• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2011-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief Functions for converting between symbolic and physical encodings.
20  */
21 
22 #include "astcenc_internal.h"
23 
24 #include <cassert>
25 
26 /**
27  * @brief Reverse bits in a byte.
28  *
29  * @param p   The value to reverse.
30   *
31  * @return The reversed result.
32  */
bitrev8(int p)33 static inline int bitrev8(int p)
34 {
35 	p = ((p & 0x0F) << 4) | ((p >> 4) & 0x0F);
36 	p = ((p & 0x33) << 2) | ((p >> 2) & 0x33);
37 	p = ((p & 0x55) << 1) | ((p >> 1) & 0x55);
38 	return p;
39 }
40 
41 
42 /**
43  * @brief Read up to 8 bits at an arbitrary bit offset.
44  *
45  * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so may
46  * span two separate bytes in memory.
47  *
48  * @param         bitcount    The number of bits to read.
49  * @param         bitoffset   The bit offset to read from, between 0 and 7.
50  * @param[in,out] ptr         The data pointer to read from.
51  *
52  * @return The read value.
53  */
read_bits(int bitcount,int bitoffset,const uint8_t * ptr)54 static inline int read_bits(
55 	int bitcount,
56 	int bitoffset,
57 	const uint8_t* ptr
58 ) {
59 	int mask = (1 << bitcount) - 1;
60 	ptr += bitoffset >> 3;
61 	bitoffset &= 7;
62 	int value = ptr[0] | (ptr[1] << 8);
63 	value >>= bitoffset;
64 	value &= mask;
65 	return value;
66 }
67 
68 #if !defined(ASTCENC_DECOMPRESS_ONLY)
69 
70 /**
71  * @brief Write up to 8 bits at an arbitrary bit offset.
72  *
73  * The stored value is at most 8 bits, but can be stored at an offset of between 0 and 7 bits so
74  * may span two separate bytes in memory.
75  *
76  * @param         value       The value to write.
77  * @param         bitcount    The number of bits to write, starting from LSB.
78  * @param         bitoffset   The bit offset to store at, between 0 and 7.
79  * @param[in,out] ptr         The data pointer to write to.
80  */
write_bits(int value,int bitcount,int bitoffset,uint8_t * ptr)81 static inline void write_bits(
82 	int value,
83 	int bitcount,
84 	int bitoffset,
85 	uint8_t* ptr
86 ) {
87 	int mask = (1 << bitcount) - 1;
88 	value &= mask;
89 	ptr += bitoffset >> 3;
90 	bitoffset &= 7;
91 	value <<= bitoffset;
92 	mask <<= bitoffset;
93 	mask = ~mask;
94 
95 	ptr[0] &= mask;
96 	ptr[0] |= value;
97 	ptr[1] &= mask >> 8;
98 	ptr[1] |= value >> 8;
99 }
100 
101 static const int HIGH_SPEED_PROFILE_COLOR_BYTES = 8;
102 static const int HIGH_SPEED_PROFILE_WEIGHT_BYTES = 16;
103 /* See header for documentation. */
symbolic_to_physical(const block_size_descriptor & bsd,const symbolic_compressed_block & scb,uint8_t pcb[16])104 void symbolic_to_physical(
105 	const block_size_descriptor& bsd,
106 	const symbolic_compressed_block& scb,
107 	uint8_t pcb[16]
108 ) {
109 	assert(scb.block_type != SYM_BTYPE_ERROR);
110 	// Constant color block using UNORM16 colors
111 	if (scb.block_type == SYM_BTYPE_CONST_U16 && scb.privateProfile != HIGH_SPEED_PROFILE)
112 	{
113 		// There is currently no attempt to coalesce larger void-extents
114 		static const uint8_t cbytes[8] { 0xFC, 0xFD, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
115 		for (unsigned int i = 0; i < 8; i++)
116 		{
117 			pcb[i] = cbytes[i];
118 		}
119 
120 		for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
121 		{
122 			pcb[2 * i + 8] = scb.constant_color[i] & 0xFF;
123 			pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
124 		}
125 
126 		return;
127 	}
128 
129 	// Constant color block using FP16 colors
130 	if (scb.block_type == SYM_BTYPE_CONST_F16 && scb.privateProfile != HIGH_SPEED_PROFILE)
131 	{
132 		// There is currently no attempt to coalesce larger void-extents
133 		static const uint8_t cbytes[8]  { 0xFC, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
134 		for (unsigned int i = 0; i < 8; i++)
135 		{
136 			pcb[i] = cbytes[i];
137 		}
138 
139 		for (unsigned int i = 0; i < BLOCK_MAX_COMPONENTS; i++)
140 		{
141 			pcb[2 * i + 8] = scb.constant_color[i] & 0xFF;
142 			pcb[2 * i + 9] = (scb.constant_color[i] >> 8) & 0xFF;
143 		}
144 
145 		return;
146 	}
147 
148 	unsigned int partition_count = scb.partition_count;
149 
150 	// Compress the weights.
