1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief 4x32-bit vectors, implemented using Armv8-A NEON.
20 *
21 * This module implements 4-wide 32-bit float, int, and mask vectors for
22 * Armv8-A NEON.
23 *
24 * There is a baseline level of functionality provided by all vector widths and
25 * implementations. This is implemented using identical function signatures,
26 * modulo data type, so we can use them as substitutable implementations in VLA
27 * code.
28 *
29 * The 4-wide vectors are also used as a fixed-width type, and significantly
30 * extend the functionality above that available to VLA code.
31 */
32
33 #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
34 #define ASTC_VECMATHLIB_NEON_4_H_INCLUDED
35
36 #ifndef ASTCENC_SIMD_INLINE
37 #error "Include astcenc_vecmathlib.h, do not include directly"
38 #endif
39
40 #include <cstdio>
41 #include <cstring>
42
43 // ============================================================================
44 // vfloat4 data type
45 // ============================================================================
46
47 /**
48 * @brief Data type for 4-wide floats.
49 */
50 struct vfloat4
51 {
52 /**
53 * @brief Construct from zero-initialized value.
54 */
55 ASTCENC_SIMD_INLINE vfloat4() = default;
56
57 /**
58 * @brief Construct from 4 values loaded from an unaligned address.
59 *
60 * Consider using loada() which is better with vectors if data is aligned
61 * to vector length.
62 */
vfloat4vfloat463 ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
64 {
65 m = vld1q_f32(p);
66 }
67
68 /**
69 * @brief Construct from 1 scalar value replicated across all lanes.
70 *
71 * Consider using zero() for constexpr zeros.
72 */
vfloat4vfloat473 ASTCENC_SIMD_INLINE explicit vfloat4(float a)
74 {
75 m = vdupq_n_f32(a);
76 }
77
78 /**
79 * @brief Construct from 4 scalar values.
80 *
81 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
82 */
vfloat4vfloat483 ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
84 {
85 float v[4] { a, b, c, d };
86 m = vld1q_f32(v);
87 }
88
89 /**
90 * @brief Construct from an existing SIMD register.
91 */
vfloat4vfloat492 ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a)
93 {
94 m = a;
95 }
96
97 /**
98 * @brief Get the scalar value of a single lane.
99 */
lanevfloat4100 template <int l> ASTCENC_SIMD_INLINE float lane() const
101 {
102 return vgetq_lane_f32(m, l);
103 }
104
105 /**
106 * @brief Set the scalar value of a single lane.
107 */
set_lanevfloat4108 template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
109 {
110 m = vsetq_lane_f32(a, m, l);
111 }
112
113 /**
114 * @brief Factory that returns a vector of zeros.
115 */
zerovfloat4116 static ASTCENC_SIMD_INLINE vfloat4 zero()
117 {
118 return vfloat4(vdupq_n_f32(0.0f));
119 }
120
121 /**
122 * @brief Factory that returns a replicated scalar loaded from memory.
123 */
load1vfloat4124 static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
125 {
126 return vfloat4(vld1q_dup_f32(p));
127 }
128
129 /**
130 * @brief Factory that returns a vector loaded from 16B aligned memory.
131 */
loadavfloat4132 static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
133 {
134 return vfloat4(vld1q_f32(p));
135 }
136
137 /**
138 * @brief Factory that returns a vector containing the lane IDs.
139 */
lane_idvfloat4140 static ASTCENC_SIMD_INLINE vfloat4 lane_id()
141 {
142 alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f };
143 return vfloat4(vld1q_f32(data));
144 }
145
146 /**
147 * @brief Return a swizzled float 2.
148 */
swzvfloat4149 template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
150 {
151 return vfloat4(lane<l0>(), lane<l1>(), 0.0f, 0.0f);
152 }
153
154 /**
155 * @brief Return a swizzled float 3.
156 */
swzvfloat4157 template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
158 {
159 return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), 0.0f);
160 }
161
162 /**
163 * @brief Return a swizzled float 4.
164 */
swzvfloat4165 template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
166 {
167 return vfloat4(lane<l0>(), lane<l1>(), lane<l2>(), lane<l3>());
168 }
169
170 /**
171 * @brief The vector ...
