• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# User Guide
2
3## Command Line
4
5[Output Formats](#output-formats)
6
7[Output Files](#output-files)
8
9[Running Benchmarks](#running-benchmarks)
10
11[Running a Subset of Benchmarks](#running-a-subset-of-benchmarks)
12
13[Result Comparison](#result-comparison)
14
15[Extra Context](#extra-context)
16
17## Library
18
19[Runtime and Reporting Considerations](#runtime-and-reporting-considerations)
20
21[Setup/Teardown](#setupteardown)
22
23[Passing Arguments](#passing-arguments)
24
25[Custom Benchmark Name](#custom-benchmark-name)
26
27[Calculating Asymptotic Complexity](#asymptotic-complexity)
28
29[Templated Benchmarks](#templated-benchmarks)
30
31[Fixtures](#fixtures)
32
33[Custom Counters](#custom-counters)
34
35[Multithreaded Benchmarks](#multithreaded-benchmarks)
36
37[CPU Timers](#cpu-timers)
38
39[Manual Timing](#manual-timing)
40
41[Setting the Time Unit](#setting-the-time-unit)
42
43[Random Interleaving](random_interleaving.md)
44
45[User-Requested Performance Counters](perf_counters.md)
46
47[Preventing Optimization](#preventing-optimization)
48
49[Reporting Statistics](#reporting-statistics)
50
51[Custom Statistics](#custom-statistics)
52
53[Memory Usage](#memory-usage)
54
55[Using RegisterBenchmark](#using-register-benchmark)
56
57[Exiting with an Error](#exiting-with-an-error)
58
59[A Faster `KeepRunning` Loop](#a-faster-keep-running-loop)
60
61## Benchmarking Tips
62
63[Disabling CPU Frequency Scaling](#disabling-cpu-frequency-scaling)
64
65[Reducing Variance in Benchmarks](reducing_variance.md)
66
67<a name="output-formats" />
68
69## Output Formats
70
71The library supports multiple output formats. Use the
72`--benchmark_format=<console|json|csv>` flag (or set the
73`BENCHMARK_FORMAT=<console|json|csv>` environment variable) to set
74the format type. `console` is the default format.
75
76The Console format is intended to be a human readable format. By default
77the format generates color output. Context is output on stderr and the
78tabular data on stdout. Example tabular output looks like:
79
80```
81Benchmark                               Time(ns)    CPU(ns) Iterations
82----------------------------------------------------------------------
83BM_SetInsert/1024/1                        28928      29349      23853  133.097kB/s   33.2742k items/s
84BM_SetInsert/1024/8                        32065      32913      21375  949.487kB/s   237.372k items/s
85BM_SetInsert/1024/10                       33157      33648      21431  1.13369MB/s   290.225k items/s
86```
87
88The JSON format outputs human readable json split into two top level attributes.
89The `context` attribute contains information about the run in general, including
90information about the CPU and the date.
91The `benchmarks` attribute contains a list of every benchmark run. Example json
92output looks like:
93
94```json
95{
96  "context": {
97    "date": "2015/03/17-18:40:25",
98    "num_cpus": 40,
99    "mhz_per_cpu": 2801,
100    "cpu_scaling_enabled": false,
101    "build_type": "debug"
102  },
103  "benchmarks": [
104    {
105      "name": "BM_SetInsert/1024/1",
106      "iterations": 94877,
107      "real_time": 29275,
108      "cpu_time": 29836,
109      "bytes_per_second": 134066,
110      "items_per_second": 33516
111    },
112    {
113      "name": "BM_SetInsert/1024/8",
114      "iterations": 21609,
115      "real_time": 32317,
116      "cpu_time": 32429,
117      "bytes_per_second": 986770,
118      "items_per_second": 246693
119    },
120    {
121      "name": "BM_SetInsert/1024/10",
122      "iterations": 21393,
123      "real_time": 32724,
124      "cpu_time": 33355,
125      "bytes_per_second": 1199226,
126      "items_per_second": 299807
127    }
128  ]
129}
130```
131
132The CSV format outputs comma-separated values. The `context` is output on stderr
133and the CSV itself on stdout. Example CSV output looks like:
134
135```
136name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
137"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
138"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
139"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
140```
141
142<a name="output-files" />
143
144## Output Files
145
146Write benchmark results to a file with the `--benchmark_out=<filename>` option
147(or set `BENCHMARK_OUT`). Specify the output format with
148`--benchmark_out_format={json|console|csv}` (or set
149`BENCHMARK_OUT_FORMAT={json|console|csv}`). Note that the 'csv' reporter is
150deprecated and the saved `.csv` file
151[is not parsable](https://github.com/google/benchmark/issues/794) by csv
152parsers.
