1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 // http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17
18 /**
19 * @brief 4x32-bit vectors, implemented using SSE.
20 *
21 * This module implements 4-wide 32-bit float, int, and mask vectors for x86
22 * SSE. The implementation requires at least SSE2, but higher levels of SSE can
23 * be selected at compile time to improve performance.
24 *
25 * There is a baseline level of functionality provided by all vector widths and
26 * implementations. This is implemented using identical function signatures,
27 * modulo data type, so we can use them as substitutable implementations in VLA
28 * code.
29 *
30 * The 4-wide vectors are also used as a fixed-width type, and significantly
31 * extend the functionality above that available to VLA code.
32 */
33
34 #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
35 #define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
36
37 #ifndef ASTCENC_SIMD_INLINE
38 #error "Include astcenc_vecmathlib.h, do not include directly"
39 #endif
40
41 #include <cstdio>
42 #include <cstring>
43
44 // ============================================================================
45 // vfloat4 data type
46 // ============================================================================
47
48 /**
49 * @brief Data type for 4-wide floats.
50 */
51 struct vfloat4
52 {
53 /**
54 * @brief Construct from zero-initialized value.
55 */
56 ASTCENC_SIMD_INLINE vfloat4() = default;
57
58 /**
59 * @brief Construct from 4 values loaded from an unaligned address.
60 *
61 * Consider using loada() which is better with vectors if data is aligned
62 * to vector length.
63 */
vfloat4vfloat464 ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
65 {
66 m = _mm_loadu_ps(p);
67 }
68
69 /**
70 * @brief Construct from 1 scalar value replicated across all lanes.
71 *
72 * Consider using zero() for constexpr zeros.
73 */
vfloat4vfloat474 ASTCENC_SIMD_INLINE explicit vfloat4(float a)
75 {
76 m = _mm_set1_ps(a);
77 }
78
79 /**
80 * @brief Construct from 4 scalar values.
81 *
82 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
83 */
vfloat4vfloat484 ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
85 {
86 m = _mm_set_ps(d, c, b, a);
87 }
88
89 /**
90 * @brief Construct from an existing SIMD register.
91 */
vfloat4vfloat492 ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
93 {
94 m = a;
95 }
96
97 /**
98 * @brief Get the scalar value of a single lane.
99 */
lanevfloat4100 template <int l> ASTCENC_SIMD_INLINE float lane() const
101 {
102 return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
103 }
104
105 /**
106 * @brief Set the scalar value of a single lane.
107 */
set_lanevfloat4108 template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
109 {
110 #if ASTCENC_SSE >= 41
111 __m128 v = _mm_set1_ps(a);
112 m = _mm_insert_ps(m, v, l << 6 | l << 4);
113 #else
114 alignas(16) float idx[4];
115 _mm_store_ps(idx, m);
116 idx[l] = a;
117 m = _mm_load_ps(idx);
118 #endif
119 }
120
121 /**
122 * @brief Factory that returns a vector of zeros.
123 */
zerovfloat4124 static ASTCENC_SIMD_INLINE vfloat4 zero()
125 {
126 return vfloat4(_mm_setzero_ps());
127 }
128
129 /**
130 * @brief Factory that returns a replicated scalar loaded from memory.
131 */
load1vfloat4132 static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
133 {
134 return vfloat4(_mm_load_ps1(p));
135 }
136
137 /**
138 * @brief Factory that returns a vector loaded from 16B aligned memory.
139 */
loadavfloat4140 static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
141 {
142 return vfloat4(_mm_load_ps(p));
143 }
144
145 /**
146 * @brief Factory that returns a vector containing the lane IDs.
147 */
lane_idvfloat4148 static ASTCENC_SIMD_INLINE vfloat4 lane_id()
149 {
150 return vfloat4(_mm_set_ps(3, 2, 1, 0));
151 }
152
153 /**
154 * @brief Return a swizzled float 2.
155 */
swzvfloat4156 template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
157 {
158 vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
159 result.set_lane<2>(0.0f);
160 result.set_lane<3>(0.0f);
161 return result;
162 }
163
164 /**
165 * @brief Return a swizzled float 3.
166 */
swzvfloat4167 template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
168 {
169 vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
170 result.set_lane<3>(0.0f);
171 return result;
172 }
173
174 /**
175 * @brief Return a swizzled float 4.