172 */
173 float32x4_t m;
174 };
175
176 // ============================================================================
177 // vint4 data type
178 // ============================================================================
179
180 /**
181 * @brief Data type for 4-wide ints.
182 */
183 struct vint4
184 {
185 /**
186 * @brief Construct from zero-initialized value.
187 */
188 ASTCENC_SIMD_INLINE vint4() = default;
189
190 /**
191 * @brief Construct from 4 values loaded from an unaligned address.
192 *
193 * Consider using loada() which is better with vectors if data is aligned
194 * to vector length.
195 */
vint4vint4196 ASTCENC_SIMD_INLINE explicit vint4(const int *p)
197 {
198 m = vld1q_s32(p);
199 }
200
201 /**
202 * @brief Construct from 4 uint8_t loaded from an unaligned address.
203 */
vint4vint4204 ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
205 {
206 // Cast is safe - NEON loads are allowed to be unaligned
207 uint32x2_t t8 = vld1_dup_u32(reinterpret_cast<const uint32_t*>(p));
208 uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8)));
209 m = vreinterpretq_s32_u32(vmovl_u16(t16));
210 }
211
212 /**
213 * @brief Construct from 1 scalar value replicated across all lanes.
214 *
215 * Consider using vfloat4::zero() for constexpr zeros.
216 */
vint4vint4217 ASTCENC_SIMD_INLINE explicit vint4(int a)
218 {
219 m = vdupq_n_s32(a);
220 }
221
222 /**
223 * @brief Construct from 4 scalar values.
224 *
225 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
226 */
vint4vint4227 ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
228 {
229 int v[4] { a, b, c, d };
230 m = vld1q_s32(v);
231 }
232
233 /**
234 * @brief Construct from an existing SIMD register.
235 */
vint4vint4236 ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a)
237 {
238 m = a;
239 }
240
241 /**
242 * @brief Get the scalar from a single lane.
243 */
lanevint4244 template <int l> ASTCENC_SIMD_INLINE int lane() const
245 {
246 return vgetq_lane_s32(m, l);
247 }
248
249 /**
250 * @brief Set the scalar value of a single lane.
251 */
set_lanevint4252 template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
253 {
254 m = vsetq_lane_s32(a, m, l);
255 }
256
257 /**
258 * @brief Factory that returns a vector of zeros.
259 */
zerovint4260 static ASTCENC_SIMD_INLINE vint4 zero()
261 {
262 return vint4(0);
263 }
264
265 /**
266 * @brief Factory that returns a replicated scalar loaded from memory.
267 */
load1vint4268 static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
269 {
270 return vint4(*p);
271 }
272
273 /**
274 * @brief Factory that returns a vector loaded from unaligned memory.
275 */
loadvint4276 static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
277 {
278 vint4 data;
279 std::memcpy(&data.m, p, 4 * sizeof(int));
280 return data;
281 }
282
283 /**
284 * @brief Factory that returns a vector loaded from 16B aligned memory.
285 */
loadavint4286 static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
287 {
288 return vint4(p);
289 }
290
291 /**
292 * @brief Factory that returns a vector containing the lane IDs.
293 */
lane_idvint4294 static ASTCENC_SIMD_INLINE vint4 lane_id()
295 {
296 alignas(16) static const int data[4] { 0, 1, 2, 3 };
297 return vint4(vld1q_s32(data));
298 }
299
300 /**
301 * @brief The vector ...
302 */
303 int32x4_t m;
304 };
305
306 // ============================================================================
307 // vmask4 data type
308 // ============================================================================
309
310 /**
311 * @brief Data type for 4-wide control plane masks.
312 */
313 struct vmask4
314 {
315 /**
316 * @brief Construct from an existing SIMD register.
317 */
vmask4vmask4318 ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a)
319 {
320 m = a;
321 }
322
323 #if !defined(_MSC_VER)
324 /**
325 * @brief Construct from an existing SIMD register.
326 */
vmask4vmask4327 ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a)
328 {
329 m = vreinterpretq_u32_s32(a);
330 }
331 #endif
332
333 /**
334 * @brief Construct from 1 scalar value.
