• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2023 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief 4x32-bit vectors, implemented using SSE.
20  *
21  * This module implements 4-wide 32-bit float, int, and mask vectors for x86
22  * SSE. The implementation requires at least SSE2, but higher levels of SSE can
23  * be selected at compile time to improve performance.
24  *
25  * There is a baseline level of functionality provided by all vector widths and
26  * implementations. This is implemented using identical function signatures,
27  * modulo data type, so we can use them as substitutable implementations in VLA
28  * code.
29  *
30  * The 4-wide vectors are also used as a fixed-width type, and significantly
31  * extend the functionality above that available to VLA code.
32  */
33 
34 #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
35 #define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
36 
37 #ifndef ASTCENC_SIMD_INLINE
38 	#error "Include astcenc_vecmathlib.h, do not include directly"
39 #endif
40 
41 #include <cstdio>
42 #include <cstring>
43 
44 // ============================================================================
45 // vfloat4 data type
46 // ============================================================================
47 
48 /**
49  * @brief Data type for 4-wide floats.
50  */
51 struct vfloat4
52 {
53 	/**
54 	 * @brief Construct from zero-initialized value.
55 	 */
56 	ASTCENC_SIMD_INLINE vfloat4() = default;
57 
58 	/**
59 	 * @brief Construct from 4 values loaded from an unaligned address.
60 	 *
61 	 * Consider using loada() which is better with vectors if data is aligned
62 	 * to vector length.
63 	 */
vfloat4vfloat464 	ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
65 	{
66 		m = _mm_loadu_ps(p);
67 	}
68 
69 	/**
70 	 * @brief Construct from 1 scalar value replicated across all lanes.
71 	 *
72 	 * Consider using zero() for constexpr zeros.
73 	 */
vfloat4vfloat474 	ASTCENC_SIMD_INLINE explicit vfloat4(float a)
75 	{
76 		m = _mm_set1_ps(a);
77 	}
78 
79 	/**
80 	 * @brief Construct from 4 scalar values.
81 	 *
82 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
83 	 */
vfloat4vfloat484 	ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
85 	{
86 		m = _mm_set_ps(d, c, b, a);
87 	}
88 
89 	/**
90 	 * @brief Construct from an existing SIMD register.
91 	 */
vfloat4vfloat492 	ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
93 	{
94 		m = a;
95 	}
96 
97 	/**
98 	 * @brief Get the scalar value of a single lane.
99 	 */
lanevfloat4100 	template <int l> ASTCENC_SIMD_INLINE float lane() const
101 	{
102 		return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
103 	}
104 
105 	/**
106 	 * @brief Set the scalar value of a single lane.
107 	 */
set_lanevfloat4108 	template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
109 	{
110 #if ASTCENC_SSE >= 41
111 		__m128 v = _mm_set1_ps(a);
112 		m = _mm_insert_ps(m, v, l << 6 | l << 4);
113 #else
114 		alignas(16) float idx[4];
115 		_mm_store_ps(idx, m);
116 		idx[l] = a;
117 		m = _mm_load_ps(idx);
118 #endif
119 	}
120 
121 	/**
122 	 * @brief Factory that returns a vector of zeros.
123 	 */
zerovfloat4124 	static ASTCENC_SIMD_INLINE vfloat4 zero()
125 	{
126 		return vfloat4(_mm_setzero_ps());
127 	}
128 
129 	/**
130 	 * @brief Factory that returns a replicated scalar loaded from memory.
131 	 */
load1vfloat4132 	static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
133 	{
134 		return vfloat4(_mm_load_ps1(p));
135 	}
136 
137 	/**
138 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
139 	 */
loadavfloat4140 	static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
141 	{
142 		return vfloat4(_mm_load_ps(p));
143 	}
144 
145 	/**
146 	 * @brief Factory that returns a vector containing the lane IDs.
147 	 */
lane_idvfloat4148 	static ASTCENC_SIMD_INLINE vfloat4 lane_id()
149 	{
150 		return vfloat4(_mm_set_ps(3, 2, 1, 0));
151 	}
152 
153 	/**
154 	 * @brief Return a swizzled float 2.
155 	 */
swzvfloat4156 	template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
157 	{
158 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
159 		result.set_lane<2>(0.0f);
160 		result.set_lane<3>(0.0f);
161 		return result;
162 	}
163 
164 	/**
165 	 * @brief Return a swizzled float 3.
166 	 */
swzvfloat4167 	template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
168 	{
169 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
170 		result.set_lane<3>(0.0f);
171 		return result;
172 	}
173 
174 	/**
175 	 * @brief Return a swizzled float 4.