176 */
swzvfloat4177 template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
178 {
179 return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
180 }
181
182 /**
183 * @brief The vector ...
184 */
185 __m128 m;
186 };
187
188 // ============================================================================
189 // vint4 data type
190 // ============================================================================
191
192 /**
193 * @brief Data type for 4-wide ints.
194 */
195 struct vint4
196 {
197 /**
198 * @brief Construct from zero-initialized value.
199 */
200 ASTCENC_SIMD_INLINE vint4() = default;
201
202 /**
203 * @brief Construct from 4 values loaded from an unaligned address.
204 *
205 * Consider using loada() which is better with vectors if data is aligned
206 * to vector length.
207 */
vint4vint4208 ASTCENC_SIMD_INLINE explicit vint4(const int *p)
209 {
210 m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
211 }
212
213 /**
214 * @brief Construct from 4 uint8_t loaded from an unaligned address.
215 */
vint4vint4216 ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
217 {
218 // _mm_loadu_si32 would be nicer syntax, but missing on older GCC
219 __m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
220
221 #if ASTCENC_SSE >= 41
222 m = _mm_cvtepu8_epi32(t);
223 #else
224 t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
225 m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
226 #endif
227 }
228
229 /**
230 * @brief Construct from 1 scalar value replicated across all lanes.
231 *
232 * Consider using vfloat4::zero() for constexpr zeros.
233 */
vint4vint4234 ASTCENC_SIMD_INLINE explicit vint4(int a)
235 {
236 m = _mm_set1_epi32(a);
237 }
238
239 /**
240 * @brief Construct from 4 scalar values.
241 *
242 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
243 */
vint4vint4244 ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
245 {
246 m = _mm_set_epi32(d, c, b, a);
247 }
248
249 /**
250 * @brief Construct from an existing SIMD register.
251 */
vint4vint4252 ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
253 {
254 m = a;
255 }
256
257 /**
258 * @brief Get the scalar from a single lane.
259 */
lanevint4260 template <int l> ASTCENC_SIMD_INLINE int lane() const
261 {
262 return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
263 }
264
265 /**
266 * @brief Set the scalar value of a single lane.
267 */
set_lanevint4268 template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
269 {
270 #if ASTCENC_SSE >= 41
271 m = _mm_insert_epi32(m, a, l);
272 #else
273 alignas(16) int idx[4];
274 _mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
275 idx[l] = a;
276 m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
277 #endif
278 }
279
280 /**
281 * @brief Factory that returns a vector of zeros.
282 */
zerovint4283 static ASTCENC_SIMD_INLINE vint4 zero()
284 {
285 return vint4(_mm_setzero_si128());
286 }
287
288 /**
289 * @brief Factory that returns a replicated scalar loaded from memory.
290 */
load1vint4291 static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
292 {
293 return vint4(*p);
294 }
295
296 /**
297 * @brief Factory that returns a vector loaded from unaligned memory.
298 */
loadvint4299 static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
300 {
301 #if ASTCENC_SSE >= 41
302 return vint4(_mm_lddqu_si128(reinterpret_cast<const __m128i*>(p)));
303 #else
304 return vint4(_mm_loadu_si128(reinterpret_cast<const __m128i*>(p)));
305 #endif
306 }
307
308 /**
309 * @brief Factory that returns a vector loaded from 16B aligned memory.
310 */
loadavint4311 static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
312 {
313 return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
314 }
315
316 /**
317 * @brief Factory that returns a vector containing the lane IDs.
318 */
lane_idvint4319 static ASTCENC_SIMD_INLINE vint4 lane_id()
320 {
321 return vint4(_mm_set_epi32(3, 2, 1, 0));
322 }
323
324 /**
325 * @brief The vector ...
326 */
327 __m128i m;
328 };
329
330 // ============================================================================
331 // vmask4 data type
332 // ============================================================================
333
334 /**
335 * @brief Data type for 4-wide control plane masks.
336 */
337 struct vmask4
338 {
339 /**
340 * @brief Construct from an existing SIMD register.
341 */
vmask4vmask4342 ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
343 {
344 m = a;
345 }
346
347 /**
348 * @brief Construct from an existing SIMD register.
349 */
vmask4vmask4350 ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
351 {
352 m = _mm_castsi128_ps(a);
353 }
354
355 /**
356 * @brief Construct from 1 scalar value.