151 	// They are encoded as an ordinary integer-sequence, then bit-reversed
152 	uint8_t weightbuf[16] { 0 };
153 
154 	const auto& bm = bsd.get_block_mode(scb.block_mode);
155 	const auto& di = bsd.get_decimation_info(bm.decimation_mode);
156 	int weight_count = di.weight_count;
157 	quant_method weight_quant_method = bm.get_weight_quant_mode();
158 	float weight_quant_levels = static_cast<float>(get_quant_level(weight_quant_method));
159 	int is_dual_plane = bm.is_dual_plane;
160 
161 	const auto& qat = quant_and_xfer_tables[weight_quant_method];
162 
163 	if (scb.privateProfile == HIGH_SPEED_PROFILE)
164 	{
165 		uint8_t weights[64];
166 		for (int i = 0; i < weight_count; i++)
167 		{
168 			float uqw = static_cast<float>(scb.weights[i]);
169 			float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
170 			int qwi = static_cast<int>(qw + 0.5f);
171 			weights[i] = qat.scramble_map[qwi];
172 		}
173 		encode_ise(QUANT_6, HIGH_SPEED_PROFILE_WEIGHT_BYTES, weights, weightbuf, 0);
174 		for (int i = 0; i < HIGH_SPEED_PROFILE_WEIGHT_BYTES; i++)
175 		{
176 			pcb[i] = static_cast<uint8_t>(bitrev8(weightbuf[HIGH_SPEED_PROFILE_WEIGHT_BYTES - 1 - i]));
177 		}
178 		pcb[0] = 0x43; // the first byte of every block stream is 0x43 for HIGH_SPEED_PROFILE
179 		pcb[1] = 0x80; // the second byte of every block stream is 0x80 for HIGH_SPEED_PROFILE
180 		pcb[2] = 0x01; // the third (2 idx) byte of every block stream is 0x01 for HIGH_SPEED_PROFILE
181 		uint8_t values_to_encode[HIGH_SPEED_PROFILE_COLOR_BYTES];
182 		for (int j = 0; j < HIGH_SPEED_PROFILE_COLOR_BYTES; j++)
183 		{
184 			values_to_encode[j] = scb.color_values[0][j];
185 		}
186 		encode_ise(scb.get_color_quant_mode(), HIGH_SPEED_PROFILE_COLOR_BYTES,
187 			values_to_encode, pcb, 17); // the color is starting from 17th bit for HIGH_SPEED_PROFILE
188 		return;
189 	}
190 
191 	int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
192 
193 	int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
194 
195 	uint8_t weights[64];
196 	if (is_dual_plane)
197 	{
198 		for (int i = 0; i < weight_count; i++)
199 		{
200 			float uqw = static_cast<float>(scb.weights[i]);
201 			float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
202 			int qwi = static_cast<int>(qw + 0.5f);
203 			weights[2 * i] = qat.scramble_map[qwi];
204 
205 			uqw = static_cast<float>(scb.weights[i + WEIGHTS_PLANE2_OFFSET]);
206 			qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
207 			qwi = static_cast<int>(qw + 0.5f);
208 			weights[2 * i + 1] = qat.scramble_map[qwi];
209 		}
210 	}
211 	else
212 	{
213 		for (int i = 0; i < weight_count; i++)
214 		{
215 			float uqw = static_cast<float>(scb.weights[i]);
216 			float qw = (uqw / 64.0f) * (weight_quant_levels - 1.0f);
217 			int qwi = static_cast<int>(qw + 0.5f);
218 			weights[i] = qat.scramble_map[qwi];
219 		}
220 	}
221 
222 	encode_ise(weight_quant_method, real_weight_count, weights, weightbuf, 0);
223 
224 	for (int i = 0; i < 16; i++)
225 	{
226 		pcb[i] = static_cast<uint8_t>(bitrev8(weightbuf[15 - i]));
227 	}
228 
229 	write_bits(scb.block_mode, 11, 0, pcb);
230 	write_bits(partition_count - 1, 2, 11, pcb);
231 
232 	int below_weights_pos = 128 - bits_for_weights;
233 
234 	// Encode partition index and color endpoint types for blocks with 2+ partitions
235 	if (partition_count > 1)
236 	{
237 		write_bits(scb.partition_index, 6, 13, pcb);
238 		write_bits(scb.partition_index >> 6, PARTITION_INDEX_BITS - 6, 19, pcb);
239 
240 		if (scb.color_formats_matched)