176 	 */
swzvfloat4177 	template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
178 	{
179 		return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
180 	}
181 
182 	/**
183 	 * @brief The vector ...
184 	 */
185 	__m128 m;
186 };
187 
188 // ============================================================================
189 // vint4 data type
190 // ============================================================================
191 
192 /**
193  * @brief Data type for 4-wide ints.
194  */
195 struct vint4
196 {
197 	/**
198 	 * @brief Construct from zero-initialized value.
199 	 */
200 	ASTCENC_SIMD_INLINE vint4() = default;
201 
202 	/**
203 	 * @brief Construct from 4 values loaded from an unaligned address.
204 	 *
205 	 * Consider using loada() which is better with vectors if data is aligned
206 	 * to vector length.
207 	 */
vint4vint4208 	ASTCENC_SIMD_INLINE explicit vint4(const int *p)
209 	{
210 		m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
211 	}
212 
213 	/**
214 	 * @brief Construct from 4 uint8_t loaded from an unaligned address.
215 	 */
vint4vint4216 	ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
217 	{
218 		// _mm_loadu_si32 would be nicer syntax, but missing on older GCC
219 		__m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
220 
221 #if ASTCENC_SSE >= 41
222 		m = _mm_cvtepu8_epi32(t);
223 #else
224 		t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
225 		m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
226 #endif
227 	}
228 
229 	/**
230 	 * @brief Construct from 1 scalar value replicated across all lanes.
231 	 *
232 	 * Consider using vfloat4::zero() for constexpr zeros.
233 	 */
vint4vint4234 	ASTCENC_SIMD_INLINE explicit vint4(int a)
235 	{
236 		m = _mm_set1_epi32(a);
237 	}
238 
239 	/**
240 	 * @brief Construct from 4 scalar values.
241 	 *
242 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
243 	 */
vint4vint4244 	ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
245 	{
246 		m = _mm_set_epi32(d, c, b, a);
247 	}
248 
249 	/**
250 	 * @brief Construct from an existing SIMD register.
251 	 */
vint4vint4252 	ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
253 	{
254 		m = a;
255 	}
256 
257 	/**
258 	 * @brief Get the scalar from a single lane.
259 	 */
lanevint4260 	template <int l> ASTCENC_SIMD_INLINE int lane() const
261 	{
262 		return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
263 	}
264 
265 	/**
266 	 * @brief Set the scalar value of a single lane.
267 	 */
set_lanevint4268 	template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
269 	{
270 #if ASTCENC_SSE >= 41
271 		m = _mm_insert_epi32(m, a, l);
272 #else
273 		alignas(16) int idx[4];
274 		_mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
275 		idx[l] = a;
276 		m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
277 #endif
278 	}
279 
280 	/**
281 	 * @brief Factory that returns a vector of zeros.
282 	 */
zerovint4283 	static ASTCENC_SIMD_INLINE vint4 zero()
284 	{
285 		return vint4(_mm_setzero_si128());
286 	}
287 
288 	/**
289 	 * @brief Factory that returns a replicated scalar loaded from memory.
290 	 */
load1vint4291 	static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
292 	{
293 		return vint4(*p);
294 	}
295 
296 	/**
297 	 * @brief Factory that returns a vector loaded from unaligned memory.
298 	 */
loadvint4299 	static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p)
300 	{
301 #if ASTCENC_SSE >= 41
302 		return vint4(_mm_lddqu_si128(reinterpret_cast<const __m128i*>(p)));
303 #else
304 		return vint4(_mm_loadu_si128(reinterpret_cast<const __m128i*>(p)));
305 #endif
306 	}
307 
308 	/**
309 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
310 	 */
loadavint4311 	static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
312 	{
313 		return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
314 	}
315 
316 	/**
317 	 * @brief Factory that returns a vector containing the lane IDs.
318 	 */
lane_idvint4319 	static ASTCENC_SIMD_INLINE vint4 lane_id()
320 	{
321 		return vint4(_mm_set_epi32(3, 2, 1, 0));
322 	}
323 
324 	/**
325 	 * @brief The vector ...
326 	 */
327 	__m128i m;
328 };
329 
330 // ============================================================================
331 // vmask4 data type
332 // ============================================================================
333 
334 /**
335  * @brief Data type for 4-wide control plane masks.
336  */
337 struct vmask4
338 {
339 	/**
340 	 * @brief Construct from an existing SIMD register.
341 	 */
vmask4vmask4342 	ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
343 	{
344 		m = a;
345 	}
346 
347 	/**
348 	 * @brief Construct from an existing SIMD register.