357 */
vmask4vmask4358 ASTCENC_SIMD_INLINE explicit vmask4(bool a)
359 {
360 vint4 mask(a == false ? 0 : -1);
361 m = _mm_castsi128_ps(mask.m);
362 }
363
364 /**
365 * @brief Construct from 4 scalar values.
366 *
367 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
368 */
vmask4vmask4369 ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
370 {
371 vint4 mask(a == false ? 0 : -1,
372 b == false ? 0 : -1,
373 c == false ? 0 : -1,
374 d == false ? 0 : -1);
375
376 m = _mm_castsi128_ps(mask.m);
377 }
378
379 /**
380 * @brief Get the scalar value of a single lane.
381 */
lanevmask4382 template <int l> ASTCENC_SIMD_INLINE bool lane() const
383 {
384 return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)) != 0.0f;
385 }
386
387 /**
388 * @brief The vector ...
389 */
390 __m128 m;
391 };
392
393 // ============================================================================
394 // vmask4 operators and functions
395 // ============================================================================
396
397 /**
398 * @brief Overload: mask union (or).
399 */
400 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
401 {
402 return vmask4(_mm_or_ps(a.m, b.m));
403 }
404
405 /**
406 * @brief Overload: mask intersect (and).
407 */
408 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
409 {
410 return vmask4(_mm_and_ps(a.m, b.m));
411 }
412
413 /**
414 * @brief Overload: mask difference (xor).
415 */
416 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
417 {
418 return vmask4(_mm_xor_ps(a.m, b.m));
419 }
420
421 /**
422 * @brief Overload: mask invert (not).
423 */
424 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
425 {
426 return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
427 }
428
429 /**
430 * @brief Return a 4-bit mask code indicating mask status.
431 *
432 * bit0 = lane 0
433 */
mask(vmask4 a)434 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
435 {
436 return static_cast<unsigned int>(_mm_movemask_ps(a.m));
437 }
438
439 // ============================================================================
440 // vint4 operators and functions
441 // ============================================================================
442
443 /**
444 * @brief Overload: vector by vector addition.
445 */
446 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
447 {
448 return vint4(_mm_add_epi32(a.m, b.m));
449 }
450
451 /**
452 * @brief Overload: vector by vector subtraction.
453 */
454 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
455 {
456 return vint4(_mm_sub_epi32(a.m, b.m));
457 }
458
459 /**
460 * @brief Overload: vector by vector multiplication.
461 */
462 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
463 {
464 #if ASTCENC_SSE >= 41
465 return vint4(_mm_mullo_epi32 (a.m, b.m));
466 #else
467 __m128i t1 = _mm_mul_epu32(a.m, b.m);
468 __m128i t2 = _mm_mul_epu32(
469 _mm_srli_si128(a.m, 4),
470 _mm_srli_si128(b.m, 4));
471 __m128i r = _mm_unpacklo_epi32(
472 _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
473 _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
474 return vint4(r);
475 #endif
476 }
477
478 /**
479 * @brief Overload: vector bit invert.
480 */
481 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
482 {
483 return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
484 }
485
486 /**
487 * @brief Overload: vector by vector bitwise or.
488 */
489 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
490 {
491 return vint4(_mm_or_si128(a.m, b.m));
492 }
493
494 /**
495 * @brief Overload: vector by vector bitwise and.
496 */
497 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
498 {
499 return vint4(_mm_and_si128(a.m, b.m));
500 }
501
502 /**
503 * @brief Overload: vector by vector bitwise xor.
504 */
505 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
506 {
507 return vint4(_mm_xor_si128(a.m, b.m));
508 }
509
510 /**
511 * @brief Overload: vector by vector equality.
512 */
513 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
514 {
515 return vmask4(_mm_cmpeq_epi32(a.m, b.m));
516 }
517
518 /**
519 * @brief Overload: vector by vector inequality.
520 */
521 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
522 {
523 return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
524 }
525
526 /**
527 * @brief Overload: vector by vector less than.
528 */
529 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
530 {
531 return vmask4(_mm_cmplt_epi32(a.m, b.m));
532 }
533
534 /**
535 * @brief Overload: vector by vector greater than.
536 */
537 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
538 {
539 return vmask4(_mm_cmpgt_epi32(a.m, b.m));
540 }
541
542 /**
543 * @brief Logical shift left.