241 		{
242 			write_bits(scb.color_formats[0] << 2, 6, 13 + PARTITION_INDEX_BITS, pcb);
243 		}
244 		else
245 		{
246 			// Check endpoint types for each partition to determine the lowest class present
247 			int low_class = 4;
248 
249 			for (unsigned int i = 0; i < partition_count; i++)
250 			{
251 				int class_of_format = scb.color_formats[i] >> 2;
252 				low_class = astc::min(class_of_format, low_class);
253 			}
254 
255 			if (low_class == 3)
256 			{
257 				low_class = 2;
258 			}
259 
260 			int encoded_type = low_class + 1;
261 			int bitpos = 2;
262 
263 			for (unsigned int i = 0; i < partition_count; i++)
264 			{
265 				int classbit_of_format = (scb.color_formats[i] >> 2) - low_class;
266 				encoded_type |= classbit_of_format << bitpos;
267 				bitpos++;
268 			}
269 
270 			for (unsigned int i = 0; i < partition_count; i++)
271 			{
272 				int lowbits_of_format = scb.color_formats[i] & 3;
273 				encoded_type |= lowbits_of_format << bitpos;
274 				bitpos += 2;
275 			}
276 
277 			int encoded_type_lowpart = encoded_type & 0x3F;
278 			int encoded_type_highpart = encoded_type >> 6;
279 			int encoded_type_highpart_size = (3 * partition_count) - 4;
280 			int encoded_type_highpart_pos = 128 - bits_for_weights - encoded_type_highpart_size;
281 			write_bits(encoded_type_lowpart, 6, 13 + PARTITION_INDEX_BITS, pcb);
282 			write_bits(encoded_type_highpart, encoded_type_highpart_size, encoded_type_highpart_pos, pcb);
283 			below_weights_pos -= encoded_type_highpart_size;
284 		}
285 	}
286 	else
287 	{
288 		write_bits(scb.color_formats[0], 4, 13, pcb);
289 	}
290 
291 	// In dual-plane mode, encode the color component of the second plane of weights
292 	if (is_dual_plane)
293 	{
294 		write_bits(scb.plane2_component, 2, below_weights_pos - 2, pcb);
295 	}
296 
297 	// Encode the color components
298 	uint8_t values_to_encode[32];
299 	int valuecount_to_encode = 0;
300 
301 	const uint8_t* pack_table = color_uquant_to_scrambled_pquant_tables[scb.quant_mode - QUANT_6];
302 	for (unsigned int i = 0; i < scb.partition_count; i++)
303 	{
304 		int vals = 2 * (scb.color_formats[i] >> 2) + 2;
305 		assert(vals <= 8);
306 		for (int j = 0; j < vals; j++)
307 		{
308 			values_to_encode[j + valuecount_to_encode] = pack_table[scb.color_values[i][j]];
309 		}
310 		valuecount_to_encode += vals;
311 	}
312 
313 	encode_ise(scb.get_color_quant_mode(), valuecount_to_encode, values_to_encode, pcb,
314 	           scb.partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS);
315 }
316 
317 #endif
318 
319 /* See header for documentation. */
physical_to_symbolic(const block_size_descriptor & bsd,const uint8_t pcb[16],symbolic_compressed_block & scb)320 void physical_to_symbolic(
321 	const block_size_descriptor& bsd,
322 	const uint8_t pcb[16],
323 	symbolic_compressed_block& scb
324 ) {
325 	uint8_t bswapped[16];
326 
327 	scb.block_type = SYM_BTYPE_NONCONST;
328 
329 	// Extract header fields
330 	int block_mode = read_bits(11, 0, pcb);
331 	if ((block_mode & 0x1FF) == 0x1FC)
332 	{
333 		// Constant color block
334 
335 		// Check what format the data has
336 		if (block_mode & 0x200)
337 		{
338 			scb.block_type = SYM_BTYPE_CONST_F16;
339 		}
340 		else
341 		{
342 			scb.block_type = SYM_BTYPE_CONST_U16;
343 		}
344 
345 		scb.partition_count = 0;
346 		for (int i = 0; i < 4; i++)
347 		{
348 			scb.constant_color[i] = pcb[2 * i + 8] | (pcb[2 * i + 9] << 8);
349 		}
350 
351 		// Additionally, check that the void-extent