349 	 */
vmask4vmask4350 	ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
351 	{
352 		m = _mm_castsi128_ps(a);
353 	}
354 
355 	/**
356 	 * @brief Construct from 1 scalar value.
357 	 */
vmask4vmask4358 	ASTCENC_SIMD_INLINE explicit vmask4(bool a)
359 	{
360 		vint4 mask(a == false ? 0 : -1);
361 		m = _mm_castsi128_ps(mask.m);
362 	}
363 
364 	/**
365 	 * @brief Construct from 4 scalar values.
366 	 *
367 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
368 	 */
vmask4vmask4369 	ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
370 	{
371 		vint4 mask(a == false ? 0 : -1,
372 		           b == false ? 0 : -1,
373 		           c == false ? 0 : -1,
374 		           d == false ? 0 : -1);
375 
376 		m = _mm_castsi128_ps(mask.m);
377 	}
378 
379 	/**
380 	 * @brief Get the scalar value of a single lane.
381 	 */
lanevmask4382 	template <int l> ASTCENC_SIMD_INLINE bool lane() const
383 	{
384 		return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)) != 0.0f;
385 	}
386 
387 	/**
388 	 * @brief The vector ...
389 	 */
390 	__m128 m;
391 };
392 
393 // ============================================================================
394 // vmask4 operators and functions
395 // ============================================================================
396 
397 /**
398  * @brief Overload: mask union (or).
399  */
400 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
401 {
402 	return vmask4(_mm_or_ps(a.m, b.m));
403 }
404 
405 /**
406  * @brief Overload: mask intersect (and).
407  */
408 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
409 {
410 	return vmask4(_mm_and_ps(a.m, b.m));
411 }
412 
413 /**
414  * @brief Overload: mask difference (xor).
415  */
416 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
417 {
418 	return vmask4(_mm_xor_ps(a.m, b.m));
419 }
420 
421 /**
422  * @brief Overload: mask invert (not).
423  */
424 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
425 {
426 	return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
427 }
428 
429 /**
430  * @brief Return a 4-bit mask code indicating mask status.
431  *
432  * bit0 = lane 0
433  */
mask(vmask4 a)434 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
435 {
436 	return static_cast<unsigned int>(_mm_movemask_ps(a.m));
437 }
438 
439 // ============================================================================
440 // vint4 operators and functions
441 // ============================================================================
442 
443 /**
444  * @brief Overload: vector by vector addition.
445  */
446 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
447 {
448 	return vint4(_mm_add_epi32(a.m, b.m));
449 }
450 
451 /**
452  * @brief Overload: vector by vector subtraction.
453  */
454 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
455 {
456 	return vint4(_mm_sub_epi32(a.m, b.m));
457 }
458 
459 /**
460  * @brief Overload: vector by vector multiplication.
461  */
462 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
463 {
464 #if ASTCENC_SSE >= 41
465 	return vint4(_mm_mullo_epi32 (a.m, b.m));
466 #else
467 	__m128i t1 = _mm_mul_epu32(a.m, b.m);
468 	__m128i t2 = _mm_mul_epu32(
469 	                 _mm_srli_si128(a.m, 4),
470 	                 _mm_srli_si128(b.m, 4));
471 	__m128i r =  _mm_unpacklo_epi32(
472 	                 _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
473 	                 _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
474 	return vint4(r);
475 #endif
476 }
477 
478 /**
479  * @brief Overload: vector bit invert.
480  */
481 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
482 {
483 	return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
484 }
485 
486 /**
487  * @brief Overload: vector by vector bitwise or.
488  */
489 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
490 {
491 	return vint4(_mm_or_si128(a.m, b.m));
492 }
493 
494 /**
495  * @brief Overload: vector by vector bitwise and.
496  */
497 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
498 {
499 	return vint4(_mm_and_si128(a.m, b.m));
500 }
501 
502 /**
503  * @brief Overload: vector by vector bitwise xor.
504  */
505 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
506 {
507 	return vint4(_mm_xor_si128(a.m, b.m));
508 }
509 
510 /**
511  * @brief Overload: vector by vector equality.
512  */
513 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
514 {
515 	return vmask4(_mm_cmpeq_epi32(a.m, b.m));
516 }
517 
518 /**
519  * @brief Overload: vector by vector inequality.
520  */
521 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
522 {
523 	return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
524 }
525 
526 /**
527  * @brief Overload: vector by vector less than.
528  */
529 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
530 {
531 	return vmask4(_mm_cmplt_epi32(a.m, b.m));
532 }
533 
534 /**
535  * @brief Overload: vector by vector greater than.