544 */
lsl(vint4 a)545 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
546 {
547 return vint4(_mm_slli_epi32(a.m, s));
548 }
549
550 /**
551 * @brief Logical shift right.
552 */
lsr(vint4 a)553 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
554 {
555 return vint4(_mm_srli_epi32(a.m, s));
556 }
557
558 /**
559 * @brief Arithmetic shift right.
560 */
asr(vint4 a)561 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
562 {
563 return vint4(_mm_srai_epi32(a.m, s));
564 }
565
566 /**
567 * @brief Return the min vector of two vectors.
568 */
min(vint4 a,vint4 b)569 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
570 {
571 #if ASTCENC_SSE >= 41
572 return vint4(_mm_min_epi32(a.m, b.m));
573 #else
574 vmask4 d = a < b;
575 __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
576 __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
577 return vint4(_mm_or_si128(ap,bp));
578 #endif
579 }
580
581 /**
582 * @brief Return the max vector of two vectors.
583 */
max(vint4 a,vint4 b)584 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
585 {
586 #if ASTCENC_SSE >= 41
587 return vint4(_mm_max_epi32(a.m, b.m));
588 #else
589 vmask4 d = a > b;
590 __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
591 __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
592 return vint4(_mm_or_si128(ap,bp));
593 #endif
594 }
595
596 /**
597 * @brief Return the horizontal minimum of a vector.
598 */
hmin(vint4 a)599 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
600 {
601 a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
602 a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
603 return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
604 }
605
606 /*
607 * @brief Return the horizontal maximum of a vector.
608 */
hmax(vint4 a)609 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
610 {
611 a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
612 a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
613 return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
614 }
615
616 /**
617 * @brief Return the horizontal sum of a vector as a scalar.
618 */
hadd_s(vint4 a)619 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
620 {
621 // Add top and bottom halves, lane 1/0
622 __m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m),
623 _mm_castsi128_ps(a.m)));
624 __m128i t = _mm_add_epi32(a.m, fold);
625
626 // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
627 t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55));
628
629 return _mm_cvtsi128_si32(t);
630 }
631
632 /**
633 * @brief Store a vector to a 16B aligned memory address.
634 */
storea(vint4 a,int * p)635 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
636 {
637 _mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
638 }
639
640 /**
641 * @brief Store a vector to an unaligned memory address.
642 */
store(vint4 a,int * p)643 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
644 {
645 // Cast due to missing intrinsics
646 _mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
647 }
648
649 /**
650 * @brief Store a vector to an unaligned memory address.
651 */
store(vint4 a,uint8_t * p)652 ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
653 {
654 std::memcpy(p, &a.m, sizeof(int) * 4);
655 }
656
657 /**
658 * @brief Store lowest N (vector width) bytes into an unaligned address.
659 */
store_nbytes(vint4 a,uint8_t * p)660 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
661 {
662 // Cast due to missing intrinsics
663 _mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
664 }
665
666 /**
667 * @brief Gather N (vector width) indices from the array.
668 */
gatheri(const int * base,vint4 indices)669 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
670 {
671 #if ASTCENC_AVX >= 2
672 return vint4(_mm_i32gather_epi32(base, indices.m, 4));
673 #else
674 alignas(16) int idx[4];
675 storea(indices, idx);
676 return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
677 #endif
678 }
679
680 /**
681 * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
682 */
pack_low_bytes(vint4 a)683 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
684 {
685 #if ASTCENC_SSE >= 41
686 __m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
687 return vint4(_mm_shuffle_epi8(a.m, shuf));
688 #else
689 __m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
690 __m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
691 return vint4(_mm_unpacklo_epi16(va, vb));
692 #endif
693 }
694
695 /**
696 * @brief Return lanes from @c b if @c cond is set, else @c a.
697 */
select(vint4 a,vint4 b,vmask4 cond)698 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
699 {
700 __m128i condi = _mm_castps_si128(cond.m);
701
702 #if ASTCENC_SSE >= 41
703 return vint4(_mm_blendv_epi8(a.m, b.m, condi));
704 #else
705 return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
706 #endif
707 }
708
709 // ============================================================================
710 // vfloat4 operators and functions
711 // ============================================================================
712
713 /**
714 * @brief Overload: vector by vector addition.