352 		if (bsd.zdim == 1)
353 		{
354 			// 2D void-extent
355 			int rsvbits = read_bits(2, 10, pcb);
356 			if (rsvbits != 3)
357 			{
358 				scb.block_type = SYM_BTYPE_ERROR;
359 				return;
360 			}
361 
362 			int vx_low_s = read_bits(8, 12, pcb) | (read_bits(5, 12 + 8, pcb) << 8);
363 			int vx_high_s = read_bits(8, 25, pcb) | (read_bits(5, 25 + 8, pcb) << 8);
364 			int vx_low_t = read_bits(8, 38, pcb) | (read_bits(5, 38 + 8, pcb) << 8);
365 			int vx_high_t = read_bits(8, 51, pcb) | (read_bits(5, 51 + 8, pcb) << 8);
366 
367 			int all_ones = vx_low_s == 0x1FFF && vx_high_s == 0x1FFF && vx_low_t == 0x1FFF && vx_high_t == 0x1FFF;
368 
369 			if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t) && !all_ones)
370 			{
371 				scb.block_type = SYM_BTYPE_ERROR;
372 				return;
373 			}
374 		}
375 		else
376 		{
377 			// 3D void-extent
378 			int vx_low_s = read_bits(9, 10, pcb);
379 			int vx_high_s = read_bits(9, 19, pcb);
380 			int vx_low_t = read_bits(9, 28, pcb);
381 			int vx_high_t = read_bits(9, 37, pcb);
382 			int vx_low_p = read_bits(9, 46, pcb);
383 			int vx_high_p = read_bits(9, 55, pcb);
384 
385 			int all_ones = vx_low_s == 0x1FF && vx_high_s == 0x1FF && vx_low_t == 0x1FF && vx_high_t == 0x1FF && vx_low_p == 0x1FF && vx_high_p == 0x1FF;
386 
387 			if ((vx_low_s >= vx_high_s || vx_low_t >= vx_high_t || vx_low_p >= vx_high_p) && !all_ones)
388 			{
389 				scb.block_type = SYM_BTYPE_ERROR;
390 				return;
391 			}
392 		}
393 
394 		return;
395 	}
396 
397 	unsigned int packed_index = bsd.block_mode_packed_index[block_mode];
398 	if (packed_index == BLOCK_BAD_BLOCK_MODE)
399 	{
400 		scb.block_type = SYM_BTYPE_ERROR;
401 		return;
402 	}
403 
404 	const auto& bm = bsd.get_block_mode(block_mode);
405 	const auto& di = bsd.get_decimation_info(bm.decimation_mode);
406 
407 	int weight_count = di.weight_count;
408 	promise(weight_count > 0);
409 
410 	quant_method weight_quant_method = static_cast<quant_method>(bm.quant_mode);
411 	int is_dual_plane = bm.is_dual_plane;
412 
413 	int real_weight_count = is_dual_plane ? 2 * weight_count : weight_count;
414 
415 	int partition_count = read_bits(2, 11, pcb) + 1;
416 	promise(partition_count > 0);
417 
418 	scb.block_mode = static_cast<uint16_t>(block_mode);
419 	scb.partition_count = static_cast<uint8_t>(partition_count);
420 
421 	for (int i = 0; i < 16; i++)
422 	{
423 		bswapped[i] = static_cast<uint8_t>(bitrev8(pcb[15 - i]));
424 	}
425 
426 	int bits_for_weights = get_ise_sequence_bitcount(real_weight_count, weight_quant_method);
427 
428 	int below_weights_pos = 128 - bits_for_weights;
429 
430 	uint8_t indices[64];
431 	const auto& qat = quant_and_xfer_tables[weight_quant_method];
432 
433 	decode_ise(weight_quant_method, real_weight_count, bswapped, indices, 0);
434 
435 	if (is_dual_plane)
436 	{
437 		for (int i = 0; i < weight_count; i++)
438 		{
439 			scb.weights[i] = qat.unscramble_and_unquant_map[indices[2 * i]];
440 			scb.weights[i + WEIGHTS_PLANE2_OFFSET] = qat.unscramble_and_unquant_map[indices[2 * i + 1]];
441 		}
442 	}
443 	else
444 	{
445 		for (int i = 0; i < weight_count; i++)
446 		{
447 			scb.weights[i] = qat.unscramble_and_unquant_map[indices[i]];
448 		}
449 	}
450 
451 	if (is_dual_plane && partition_count == 4)
452 	{
453 		scb.block_type = SYM_BTYPE_ERROR;
454 		return;
455 	}
456 
457 	scb.color_formats_matched = 0;
458 
459 	// Determine the format of each endpoint pair
460 	int color_formats[BLOCK_MAX_PARTITIONS];
461 	int encoded_type_highpart_size = 0;