335 */
vmask4vmask4336 ASTCENC_SIMD_INLINE explicit vmask4(bool a)
337 {
338 m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0));
339 }
340
341 /**
342 * @brief Construct from 4 scalar values.
343 *
344 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
345 */
vmask4vmask4346 ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
347 {
348 int v[4] {
349 a == true ? -1 : 0,
350 b == true ? -1 : 0,
351 c == true ? -1 : 0,
352 d == true ? -1 : 0
353 };
354
355 int32x4_t ms = vld1q_s32(v);
356 m = vreinterpretq_u32_s32(ms);
357 }
358
359 /**
360 * @brief Get the scalar from a single lane.
361 */
lanevmask4362 template <int32_t l> ASTCENC_SIMD_INLINE bool lane() const
363 {
364 return vgetq_lane_u32(m, l) != 0;
365 }
366
367 /**
368 * @brief The vector ...
369 */
370 uint32x4_t m;
371 };
372
373 // ============================================================================
374 // vmask4 operators and functions
375 // ============================================================================
376
377 /**
378 * @brief Overload: mask union (or).
379 */
380 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
381 {
382 return vmask4(vorrq_u32(a.m, b.m));
383 }
384
385 /**
386 * @brief Overload: mask intersect (and).
387 */
388 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
389 {
390 return vmask4(vandq_u32(a.m, b.m));
391 }
392
393 /**
394 * @brief Overload: mask difference (xor).
395 */
396 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
397 {
398 return vmask4(veorq_u32(a.m, b.m));
399 }
400
401 /**
402 * @brief Overload: mask invert (not).
403 */
404 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
405 {
406 return vmask4(vmvnq_u32(a.m));
407 }
408
409 /**
410 * @brief Return a 4-bit mask code indicating mask status.
411 *
412 * bit0 = lane 0
413 */
mask(vmask4 a)414 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
415 {
416 static const int shifta[4] { 0, 1, 2, 3 };
417 static const int32x4_t shift = vld1q_s32(shifta);
418
419 uint32x4_t tmp = vshrq_n_u32(a.m, 31);
420 return vaddvq_u32(vshlq_u32(tmp, shift));
421 }
422
423 // ============================================================================
424 // vint4 operators and functions
425 // ============================================================================
426
427 /**
428 * @brief Overload: vector by vector addition.
429 */
430 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
431 {
432 return vint4(vaddq_s32(a.m, b.m));
433 }
434
435 /**
436 * @brief Overload: vector by vector subtraction.
437 */
438 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
439 {
440 return vint4(vsubq_s32(a.m, b.m));
441 }
442
443 /**
444 * @brief Overload: vector by vector multiplication.
445 */
446 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
447 {
448 return vint4(vmulq_s32(a.m, b.m));
449 }
450
451 /**
452 * @brief Overload: vector bit invert.
453 */
454 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
455 {
456 return vint4(vmvnq_s32(a.m));
457 }
458
459 /**
460 * @brief Overload: vector by vector bitwise or.
461 */
462 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
463 {
464 return vint4(vorrq_s32(a.m, b.m));
465 }
466
467 /**
468 * @brief Overload: vector by vector bitwise and.
469 */
470 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
471 {
472 return vint4(vandq_s32(a.m, b.m));
473 }
474
475 /**
476 * @brief Overload: vector by vector bitwise xor.
477 */
478 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
479 {
480 return vint4(veorq_s32(a.m, b.m));
481 }
482
483 /**
484 * @brief Overload: vector by vector equality.
485 */
486 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
487 {
488 return vmask4(vceqq_s32(a.m, b.m));
489 }
490
491 /**
492 * @brief Overload: vector by vector inequality.
493 */
494 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
495 {
496 return ~vmask4(vceqq_s32(a.m, b.m));
497 }
498
499 /**
500 * @brief Overload: vector by vector less than.
501 */
502 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
503 {
504 return vmask4(vcltq_s32(a.m, b.m));
505 }
506
507 /**
508 * @brief Overload: vector by vector greater than.