715 */
716 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
717 {
718 return vfloat4(_mm_add_ps(a.m, b.m));
719 }
720
721 /**
722 * @brief Overload: vector by vector subtraction.
723 */
724 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
725 {
726 return vfloat4(_mm_sub_ps(a.m, b.m));
727 }
728
729 /**
730 * @brief Overload: vector by vector multiplication.
731 */
732 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
733 {
734 return vfloat4(_mm_mul_ps(a.m, b.m));
735 }
736
737 /**
738 * @brief Overload: vector by vector division.
739 */
740 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
741 {
742 return vfloat4(_mm_div_ps(a.m, b.m));
743 }
744
745 /**
746 * @brief Overload: vector by vector equality.
747 */
748 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
749 {
750 return vmask4(_mm_cmpeq_ps(a.m, b.m));
751 }
752
753 /**
754 * @brief Overload: vector by vector inequality.
755 */
756 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
757 {
758 return vmask4(_mm_cmpneq_ps(a.m, b.m));
759 }
760
761 /**
762 * @brief Overload: vector by vector less than.
763 */
764 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
765 {
766 return vmask4(_mm_cmplt_ps(a.m, b.m));
767 }
768
769 /**
770 * @brief Overload: vector by vector greater than.
771 */
772 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
773 {
774 return vmask4(_mm_cmpgt_ps(a.m, b.m));
775 }
776
777 /**
778 * @brief Overload: vector by vector less than or equal.
779 */
780 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
781 {
782 return vmask4(_mm_cmple_ps(a.m, b.m));
783 }
784
785 /**
786 * @brief Overload: vector by vector greater than or equal.
787 */
788 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
789 {
790 return vmask4(_mm_cmpge_ps(a.m, b.m));
791 }
792
793 /**
794 * @brief Return the min vector of two vectors.
795 *
796 * If either lane value is NaN, @c b will be returned for that lane.
797 */
min(vfloat4 a,vfloat4 b)798 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
799 {
800 // Do not reorder - second operand will return if either is NaN
801 return vfloat4(_mm_min_ps(a.m, b.m));
802 }
803
804 /**
805 * @brief Return the max vector of two vectors.
806 *
807 * If either lane value is NaN, @c b will be returned for that lane.
808 */
max(vfloat4 a,vfloat4 b)809 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
810 {
811 // Do not reorder - second operand will return if either is NaN
812 return vfloat4(_mm_max_ps(a.m, b.m));
813 }
814
815 /**
816 * @brief Return the absolute value of the float vector.
817 */
abs(vfloat4 a)818 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
819 {
820 return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
821 }
822
823 /**
824 * @brief Return a float rounded to the nearest integer value.
825 */
round(vfloat4 a)826 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
827 {
828 #if ASTCENC_SSE >= 41
829 constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
830 return vfloat4(_mm_round_ps(a.m, flags));
831 #else
832 __m128 v = a.m;
833 __m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000)));
834 __m128 no_fraction = _mm_set1_ps(8388608.0f);
835 __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
836 __m128 sign = _mm_and_ps(v, neg_zero);
837 __m128 s_magic = _mm_or_ps(no_fraction, sign);
838 __m128 r1 = _mm_add_ps(v, s_magic);
839 r1 = _mm_sub_ps(r1, s_magic);
840 __m128 r2 = _mm_and_ps(v, abs_mask);
841 __m128 mask = _mm_cmple_ps(r2, no_fraction);
842 r2 = _mm_andnot_ps(mask, v);
843 r1 = _mm_and_ps(r1, mask);
844 return vfloat4(_mm_xor_ps(r1, r2));
845 #endif
846 }
847
848 /**
849 * @brief Return the horizontal minimum of a vector.
850 */
hmin(vfloat4 a)851 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
852 {
853 a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
854 a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
855 return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
856 }
857
858 /**
859 * @brief Return the horizontal maximum of a vector.
860 */
hmax(vfloat4 a)861 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
862 {
863 a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
864 a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
865 return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
866 }
867
868 /**
869 * @brief Return the horizontal sum of a vector as a scalar.
870 */
hadd_s(vfloat4 a)871 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
872 {
873 // Add top and bottom halves, lane 1/0
874 __m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
875
876 // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
877 t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
878
879 return _mm_cvtss_f32(t);
880 }
881
882 /**
883 * @brief Return the sqrt of the lanes in the vector.
