.mipLevels);
408 		{
409 			deUint32 bufferOffset = 0;
410 
411 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
412 			{
413 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
414 
415 				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
416 				{
417 					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
418 					{
419 						bufferOffset,																		//	VkDeviceSize				bufferOffset;
420 						0u,																					//	deUint32					bufferRowLength;
421 						0u,																					//	deUint32					bufferImageHeight;
422 						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
423 						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
424 						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
425 					};
426 					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
427 				}
428 			}
429 		}
430 
431 		// Create command buffer for compute and transfer operations
432 		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
433 		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
434 
435 		// Start recording commands
436 		beginCommandBuffer(deviceInterface, *commandBuffer);
437 
438 		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
439 		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
440 		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
441 
442 		std::vector<deUint8> referenceData(imageSizeInBytes);
443 
444 		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
445 
446 		for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
447 		{
448 			referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
449 		}
450 
451 		{
452 			deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
453 			flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
454 
455 			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
456 			(
457 				VK_ACCESS_HOST_WRITE_BIT,
458 				VK_ACCESS_TRANSFER_READ_BIT,
459 				*inputBuffer,
460 				0u,
461 				imageSizeInBytes
462 			);
463 
464 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
465 		}
466 
467 		{
468 			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
469 
470 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
471 			{
472 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
473 
474 				imageSparseTransferDstBarriers.emplace_back ( makeImageMemoryBarrier
475 				(
476 					0u,
477 					VK_ACCESS_TRANSFER_WRITE_BIT,
478 					VK_IMAGE_LAYOUT_UNDEFINED,
479 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
480 					*imageSparse,
481 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
482 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
483 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
484 				));
485 			}
486 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
487 		}
488 
489 		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
490 
491 		{
492 			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
493 
494 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
495 			{
496 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
497 
498 				imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier
499 				(
500 					VK_ACCESS_TRANSFER_WRITE_BIT,
501 					VK_ACCESS_TRANSFER_READ_BIT,
502 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
503 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
504 					*imageSparse,
505 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
506 				));
507 			}
508 
509 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
510 		}
511 
512 		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
513 		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
514 		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
515 
516 		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
517 
518 		{
519 			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
520 			(
521 				VK_ACCESS_TRANSFER_WRITE_BIT,
522 				VK_ACCESS_HOST_READ_BIT,
523 				*outputBuffer,
524 				0u,
525 				imageSizeInBytes
526 			);
527 
528 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
529 		}
530 
531 		// End recording commands
532 		endCommandBuffer(deviceInterface, *commandBuffer);
533 
534 		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
535 
536 		// Submit commands for execution and wait for completion
537 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
538 			0, DE_NULL, m_useDeviceGroups, firstDeviceID);
539 
540 		// Retrieve data from buffer to host memory
541 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
542 
543 		const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
544 
545 		// Wait for sparse queue to become idle
546 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
547 
548 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
549 		{
550 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
551 			{
552 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
553 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
554 
555 				if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
556 					return tcu::TestStatus::fail("Failed");
557 			}
558 		}
559 	}
560 	return tcu::TestStatus::pass("Passed");
561 }
562 
createInstance(Context & context) const563 TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const
564 {
565 	return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
566 }
567 
568 } // anonymous ns
569 
createMipmapSparseResidencyTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)570 tcu::TestCaseGroup* createMipmapSparseResidencyTestsCommon (tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
571 {
572 	const std::vector<TestImageParameters> imageParameters
573 	{
574 		{ IMAGE_TYPE_2D,			{ tcu::UVec3(512u, 256u, 1u),	tcu::UVec3(1024u, 128u, 1u),	tcu::UVec3(11u,  137u, 1u) },	getTestFormats(IMAGE_TYPE_2D) },
575 		{ IMAGE_TYPE_2D_ARRAY,		{ tcu::UVec3(512u, 256u, 6u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_2D_ARRAY) },
576 		{ IMAGE_TYPE_CUBE,			{ tcu::UVec3(256u, 256u, 1u),	tcu::UVec3(128u,  128u, 1u),	tcu::UVec3(137u, 137u, 1u) },	getTestFormats(IMAGE_TYPE_CUBE) },
577 		{ IMAGE_TYPE_CUBE_ARRAY,	{ tcu::UVec3(256u, 256u, 6u),	tcu::UVec3(128u,  128u, 8u),	tcu::UVec3(137u, 137u, 3u) },	getTestFormats(IMAGE_TYPE_CUBE_ARRAY) },
578 		{ IMAGE_TYPE_3D,			{ tcu::UVec3(256u, 256u, 16u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_3D) }
579 	};
580 
581 	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
582 	{
583 		const ImageType					imageType = imageParameters[imageTypeNdx].imageType;
584 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
585 
586 		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
587 		{
588 			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
589 			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
590 			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
591 
592 			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
593 			{
594 				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
595 
596 				// skip test for images with odd sizes for some YCbCr formats
597 				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
598 					continue;
599 				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
600 					continue;
601 
602 				std::ostringstream stream;
603 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
604 
605 				formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), imageType, imageSize, format, useDeviceGroup));
606 			}
607 			imageTypeGroup->addChild(formatGroup.release());
608 		}
609 		testGroup->addChild(imageTypeGroup.release());
610 	}
611 
612 	return testGroup.release();
613 }
614 
createMipmapSparseResidencyTests(tcu::TestContext & testCtx)615 tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx)
616 {
617 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency"));
618 	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup);
619 }
620 
createDeviceGroupMipmapSparseResidencyTests(tcu::TestContext & testCtx)621 tcu::TestCaseGroup* createDeviceGroupMipmapSparseResidencyTests (tcu::TestContext& testCtx)
622 {
623 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_mipmap_sparse_residency"));
624 	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup, true);
625 }
626 
627 } // sparse
628 } // vkt
629