509 */
510 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
511 {
512 return vmask4(vcgtq_s32(a.m, b.m));
513 }
514
515 /**
516 * @brief Logical shift left.
517 */
lsl(vint4 a)518 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
519 {
520 return vint4(vshlq_s32(a.m, vdupq_n_s32(s)));
521 }
522
523 /**
524 * @brief Logical shift right.
525 */
lsr(vint4 a)526 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
527 {
528 uint32x4_t ua = vreinterpretq_u32_s32(a.m);
529 ua = vshlq_u32(ua, vdupq_n_s32(-s));
530 return vint4(vreinterpretq_s32_u32(ua));
531 }
532
533 /**
534 * @brief Arithmetic shift right.
535 */
asr(vint4 a)536 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
537 {
538 return vint4(vshlq_s32(a.m, vdupq_n_s32(-s)));
539 }
540
541 /**
542 * @brief Return the min vector of two vectors.
543 */
min(vint4 a,vint4 b)544 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
545 {
546 return vint4(vminq_s32(a.m, b.m));
547 }
548
549 /**
550 * @brief Return the max vector of two vectors.
551 */
max(vint4 a,vint4 b)552 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
553 {
554 return vint4(vmaxq_s32(a.m, b.m));
555 }
556
557 /**
558 * @brief Return the horizontal minimum of a vector.
559 */
hmin(vint4 a)560 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
561 {
562 return vint4(vminvq_s32(a.m));
563 }
564
565 /**
566 * @brief Return the horizontal maximum of a vector.
567 */
hmax(vint4 a)568 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
569 {
570 return vint4(vmaxvq_s32(a.m));
571 }
572
573 /**
574 * @brief Return the horizontal sum of a vector.
575 */
hadd_s(vint4 a)576 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
577 {
578 int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m));
579 return vget_lane_s32(vpadd_s32(t, t), 0);
580 }
581
582 /**
583 * @brief Store a vector to a 16B aligned memory address.
584 */
storea(vint4 a,int * p)585 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
586 {
587 vst1q_s32(p, a.m);
588 }
589
590 /**
591 * @brief Store a vector to an unaligned memory address.
592 */
store(vint4 a,int * p)593 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
594 {
595 vst1q_s32(p, a.m);
596 }
597
598 /**
599 * @brief Store a vector to an unaligned memory address.
600 */
store(vint4 a,uint8_t * p)601 ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
602 {
603 std::memcpy(p, &a.m, sizeof(int) * 4);
604 }
605
606 /**
607 * @brief Store lowest N (vector width) bytes into an unaligned address.
608 */
store_nbytes(vint4 a,uint8_t * p)609 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
610 {
611 vst1q_lane_s32(reinterpret_cast<int32_t*>(p), a.m, 0);
612 }
613
614 /**
615 * @brief Gather N (vector width) indices from the array.
616 */
gatheri(const int * base,vint4 indices)617 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
618 {
619 alignas(16) int idx[4];
620 storea(indices, idx);
621 alignas(16) int vals[4];
622 vals[0] = base[idx[0]];
623 vals[1] = base[idx[1]];
624 vals[2] = base[idx[2]];
625 vals[3] = base[idx[3]];
626 return vint4(vals);
627 }
628
629 /**
630 * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
631 */
pack_low_bytes(vint4 a)632 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
633 {
634 alignas(16) uint8_t shuf[16] {
635 0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
636 };
637 uint8x16_t idx = vld1q_u8(shuf);
638 int8x16_t av = vreinterpretq_s8_s32(a.m);
639 return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx)));
640 }
641
642 /**
643 * @brief Return lanes from @c b if @c cond is set, else @c a.
644 */
select(vint4 a,vint4 b,vmask4 cond)645 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
646 {
647 return vint4(vbslq_s32(cond.m, b.m, a.m));
648 }
649
650 // ============================================================================
651 // vfloat4 operators and functions
652 // ============================================================================
653
654 /**
655 * @brief Overload: vector by vector addition.
656 */
657 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
658 {
659 return vfloat4(vaddq_f32(a.m, b.m));
660 }
661
662 /**
663 * @brief Overload: vector by vector subtraction.