884 */
sqrt(vfloat4 a)885 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
886 {
887 return vfloat4(_mm_sqrt_ps(a.m));
888 }
889
890 /**
891 * @brief Return lanes from @c b if @c cond is set, else @c a.
892 */
select(vfloat4 a,vfloat4 b,vmask4 cond)893 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
894 {
895 #if ASTCENC_SSE >= 41
896 return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
897 #else
898 return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
899 #endif
900 }
901
902 /**
903 * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
904 */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)905 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
906 {
907 #if ASTCENC_SSE >= 41
908 return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
909 #else
910 __m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31));
911 return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m)));
912 #endif
913 }
914
915 /**
916 * @brief Load a vector of gathered results from an array;
917 */
gatherf(const float * base,vint4 indices)918 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
919 {
920 #if ASTCENC_AVX >= 2
921 return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
922 #else
923 alignas(16) int idx[4];
924 storea(indices, idx);
925 return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
926 #endif
927 }
928
929 /**
930 * @brief Store a vector to an unaligned memory address.
931 */
store(vfloat4 a,float * p)932 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
933 {
934 _mm_storeu_ps(p, a.m);
935 }
936
937 /**
938 * @brief Store a vector to a 16B aligned memory address.
939 */
storea(vfloat4 a,float * p)940 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
941 {
942 _mm_store_ps(p, a.m);
943 }
944
945 /**
946 * @brief Return a integer value for a float vector, using truncation.
947 */
float_to_int(vfloat4 a)948 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
949 {
950 return vint4(_mm_cvttps_epi32(a.m));
951 }
952
953 /**
954 * @brief Return a integer value for a float vector, using round-to-nearest.
955 */
float_to_int_rtn(vfloat4 a)956 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
957 {
958 a = a + vfloat4(0.5f);
959 return vint4(_mm_cvttps_epi32(a.m));
960 }
961
962 /**
963 * @brief Return a float value for an integer vector.
964 */
int_to_float(vint4 a)965 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
966 {
967 return vfloat4(_mm_cvtepi32_ps(a.m));
968 }
969
970 /**
971 * @brief Return a float16 value for a float vector, using round-to-nearest.
972 */
float_to_float16(vfloat4 a)973 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
974 {
975 #if ASTCENC_F16C >= 1
976 __m128i packedf16 = _mm_cvtps_ph(a.m, 0);
977 __m128i f16 = _mm_cvtepu16_epi32(packedf16);
978 return vint4(f16);
979 #else
980 return vint4(
981 float_to_sf16(a.lane<0>()),
982 float_to_sf16(a.lane<1>()),
983 float_to_sf16(a.lane<2>()),
984 float_to_sf16(a.lane<3>()));
985 #endif
986 }
987
988 /**
989 * @brief Return a float16 value for a float scalar, using round-to-nearest.
990 */
float_to_float16(float a)991 static inline uint16_t float_to_float16(float a)
992 {
993 #if ASTCENC_F16C >= 1
994 __m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
995 return static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
996 #else
997 return float_to_sf16(a);
998 #endif
999 }
1000
1001 /**
1002 * @brief Return a float value for a float16 vector.
1003 */
float16_to_float(vint4 a)1004 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
1005 {
1006 #if ASTCENC_F16C >= 1
1007 __m128i packed = _mm_packs_epi32(a.m, a.m);
1008 __m128 f32 = _mm_cvtph_ps(packed);
1009 return vfloat4(f32);
1010 #else
1011 return vfloat4(
1012 sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
1013 sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
1014 sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
1015 sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
1016 #endif
1017 }
1018
1019 /**
1020 * @brief Return a float value for a float16 scalar.
1021 */
float16_to_float(uint16_t a)1022 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
1023 {
1024 #if ASTCENC_F16C >= 1
1025 __m128i packed = _mm_set1_epi16(static_cast<short>(a));
1026 __m128 f32 = _mm_cvtph_ps(packed);
1027 return _mm_cvtss_f32(f32);
1028 #else
1029 return sf16_to_float(a);
1030 #endif
1031 }
1032
1033 /**
1034 * @brief Return a float value as an integer bit pattern (i.e. no conversion).
1035 *
1036 * It is a common trick to convert floats into integer bit patterns, perform
1037 * some bit hackery based on knowledge they are IEEE 754 layout, and then
1038 * convert them back again. This is the first half of that flip.