536  */
537 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
538 {
539 	return vmask4(_mm_cmpgt_epi32(a.m, b.m));
540 }
541 
542 /**
543  * @brief Logical shift left.
544  */
lsl(vint4 a)545 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
546 {
547 	return vint4(_mm_slli_epi32(a.m, s));
548 }
549 
550 /**
551  * @brief Logical shift right.
552  */
lsr(vint4 a)553 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
554 {
555 	return vint4(_mm_srli_epi32(a.m, s));
556 }
557 
558 /**
559  * @brief Arithmetic shift right.
560  */
asr(vint4 a)561 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
562 {
563 	return vint4(_mm_srai_epi32(a.m, s));
564 }
565 
566 /**
567  * @brief Return the min vector of two vectors.
568  */
min(vint4 a,vint4 b)569 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
570 {
571 #if ASTCENC_SSE >= 41
572 	return vint4(_mm_min_epi32(a.m, b.m));
573 #else
574 	vmask4 d = a < b;
575 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
576 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
577 	return vint4(_mm_or_si128(ap,bp));
578 #endif
579 }
580 
581 /**
582  * @brief Return the max vector of two vectors.
583  */
max(vint4 a,vint4 b)584 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
585 {
586 #if ASTCENC_SSE >= 41
587 	return vint4(_mm_max_epi32(a.m, b.m));
588 #else
589 	vmask4 d = a > b;
590 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
591 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
592 	return vint4(_mm_or_si128(ap,bp));
593 #endif
594 }
595 
596 /**
597  * @brief Return the horizontal minimum of a vector.
598  */
hmin(vint4 a)599 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
600 {
601 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
602 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
603 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
604 }
605 
606 /*
607  * @brief Return the horizontal maximum of a vector.
608  */
hmax(vint4 a)609 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
610 {
611 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
612 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
613 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
614 }
615 
616 /**
617  * @brief Return the horizontal sum of a vector as a scalar.
618  */
hadd_s(vint4 a)619 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
620 {
621 	// Add top and bottom halves, lane 1/0
622 	__m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m),
623 	                                              _mm_castsi128_ps(a.m)));
624 	__m128i t = _mm_add_epi32(a.m, fold);
625 
626 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
627 	t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55));
628 
629 	return _mm_cvtsi128_si32(t);
630 }
631 
632 /**
633  * @brief Store a vector to a 16B aligned memory address.
634  */
storea(vint4 a,int * p)635 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
636 {
637 	_mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
638 }
639 
640 /**
641  * @brief Store a vector to an unaligned memory address.
642  */
store(vint4 a,int * p)643 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
644 {
645 	// Cast due to missing intrinsics
646 	_mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
647 }
648 
649 /**
650  * @brief Store a vector to an unaligned memory address.
651  */
store(vint4 a,uint8_t * p)652 ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p)
653 {
654 	std::memcpy(p, &a.m, sizeof(int) * 4);
655 }
656 
657 /**
658  * @brief Store lowest N (vector width) bytes into an unaligned address.
659  */
store_nbytes(vint4 a,uint8_t * p)660 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
661 {
662 	// Cast due to missing intrinsics
663 	_mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
664 }
665 
666 /**
667  * @brief Gather N (vector width) indices from the array.
668  */
gatheri(const int * base,vint4 indices)669 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
670 {
671 #if ASTCENC_AVX >= 2
672 	return vint4(_mm_i32gather_epi32(base, indices.m, 4));
673 #else
674 	alignas(16) int idx[4];
675 	storea(indices, idx);
676 	return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
677 #endif
678 }
679 
680 /**
681  * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
682  */
pack_low_bytes(vint4 a)683 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
684 {
685 #if ASTCENC_SSE >= 41
686 	__m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
687 	return vint4(_mm_shuffle_epi8(a.m, shuf));
688 #else
689 	__m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
690 	__m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
691 	return vint4(_mm_unpacklo_epi16(va, vb));
692 #endif
693 }
694 
695 /**
696  * @brief Return lanes from @c b if @c cond is set, else @c a.
697  */
select(vint4 a,vint4 b,vmask4 cond)698 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
699 {
700 	__m128i condi = _mm_castps_si128(cond.m);
701 
702 #if ASTCENC_SSE >= 41
703 	return vint4(_mm_blendv_epi8(a.m, b.m, condi));
704 #else
705 	return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
706 #endif
707 }
708 
709 // ============================================================================
710 // vfloat4 operators and functions
711 // ============================================================================
712 
713 /**
714  * @brief Overload: vector by vector addition.