664 */
665 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
666 {
667 return vfloat4(vsubq_f32(a.m, b.m));
668 }
669
670 /**
671 * @brief Overload: vector by vector multiplication.
672 */
673 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
674 {
675 return vfloat4(vmulq_f32(a.m, b.m));
676 }
677
678 /**
679 * @brief Overload: vector by vector division.
680 */
681 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
682 {
683 return vfloat4(vdivq_f32(a.m, b.m));
684 }
685
686 /**
687 * @brief Overload: vector by vector equality.
688 */
689 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
690 {
691 return vmask4(vceqq_f32(a.m, b.m));
692 }
693
694 /**
695 * @brief Overload: vector by vector inequality.
696 */
697 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
698 {
699 return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m)));
700 }
701
702 /**
703 * @brief Overload: vector by vector less than.
704 */
705 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
706 {
707 return vmask4(vcltq_f32(a.m, b.m));
708 }
709
710 /**
711 * @brief Overload: vector by vector greater than.
712 */
713 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
714 {
715 return vmask4(vcgtq_f32(a.m, b.m));
716 }
717
718 /**
719 * @brief Overload: vector by vector less than or equal.
720 */
721 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
722 {
723 return vmask4(vcleq_f32(a.m, b.m));
724 }
725
726 /**
727 * @brief Overload: vector by vector greater than or equal.
728 */
729 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
730 {
731 return vmask4(vcgeq_f32(a.m, b.m));
732 }
733
734 /**
735 * @brief Return the min vector of two vectors.
736 *
737 * If either lane value is NaN, @c b will be returned for that lane.
738 */
min(vfloat4 a,vfloat4 b)739 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
740 {
741 // Do not reorder - second operand will return if either is NaN
742 return vfloat4(vminnmq_f32(a.m, b.m));
743 }
744
745 /**
746 * @brief Return the max vector of two vectors.
747 *
748 * If either lane value is NaN, @c b will be returned for that lane.
749 */
max(vfloat4 a,vfloat4 b)750 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
751 {
752 // Do not reorder - second operand will return if either is NaN
753 return vfloat4(vmaxnmq_f32(a.m, b.m));
754 }
755
756 /**
757 * @brief Return the absolute value of the float vector.
758 */
abs(vfloat4 a)759 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
760 {
761 float32x4_t zero = vdupq_n_f32(0.0f);
762 float32x4_t inv = vsubq_f32(zero, a.m);
763 return vfloat4(vmaxq_f32(a.m, inv));
764 }
765
766 /**
767 * @brief Return a float rounded to the nearest integer value.
768 */
round(vfloat4 a)769 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
770 {
771 return vfloat4(vrndnq_f32(a.m));
772 }
773
774 /**
775 * @brief Return the horizontal minimum of a vector.
776 */
hmin(vfloat4 a)777 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
778 {
779 return vfloat4(vminvq_f32(a.m));
780 }
781
782 /**
783 * @brief Return the horizontal maximum of a vector.
784 */
hmax(vfloat4 a)785 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
786 {
787 return vfloat4(vmaxvq_f32(a.m));
788 }
789
790 /**
791 * @brief Return the horizontal sum of a vector.
792 */
hadd_s(vfloat4 a)793 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
794 {
795 // Perform halving add to ensure invariance; we cannot use vaddqv as this
796 // does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3).
797 float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m));
798 return vget_lane_f32(vpadd_f32(t, t), 0);
799 }
800
801 /**
802 * @brief Return the sqrt of the lanes in the vector.
803 */
sqrt(vfloat4 a)804 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
805 {
806 return vfloat4(vsqrtq_f32(a.m));
807 }
808
809 /**
810 * @brief Return lanes from @c b if @c cond is set, else @c a.