1039 */
float_as_int(vfloat4 a)1040 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
1041 {
1042 return vint4(_mm_castps_si128(a.m));
1043 }
1044
1045 /**
1046 * @brief Return a integer value as a float bit pattern (i.e. no conversion).
1047 *
1048 * It is a common trick to convert floats into integer bit patterns, perform
1049 * some bit hackery based on knowledge they are IEEE 754 layout, and then
1050 * convert them back again. This is the second half of that flip.
1051 */
int_as_float(vint4 v)1052 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
1053 {
1054 return vfloat4(_mm_castsi128_ps(v.m));
1055 }
1056
1057 /**
1058 * @brief Prepare a vtable lookup table for use with the native SIMD size.
1059 */
vtable_prepare(vint4 t0,vint4 & t0p)1060 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
1061 {
1062 t0p = t0;
1063 }
1064
1065 /**
1066 * @brief Prepare a vtable lookup table for use with the native SIMD size.
1067 */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)1068 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
1069 {
1070 #if ASTCENC_SSE >= 41
1071 t0p = t0;
1072 t1p = t0 ^ t1;
1073 #else
1074 t0p = t0;
1075 t1p = t1;
1076 #endif
1077 }
1078
1079 /**
1080 * @brief Prepare a vtable lookup table for use with the native SIMD size.
1081 */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)1082 ASTCENC_SIMD_INLINE void vtable_prepare(
1083 vint4 t0, vint4 t1, vint4 t2, vint4 t3,
1084 vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
1085 {
1086 #if ASTCENC_SSE >= 41
1087 t0p = t0;
1088 t1p = t0 ^ t1;
1089 t2p = t1 ^ t2;
1090 t3p = t2 ^ t3;
1091 #else
1092 t0p = t0;
1093 t1p = t1;
1094 t2p = t2;
1095 t3p = t3;
1096 #endif
1097 }
1098
1099 /**
1100 * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
1101 */
vtable_8bt_32bi(vint4 t0,vint4 idx)1102 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
1103 {
1104 #if ASTCENC_SSE >= 41
1105 // Set index byte MSB to 1 for unused bytes so shuffle returns zero
1106 __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1107
1108 __m128i result = _mm_shuffle_epi8(t0.m, idxx);
1109 return vint4(result);
1110 #else
1111 uint8_t table[16];
1112
1113 std::memcpy(table + 0, &t0.m, 4 * sizeof(int));
1114
1115 return vint4(table[idx.lane<0>()],
1116 table[idx.lane<1>()],
1117 table[idx.lane<2>()],
1118 table[idx.lane<3>()]);
1119 #endif
1120 }
1121
1122 /**
1123 * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
1124 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)1125 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
1126 {
1127 #if ASTCENC_SSE >= 41
1128 // Set index byte MSB to 1 for unused bytes so shuffle returns zero
1129 __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1130
1131 __m128i result = _mm_shuffle_epi8(t0.m, idxx);
1132 idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1133
1134 __m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1135 result = _mm_xor_si128(result, result2);
1136
1137 return vint4(result);
1138 #else
1139 uint8_t table[32];
1140
1141 std::memcpy(table + 0, &t0.m, 4 * sizeof(int));
1142 std::memcpy(table + 16, &t1.m, 4 * sizeof(int));
1143
1144 return vint4(table[idx.lane<0>()],
1145 table[idx.lane<1>()],
1146 table[idx.lane<2>()],
1147 table[idx.lane<3>()]);
1148 #endif
1149 }
1150
1151 /**
1152 * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1153 */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1154 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1155 {
1156 #if ASTCENC_SSE >= 41
1157 // Set index byte MSB to 1 for unused bytes so shuffle returns zero
1158 __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1159
1160 __m128i result = _mm_shuffle_epi8(t0.m, idxx);
1161 idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1162
1163 __m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1164 result = _mm_xor_si128(result, result2);
1165 idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1166
1167 result2 = _mm_shuffle_epi8(t2.m, idxx);
1168 result = _mm_xor_si128(result, result2);
1169 idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1170
1171 result2 = _mm_shuffle_epi8(t3.m, idxx);
1172 result = _mm_xor_si128(result, result2);
1173
1174 return vint4(result);
1175 #else
1176 uint8_t table[64];
1177
1178 std::memcpy(table + 0, &t0.m, 4 * sizeof(int));
1179 std::memcpy(table + 16, &t1.m, 4 * sizeof(int));
1180 std::memcpy(table + 32, &t2.m, 4 * sizeof(int));
1181 std::memcpy(table + 48, &t3.m, 4 * sizeof(int));
1182
1183 return vint4(table[idx.lane<0>()],
1184 table[idx.lane<1>()],
1185 table[idx.lane<2>()],
1186 table[idx.lane<3>()]);
1187 #endif
1188 }
1189
1190 /**
1191 * @brief Return a vector of interleaved RGBA data.