715  */
716 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
717 {
718 	return vfloat4(_mm_add_ps(a.m, b.m));
719 }
720 
721 /**
722  * @brief Overload: vector by vector subtraction.
723  */
724 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
725 {
726 	return vfloat4(_mm_sub_ps(a.m, b.m));
727 }
728 
729 /**
730  * @brief Overload: vector by vector multiplication.
731  */
732 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
733 {
734 	return vfloat4(_mm_mul_ps(a.m, b.m));
735 }
736 
737 /**
738  * @brief Overload: vector by vector division.
739  */
740 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
741 {
742 	return vfloat4(_mm_div_ps(a.m, b.m));
743 }
744 
745 /**
746  * @brief Overload: vector by vector equality.
747  */
748 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
749 {
750 	return vmask4(_mm_cmpeq_ps(a.m, b.m));
751 }
752 
753 /**
754  * @brief Overload: vector by vector inequality.
755  */
756 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
757 {
758 	return vmask4(_mm_cmpneq_ps(a.m, b.m));
759 }
760 
761 /**
762  * @brief Overload: vector by vector less than.
763  */
764 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
765 {
766 	return vmask4(_mm_cmplt_ps(a.m, b.m));
767 }
768 
769 /**
770  * @brief Overload: vector by vector greater than.
771  */
772 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
773 {
774 	return vmask4(_mm_cmpgt_ps(a.m, b.m));
775 }
776 
777 /**
778  * @brief Overload: vector by vector less than or equal.
779  */
780 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
781 {
782 	return vmask4(_mm_cmple_ps(a.m, b.m));
783 }
784 
785 /**
786  * @brief Overload: vector by vector greater than or equal.
787  */
788 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
789 {
790 	return vmask4(_mm_cmpge_ps(a.m, b.m));
791 }
792 
793 /**
794  * @brief Return the min vector of two vectors.
795  *
796  * If either lane value is NaN, @c b will be returned for that lane.
797  */
min(vfloat4 a,vfloat4 b)798 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
799 {
800 	// Do not reorder - second operand will return if either is NaN
801 	return vfloat4(_mm_min_ps(a.m, b.m));
802 }
803 
804 /**
805  * @brief Return the max vector of two vectors.
806  *
807  * If either lane value is NaN, @c b will be returned for that lane.
808  */
max(vfloat4 a,vfloat4 b)809 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
810 {
811 	// Do not reorder - second operand will return if either is NaN
812 	return vfloat4(_mm_max_ps(a.m, b.m));
813 }
814 
815 /**
816  * @brief Return the absolute value of the float vector.
817  */
abs(vfloat4 a)818 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
819 {
820 	return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
821 }
822 
823 /**
824  * @brief Return a float rounded to the nearest integer value.
825  */
round(vfloat4 a)826 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
827 {
828 #if ASTCENC_SSE >= 41
829 	constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
830 	return vfloat4(_mm_round_ps(a.m, flags));
831 #else
832 	__m128 v = a.m;
833 	__m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000)));
834 	__m128 no_fraction = _mm_set1_ps(8388608.0f);
835 	__m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
836 	__m128 sign = _mm_and_ps(v, neg_zero);
837 	__m128 s_magic = _mm_or_ps(no_fraction, sign);
838 	__m128 r1 = _mm_add_ps(v, s_magic);
839 	r1 = _mm_sub_ps(r1, s_magic);
840 	__m128 r2 = _mm_and_ps(v, abs_mask);
841 	__m128 mask = _mm_cmple_ps(r2, no_fraction);
842 	r2 = _mm_andnot_ps(mask, v);
843 	r1 = _mm_and_ps(r1, mask);
844 	return vfloat4(_mm_xor_ps(r1, r2));
845 #endif
846 }
847 
848 /**
849  * @brief Return the horizontal minimum of a vector.
850  */
hmin(vfloat4 a)851 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
852 {
853 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
854 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
855 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
856 }
857 
858 /**
859  * @brief Return the horizontal maximum of a vector.
860  */
hmax(vfloat4 a)861 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
862 {
863 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
864 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
865 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
866 }
867 
868 /**
869  * @brief Return the horizontal sum of a vector as a scalar.
870  */
hadd_s(vfloat4 a)871 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
872 {
873 	// Add top and bottom halves, lane 1/0
874 	__m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
875 
876 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
877 	t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
878 
879 	return _mm_cvtss_f32(t);
880 }
881 
882 /**
883  * @brief Return the sqrt of the lanes in the vector.