811 */
select(vfloat4 a,vfloat4 b,vmask4 cond)812 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
813 {
814 return vfloat4(vbslq_f32(cond.m, b.m, a.m));
815 }
816
817 /**
818 * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
819 */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)820 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
821 {
822 static const uint32x4_t msb = vdupq_n_u32(0x80000000u);
823 uint32x4_t mask = vcgeq_u32(cond.m, msb);
824 return vfloat4(vbslq_f32(mask, b.m, a.m));
825 }
826
827 /**
828 * @brief Load a vector of gathered results from an array;
829 */
gatherf(const float * base,vint4 indices)830 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
831 {
832 alignas(16) int idx[4];
833 storea(indices, idx);
834 alignas(16) float vals[4];
835 vals[0] = base[idx[0]];
836 vals[1] = base[idx[1]];
837 vals[2] = base[idx[2]];
838 vals[3] = base[idx[3]];
839 return vfloat4(vals);
840 }
841
842 /**
843 * @brief Store a vector to an unaligned memory address.
844 */
store(vfloat4 a,float * p)845 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
846 {
847 vst1q_f32(p, a.m);
848 }
849
850 /**
851 * @brief Store a vector to a 16B aligned memory address.
852 */
storea(vfloat4 a,float * p)853 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
854 {
855 vst1q_f32(p, a.m);
856 }
857
858 /**
859 * @brief Return a integer value for a float vector, using truncation.
860 */
float_to_int(vfloat4 a)861 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
862 {
863 return vint4(vcvtq_s32_f32(a.m));
864 }
865
866 /**
867 * @brief Return a integer value for a float vector, using round-to-nearest.
868 */
float_to_int_rtn(vfloat4 a)869 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
870 {
871 a = a + vfloat4(0.5f);
872 return vint4(vcvtq_s32_f32(a.m));
873 }
874
875 /**
876 * @brief Return a float value for an integer vector.
877 */
int_to_float(vint4 a)878 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
879 {
880 return vfloat4(vcvtq_f32_s32(a.m));
881 }
882
883 /**
884 * @brief Return a float16 value for a float vector, using round-to-nearest.
885 */
float_to_float16(vfloat4 a)886 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
887 {
888 // Generate float16 value
889 float16x4_t f16 = vcvt_f16_f32(a.m);
890
891 // Convert each 16-bit float pattern to a 32-bit pattern
892 uint16x4_t u16 = vreinterpret_u16_f16(f16);
893 uint32x4_t u32 = vmovl_u16(u16);
894 return vint4(vreinterpretq_s32_u32(u32));
895 }
896
897 /**
898 * @brief Return a float16 value for a float scalar, using round-to-nearest.
899 */
float_to_float16(float a)900 static inline uint16_t float_to_float16(float a)
901 {
902 vfloat4 av(a);
903 return static_cast<uint16_t>(float_to_float16(av).lane<0>());
904 }
905
906 /**
907 * @brief Return a float value for a float16 vector.
908 */
float16_to_float(vint4 a)909 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
910 {
911 // Convert each 32-bit float pattern to a 16-bit pattern
912 uint32x4_t u32 = vreinterpretq_u32_s32(a.m);
913 uint16x4_t u16 = vmovn_u32(u32);
914 float16x4_t f16 = vreinterpret_f16_u16(u16);
915
916 // Generate float16 value
917 return vfloat4(vcvt_f32_f16(f16));
918 }
919
920 /**
921 * @brief Return a float value for a float16 scalar.
922 */
float16_to_float(uint16_t a)923 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
924 {
925 vint4 av(a);
926 return float16_to_float(av).lane<0>();
927 }
928
929 /**
930 * @brief Return a float value as an integer bit pattern (i.e. no conversion).
931 *
932 * It is a common trick to convert floats into integer bit patterns, perform
933 * some bit hackery based on knowledge they are IEEE 754 layout, and then
934 * convert them back again. This is the first half of that flip.
935 */
float_as_int(vfloat4 a)936 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
937 {
938 return vint4(vreinterpretq_s32_f32(a.m));
939 }
940
941 /**
942 * @brief Return a integer value as a float bit pattern (i.e. no conversion).
943 *
944 * It is a common trick to convert floats into integer bit patterns, perform
945 * some bit hackery based on knowledge they are IEEE 754 layout, and then
946 * convert them back again. This is the second half of that flip.