1192 *
1193 * Input vectors have the value stored in the bottom 8 bits of each lane,
1194 * with high bits set to zero.
1195 *
1196 * Output vector stores a single RGBA texel packed in each lane.
1197 */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1198 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1199 {
1200 // Workaround an XCode compiler internal fault; note is slower than slli_epi32
1201 // so we should revert this when we get the opportunity
1202 #if defined(__APPLE__)
1203 __m128i value = r.m;
1204 value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1));
1205 value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2));
1206 value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3));
1207 return vint4(value);
1208 #else
1209 __m128i value = r.m;
1210 value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8));
1211 value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16));
1212 value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24));
1213 return vint4(value);
1214 #endif
1215 }
1216
1217 /**
1218 * @brief Store a single vector lane to an unaligned address.
1219 */
store_lane(uint8_t * base,int data)1220 ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
1221 {
1222 std::memcpy(base, &data, sizeof(int));
1223 }
1224
1225 /**
1226 * @brief Store a vector, skipping masked lanes.
1227 *
1228 * All masked lanes must be at the end of vector, after all non-masked lanes.
1229 */
store_lanes_masked(uint8_t * base,vint4 data,vmask4 mask)1230 ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
1231 {
1232 #if ASTCENC_AVX >= 2
1233 _mm_maskstore_epi32(reinterpret_cast<int*>(base), _mm_castps_si128(mask.m), data.m);
1234 #else
1235 // Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee
1236 // fault suppression on masked lanes so we can get page faults at the end of an image.
1237 if (mask.lane<3>() != 0.0f)
1238 {
1239 store(data, base);
1240 }
1241 else if (mask.lane<2>() != 0.0f)
1242 {
1243 store_lane(base + 0, data.lane<0>());
1244 store_lane(base + 4, data.lane<1>());
1245 store_lane(base + 8, data.lane<2>());
1246 }
1247 else if (mask.lane<1>() != 0.0f)
1248 {
1249 store_lane(base + 0, data.lane<0>());
1250 store_lane(base + 4, data.lane<1>());
1251 }
1252 else if (mask.lane<0>() != 0.0f)
1253 {
1254 store_lane(base + 0, data.lane<0>());
1255 }
1256 #endif
1257 }
1258
1259 #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1260
1261 #define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
1262
1263 /**
1264 * @brief Return the dot product for the full 4 lanes, returning scalar.
1265 */
dot_s(vfloat4 a,vfloat4 b)1266 ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
1267 {
1268 return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
1269 }
1270
1271 /**
1272 * @brief Return the dot product for the full 4 lanes, returning vector.
1273 */
dot(vfloat4 a,vfloat4 b)1274 ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
1275 {
1276 return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
1277 }
1278
1279 /**
1280 * @brief Return the dot product for the bottom 3 lanes, returning scalar.
1281 */
dot3_s(vfloat4 a,vfloat4 b)1282 ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
1283 {
1284 return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
1285 }
1286
1287 /**
1288 * @brief Return the dot product for the bottom 3 lanes, returning vector.
1289 */
dot3(vfloat4 a,vfloat4 b)1290 ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
1291 {
1292 return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
1293 }
1294
1295 #endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1296
1297 #if ASTCENC_POPCNT >= 1
1298
1299 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1300
1301 /**
1302 * @brief Population bit count.
1303 *
1304 * @param v The value to population count.
1305 *
1306 * @return The number of 1 bits.
1307 */
popcount(uint64_t v)1308 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1309 {
1310 return static_cast<int>(_mm_popcnt_u64(v));
1311 }
1312
1313 #endif // ASTCENC_POPCNT >= 1
1314
1315 #endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
1316