462 	if (partition_count == 1)
463 	{
464 		color_formats[0] = read_bits(4, 13, pcb);
465 		scb.partition_index = 0;
466 	}
467 	else
468 	{
469 		encoded_type_highpart_size = (3 * partition_count) - 4;
470 		below_weights_pos -= encoded_type_highpart_size;
471 		int encoded_type = read_bits(6, 13 + PARTITION_INDEX_BITS, pcb) |
472 		                  (read_bits(encoded_type_highpart_size, below_weights_pos, pcb) << 6);
473 		int baseclass = encoded_type & 0x3;
474 		if (baseclass == 0)
475 		{
476 			for (int i = 0; i < partition_count; i++)
477 			{
478 				color_formats[i] = (encoded_type >> 2) & 0xF;
479 			}
480 
481 			below_weights_pos += encoded_type_highpart_size;
482 			scb.color_formats_matched = 1;
483 			encoded_type_highpart_size = 0;
484 		}
485 		else
486 		{
487 			int bitpos = 2;
488 			baseclass--;
489 
490 			for (int i = 0; i < partition_count; i++)
491 			{
492 				color_formats[i] = (((encoded_type >> bitpos) & 1) + baseclass) << 2;
493 				bitpos++;
494 			}
495 
496 			for (int i = 0; i < partition_count; i++)
497 			{
498 				color_formats[i] |= (encoded_type >> bitpos) & 3;
499 				bitpos += 2;
500 			}
501 		}
502 		scb.partition_index = static_cast<uint16_t>(read_bits(6, 13, pcb) |
503 		                                            (read_bits(PARTITION_INDEX_BITS - 6, 19, pcb) << 6));
504 	}
505 
506 	for (int i = 0; i < partition_count; i++)
507 	{
508 		scb.color_formats[i] = static_cast<uint8_t>(color_formats[i]);
509 	}
510 
511 	// Determine number of color endpoint integers
512 	int color_integer_count = 0;
513 	for (int i = 0; i < partition_count; i++)
514 	{
515 		int endpoint_class = color_formats[i] >> 2;
516 		color_integer_count += (endpoint_class + 1) * 2;
517 	}
518 
519 	if (color_integer_count > 18)
520 	{
521 		scb.block_type = SYM_BTYPE_ERROR;
522 		return;
523 	}
524 
525 	// Determine the color endpoint format to use
526 	static const int color_bits_arr[5] { -1, 115 - 4, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS, 113 - 4 - PARTITION_INDEX_BITS };
527 	int color_bits = color_bits_arr[partition_count] - bits_for_weights - encoded_type_highpart_size;
528 	if (is_dual_plane)
529 	{
530 		color_bits -= 2;
531 	}
532 
533 	if (color_bits < 0)
534 	{
535 		color_bits = 0;
536 	}
537 
538 	int color_quant_level = quant_mode_table[color_integer_count >> 1][color_bits];
539 	if (color_quant_level < QUANT_6)
540 	{
541 		scb.block_type = SYM_BTYPE_ERROR;
542 		return;
543 	}
544 
545 	// Unpack the integer color values and assign to endpoints
546 	scb.quant_mode = static_cast<quant_method>(color_quant_level);
547 
548 	uint8_t values_to_decode[32];
549 	decode_ise(static_cast<quant_method>(color_quant_level), color_integer_count, pcb,
550 	           values_to_decode, (partition_count == 1 ? 17 : 19 + PARTITION_INDEX_BITS));
551 
552 	int valuecount_to_decode = 0;
553 	const uint8_t* unpack_table = color_scrambled_pquant_to_uquant_tables[scb.quant_mode - QUANT_6];
554 	for (int i = 0; i < partition_count; i++)
555 	{
556 		int vals = 2 * (color_formats[i] >> 2) + 2;
557 		for (int j = 0; j < vals; j++)
558 		{
559 			scb.color_values[i][j] = unpack_table[values_to_decode[j + valuecount_to_decode]];
560 		}
561 		valuecount_to_decode += vals;
562 	}
563 
564 	// Fetch component for second-plane in the case of dual plane of weights.
565 	scb.plane2_component = -1;
566 	if (is_dual_plane)
567 	{
568 		scb.plane2_component = static_cast<int8_t>(read_bits(2, below_weights_pos - 2, pcb));
569 	}
570 }
571