947 */
int_as_float(vint4 v)948 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
949 {
950 return vfloat4(vreinterpretq_f32_s32(v.m));
951 }
952
953 /**
954 * @brief Prepare a vtable lookup table for use with the native SIMD size.
955 */
vtable_prepare(vint4 t0,vint4 & t0p)956 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
957 {
958 t0p = t0;
959 }
960
961
962 /**
963 * @brief Prepare a vtable lookup table for use with the native SIMD size.
964 */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)965 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
966 {
967 t0p = t0;
968 t1p = t1;
969 }
970
971 /**
972 * @brief Prepare a vtable lookup table for use with the native SIMD size.
973 */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)974 ASTCENC_SIMD_INLINE void vtable_prepare(
975 vint4 t0, vint4 t1, vint4 t2, vint4 t3,
976 vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
977 {
978 t0p = t0;
979 t1p = t1;
980 t2p = t2;
981 t3p = t3;
982 }
983
984 /**
985 * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
986 */
vtable_8bt_32bi(vint4 t0,vint4 idx)987 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
988 {
989 int8x16_t table {
990 vreinterpretq_s8_s32(t0.m)
991 };
992
993 // Set index byte above max index for unused bytes so table lookup returns zero
994 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
995 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
996
997 return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes)));
998 }
999
1000 /**
1001 * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
1002 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)1003 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
1004 {
1005 int8x16x2_t table {
1006 vreinterpretq_s8_s32(t0.m),
1007 vreinterpretq_s8_s32(t1.m)
1008 };
1009
1010 // Set index byte above max index for unused bytes so table lookup returns zero
1011 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1012 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1013
1014 return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes)));
1015 }
1016
1017 /**
1018 * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1019 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1020 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1021 {
1022 int8x16x4_t table {
1023 vreinterpretq_s8_s32(t0.m),
1024 vreinterpretq_s8_s32(t1.m),
1025 vreinterpretq_s8_s32(t2.m),
1026 vreinterpretq_s8_s32(t3.m)
1027 };
1028
1029 // Set index byte above max index for unused bytes so table lookup returns zero
1030 int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00));
1031 uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked);
1032
1033 return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes)));
1034 }
1035
1036 /**
1037 * @brief Return a vector of interleaved RGBA data.
1038 *
1039 * Input vectors have the value stored in the bottom 8 bits of each lane,
1040 * with high bits set to zero.
1041 *
1042 * Output vector stores a single RGBA texel packed in each lane.
1043 */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1044 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1045 {
1046 return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a);
1047 }
1048
1049 /**
1050 * @brief Store a single vector lane to an unaligned address.
1051 */
store_lane(uint8_t * base,int data)1052 ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
1053 {
1054 std::memcpy(base, &data, sizeof(int));
1055 }
1056
1057 /**
1058 * @brief Store a vector, skipping masked lanes.
1059 *
1060 * All masked lanes must be at the end of vector, after all non-masked lanes.
1061 */
store_lanes_masked(uint8_t * base,vint4 data,vmask4 mask)1062 ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
1063 {
1064 if (mask.lane<3>())
1065 {
1066 store(data, base);
1067 }
1068 else if (mask.lane<2>() != 0.0f)
1069 {
1070 store_lane(base + 0, data.lane<0>());
1071 store_lane(base + 4, data.lane<1>());
1072 store_lane(base + 8, data.lane<2>());
1073 }
1074 else if (mask.lane<1>() != 0.0f)
1075 {
1076 store_lane(base + 0, data.lane<0>());
1077 store_lane(base + 4, data.lane<1>());
1078 }
1079 else if (mask.lane<0>() != 0.0f)
1080 {
1081 store_lane(base + 0, data.lane<0>());
1082 }
1083 }
1084
1085 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1086
1087 /**
1088 * @brief Population bit count.
1089 *
1090 * @param v The value to population count.
1091 *
1092 * @return The number of 1 bits.
1093 */
popcount(uint64_t v)1094 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1095 {
1096 return static_cast<int>(vaddlv_u8(vcnt_u8(vcreate_u8(v))));
1097 }
1098
1099 #endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED
1100