884  */
sqrt(vfloat4 a)885 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
886 {
887 	return vfloat4(_mm_sqrt_ps(a.m));
888 }
889 
890 /**
891  * @brief Return lanes from @c b if @c cond is set, else @c a.
892  */
select(vfloat4 a,vfloat4 b,vmask4 cond)893 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
894 {
895 #if ASTCENC_SSE >= 41
896 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
897 #else
898 	return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
899 #endif
900 }
901 
902 /**
903  * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
904  */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)905 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
906 {
907 #if ASTCENC_SSE >= 41
908 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
909 #else
910 	__m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31));
911 	return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m)));
912 #endif
913 }
914 
915 /**
916  * @brief Load a vector of gathered results from an array;
917  */
gatherf(const float * base,vint4 indices)918 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
919 {
920 #if ASTCENC_AVX >= 2
921 	return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
922 #else
923 	alignas(16) int idx[4];
924 	storea(indices, idx);
925 	return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
926 #endif
927 }
928 
929 /**
930  * @brief Store a vector to an unaligned memory address.
931  */
store(vfloat4 a,float * p)932 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
933 {
934 	_mm_storeu_ps(p, a.m);
935 }
936 
937 /**
938  * @brief Store a vector to a 16B aligned memory address.
939  */
storea(vfloat4 a,float * p)940 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
941 {
942 	_mm_store_ps(p, a.m);
943 }
944 
945 /**
946  * @brief Return a integer value for a float vector, using truncation.
947  */
float_to_int(vfloat4 a)948 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
949 {
950 	return vint4(_mm_cvttps_epi32(a.m));
951 }
952 
953 /**
954  * @brief Return a integer value for a float vector, using round-to-nearest.
955  */
float_to_int_rtn(vfloat4 a)956 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
957 {
958 	a = a + vfloat4(0.5f);
959 	return vint4(_mm_cvttps_epi32(a.m));
960 }
961 
962 /**
963  * @brief Return a float value for an integer vector.
964  */
int_to_float(vint4 a)965 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
966 {
967 	return vfloat4(_mm_cvtepi32_ps(a.m));
968 }
969 
970 /**
971  * @brief Return a float16 value for a float vector, using round-to-nearest.
972  */
float_to_float16(vfloat4 a)973 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
974 {
975 #if ASTCENC_F16C >= 1
976 	__m128i packedf16 = _mm_cvtps_ph(a.m, 0);
977 	__m128i f16 = _mm_cvtepu16_epi32(packedf16);
978 	return vint4(f16);
979 #else
980 	return vint4(
981 		float_to_sf16(a.lane<0>()),
982 		float_to_sf16(a.lane<1>()),
983 		float_to_sf16(a.lane<2>()),
984 		float_to_sf16(a.lane<3>()));
985 #endif
986 }
987 
988 /**
989  * @brief Return a float16 value for a float scalar, using round-to-nearest.
990  */
float_to_float16(float a)991 static inline uint16_t float_to_float16(float a)
992 {
993 #if ASTCENC_F16C >= 1
994 	__m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
995 	return  static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
996 #else
997 	return float_to_sf16(a);
998 #endif
999 }
1000 
1001 /**
1002  * @brief Return a float value for a float16 vector.
1003  */
float16_to_float(vint4 a)1004 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
1005 {
1006 #if ASTCENC_F16C >= 1
1007 	__m128i packed = _mm_packs_epi32(a.m, a.m);
1008 	__m128 f32 = _mm_cvtph_ps(packed);
1009 	return vfloat4(f32);
1010 #else
1011 	return vfloat4(
1012 		sf16_to_float(static_cast<uint16_t>(a.lane<0>())),
1013 		sf16_to_float(static_cast<uint16_t>(a.lane<1>())),
1014 		sf16_to_float(static_cast<uint16_t>(a.lane<2>())),
1015 		sf16_to_float(static_cast<uint16_t>(a.lane<3>())));
1016 #endif
1017 }
1018 
1019 /**
1020  * @brief Return a float value for a float16 scalar.
1021  */
float16_to_float(uint16_t a)1022 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
1023 {
1024 #if ASTCENC_F16C >= 1
1025 	__m128i packed = _mm_set1_epi16(static_cast<short>(a));
1026 	__m128 f32 = _mm_cvtph_ps(packed);
1027 	return _mm_cvtss_f32(f32);
1028 #else
1029 	return sf16_to_float(a);
1030 #endif
1031 }
1032 
1033 /**
1034  * @brief Return a float value as an integer bit pattern (i.e. no conversion).
1035  *
1036  * It is a common trick to convert floats into integer bit patterns, perform
1037  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1038  * convert them back again. This is the first half of that flip.
1039  */
float_as_int(vfloat4 a)1040 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
1041 {
1042 	return vint4(_mm_castps_si128(a.m));
1043 }
1044 
1045 /**
1046  * @brief Return a integer value as a float bit pattern (i.e. no conversion).
1047  *
1048  * It is a common trick to convert floats into integer bit patterns, perform
1049  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1050  * convert them back again. This is the second half of that flip.
1051  */
int_as_float(vint4 v)1052 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
1053 {
1054 	return vfloat4(_mm_castsi128_ps(v.m));
1055 }
1056 
1057 /**
1058  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1059  */
vtable_prepare(vint4 t0,vint4 & t0p)1060 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p)
1061 {
1062 	t0p = t0;
1063 }
1064 
1065 /**
1066  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1067  */
vtable_prepare(vint4 t0,vint4 t1,vint4 & t0p,vint4 & t1p)1068 ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p)
1069 {
1070 #if ASTCENC_SSE >= 41
1071 	t0p = t0;
1072 	t1p = t0 ^ t1;
1073 #else
1074 	t0p = t0;
1075 	t1p = t1;
1076 #endif
1077 }
1078 
1079 /**
1080  * @brief Prepare a vtable lookup table for use with the native SIMD size.
1081  */
vtable_prepare(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 & t0p,vint4 & t1p,vint4 & t2p,vint4 & t3p)1082 ASTCENC_SIMD_INLINE void vtable_prepare(
1083 	vint4 t0, vint4 t1, vint4 t2, vint4 t3,
1084 	vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p)
1085 {
1086 #if ASTCENC_SSE >= 41
1087 	t0p = t0;
1088 	t1p = t0 ^ t1;
1089 	t2p = t1 ^ t2;
1090 	t3p = t2 ^ t3;
1091 #else
1092 	t0p = t0;
1093 	t1p = t1;
1094 	t2p = t2;
1095 	t3p = t3;
1096 #endif
1097 }
1098 
1099 /**
1100  * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes.
1101  */
vtable_8bt_32bi(vint4 t0,vint4 idx)1102 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx)
1103 {
1104 #if ASTCENC_SSE >= 41
1105 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1106 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1107 
1108 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1109 	return vint4(result);
1110 #else
1111 	uint8_t table[16];
1112 
1113 	std::memcpy(table +  0, &t0.m, 4 * sizeof(int));
1114 
1115 	return vint4(table[idx.lane<0>()],
1116 	             table[idx.lane<1>()],
1117 	             table[idx.lane<2>()],
1118 	             table[idx.lane<3>()]);
1119 #endif
1120 }
1121 
1122 /**
1123  * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes.
1124  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 idx)1125 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx)
1126 {
1127 #if ASTCENC_SSE >= 41
1128 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1129 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1130 
1131 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1132 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1133 
1134 	__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1135 	result = _mm_xor_si128(result, result2);
1136 
1137 	return vint4(result);
1138 #else
1139 	uint8_t table[32];
1140 
1141 	std::memcpy(table +  0, &t0.m, 4 * sizeof(int));
1142 	std::memcpy(table + 16, &t1.m, 4 * sizeof(int));
1143 
1144 	return vint4(table[idx.lane<0>()],
1145 	             table[idx.lane<1>()],
1146 	             table[idx.lane<2>()],
1147 	             table[idx.lane<3>()]);
1148 #endif
1149 }
1150 
1151 /**
1152  * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes.
1153  */
vtable_8bt_32bi(vint4 t0,vint4 t1,vint4 t2,vint4 t3,vint4 idx)1154 ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx)
1155 {
1156 #if ASTCENC_SSE >= 41
1157 	// Set index byte MSB to 1 for unused bytes so shuffle returns zero
1158 	__m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00)));
1159 
1160 	__m128i result = _mm_shuffle_epi8(t0.m, idxx);
1161 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1162 
1163 	__m128i result2 = _mm_shuffle_epi8(t1.m, idxx);
1164 	result = _mm_xor_si128(result, result2);
1165 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1166 
1167 	result2 = _mm_shuffle_epi8(t2.m, idxx);
1168 	result = _mm_xor_si128(result, result2);
1169 	idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16));
1170 
1171 	result2 = _mm_shuffle_epi8(t3.m, idxx);
1172 	result = _mm_xor_si128(result, result2);
1173 
1174 	return vint4(result);
1175 #else
1176 	uint8_t table[64];
1177 
1178 	std::memcpy(table +  0, &t0.m, 4 * sizeof(int));
1179 	std::memcpy(table + 16, &t1.m, 4 * sizeof(int));
1180 	std::memcpy(table + 32, &t2.m, 4 * sizeof(int));
1181 	std::memcpy(table + 48, &t3.m, 4 * sizeof(int));
1182 
1183 	return vint4(table[idx.lane<0>()],
1184 	             table[idx.lane<1>()],
1185 	             table[idx.lane<2>()],
1186 	             table[idx.lane<3>()]);
1187 #endif
1188 }
1189 
1190 /**
1191  * @brief Return a vector of interleaved RGBA data.
1192  *
1193  * Input vectors have the value stored in the bottom 8 bits of each lane,
1194  * with high  bits set to zero.
1195  *
1196  * Output vector stores a single RGBA texel packed in each lane.
1197  */
interleave_rgba8(vint4 r,vint4 g,vint4 b,vint4 a)1198 ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a)
1199 {
1200 // Workaround an XCode compiler internal fault; note is slower than slli_epi32
1201 // so we should revert this when we get the opportunity
1202 #if defined(__APPLE__)
1203 	__m128i value = r.m;
1204 	value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1));
1205 	value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2));
1206 	value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3));
1207 	return vint4(value);
1208 #else
1209 	__m128i value = r.m;
1210 	value = _mm_add_epi32(value, _mm_slli_epi32(g.m,  8));
1211 	value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16));
1212 	value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24));
1213 	return vint4(value);
1214 #endif
1215 }
1216 
1217 /**
1218  * @brief Store a single vector lane to an unaligned address.
1219  */
store_lane(uint8_t * base,int data)1220 ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data)
1221 {
1222 	std::memcpy(base, &data, sizeof(int));
1223 }
1224 
1225 /**
1226  * @brief Store a vector, skipping masked lanes.
1227  *
1228  * All masked lanes must be at the end of vector, after all non-masked lanes.
1229  */
store_lanes_masked(uint8_t * base,vint4 data,vmask4 mask)1230 ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask)
1231 {
1232 #if ASTCENC_AVX >= 2
1233 	_mm_maskstore_epi32(reinterpret_cast<int*>(base), _mm_castps_si128(mask.m), data.m);
1234 #else
1235 	// Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee
1236 	// fault suppression on masked lanes so we can get page faults at the end of an image.
1237 	if (mask.lane<3>() != 0.0f)
1238 	{
1239 		store(data, base);
1240 	}
1241 	else if (mask.lane<2>() != 0.0f)
1242 	{
1243 		store_lane(base + 0, data.lane<0>());
1244 		store_lane(base + 4, data.lane<1>());
1245 		store_lane(base + 8, data.lane<2>());
1246 	}
1247 	else if (mask.lane<1>() != 0.0f)
1248 	{
1249 		store_lane(base + 0, data.lane<0>());
1250 		store_lane(base + 4, data.lane<1>());
1251 	}
1252 	else if (mask.lane<0>() != 0.0f)
1253 	{
1254 		store_lane(base + 0, data.lane<0>());
1255 	}
1256 #endif
1257 }
1258 
1259 #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1260 
1261 #define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
1262 
1263 /**
1264  * @brief Return the dot product for the full 4 lanes, returning scalar.
1265  */
dot_s(vfloat4 a,vfloat4 b)1266 ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
1267 {
1268 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
1269 }
1270 
1271 /**
1272  * @brief Return the dot product for the full 4 lanes, returning vector.
1273  */
dot(vfloat4 a,vfloat4 b)1274 ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
1275 {
1276 	return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
1277 }
1278 
1279 /**
1280  * @brief Return the dot product for the bottom 3 lanes, returning scalar.
1281  */
dot3_s(vfloat4 a,vfloat4 b)1282 ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
1283 {
1284 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
1285 }
1286 
1287 /**
1288  * @brief Return the dot product for the bottom 3 lanes, returning vector.
1289  */
dot3(vfloat4 a,vfloat4 b)1290 ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
1291 {
1292 	return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
1293 }
1294 
1295 #endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1296 
1297 #if ASTCENC_POPCNT >= 1
1298 
1299 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1300 
1301 /**
1302  * @brief Population bit count.
1303  *
1304  * @param v   The value to population count.
1305  *
1306  * @return The number of 1 bits.
1307  */
popcount(uint64_t v)1308 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1309 {
1310 	return static_cast<int>(_mm_popcnt_u64(v));
1311 }
1312 
1313 #endif // ASTCENC_POPCNT >= 1
1314 
1315 #endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
1316