153
154Specifying `--benchmark_out` does not suppress the console output.
155
156<a name="running-benchmarks" />
157
158## Running Benchmarks
159
160Benchmarks are executed by running the produced binaries. Benchmarks binaries,
161by default, accept options that may be specified either through their command
162line interface or by setting environment variables before execution. For every
163`--option_flag=<value>` CLI switch, a corresponding environment variable
164`OPTION_FLAG=<value>` exist and is used as default if set (CLI switches always
165 prevails). A complete list of CLI options is available running benchmarks
166 with the `--help` switch.
167
168<a name="running-a-subset-of-benchmarks" />
169
170## Running a Subset of Benchmarks
171
172The `--benchmark_filter=<regex>` option (or `BENCHMARK_FILTER=<regex>`
173environment variable) can be used to only run the benchmarks that match
174the specified `<regex>`. For example:
175
176```bash
177$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
178Run on (1 X 2300 MHz CPU )
1792016-06-25 19:34:24
180Benchmark              Time           CPU Iterations
181----------------------------------------------------
182BM_memcpy/32          11 ns         11 ns   79545455
183BM_memcpy/32k       2181 ns       2185 ns     324074
184BM_memcpy/32          12 ns         12 ns   54687500
185BM_memcpy/32k       1834 ns       1837 ns     357143
186```
187
188## Disabling Benchmarks
189
190It is possible to temporarily disable benchmarks by renaming the benchmark
191function to have the prefix "DISABLED_". This will cause the benchmark to
192be skipped at runtime.
193
194<a name="result-comparison" />
195
196## Result comparison
197
198It is possible to compare the benchmarking results.
199See [Additional Tooling Documentation](tools.md)
200
201<a name="extra-context" />
202
203## Extra Context
204
205Sometimes it's useful to add extra context to the content printed before the
206results. By default this section includes information about the CPU on which
207the benchmarks are running. If you do want to add more context, you can use
208the `benchmark_context` command line flag:
209
210```bash
211$ ./run_benchmarks --benchmark_context=pwd=`pwd`
212Run on (1 x 2300 MHz CPU)
213pwd: /home/user/benchmark/
214Benchmark              Time           CPU Iterations
215----------------------------------------------------
216BM_memcpy/32          11 ns         11 ns   79545455
217BM_memcpy/32k       2181 ns       2185 ns     324074
218```
219
220You can get the same effect with the API:
221
222```c++
223  benchmark::AddCustomContext("foo", "bar");
224```
225
226Note that attempts to add a second value with the same key will fail with an
227error message.
228
229<a name="runtime-and-reporting-considerations" />
230
231## Runtime and Reporting Considerations
232
233When the benchmark binary is executed, each benchmark function is run serially.
234The number of iterations to run is determined dynamically by running the
235benchmark a few times and measuring the time taken and ensuring that the
236ultimate result will be statistically stable. As such, faster benchmark
237functions will be run for more iterations than slower benchmark functions, and
238the number of iterations is thus reported.
239
240In all cases, the number of iterations for which the benchmark is run is
241governed by the amount of time the benchmark takes. Concretely, the number of
242iterations is at least one, not more than 1e9, until CPU time is greater than
243the minimum time, or the wallclock time is 5x minimum time. The minimum time is
244set per benchmark by calling `MinTime` on the registered benchmark object.
245
246Furthermore warming up a benchmark might be necessary in order to get
247stable results because of e.g caching effects of the code under benchmark.
248Warming up means running the benchmark a given amount of time, before
249results are actually taken into account. The amount of time for which
250the warmup should be run can be set per benchmark by calling
251`MinWarmUpTime` on the registered benchmark object or for all benchmarks
252using the `--benchmark_min_warmup_time` command-line option. Note that
253`MinWarmUpTime` will overwrite the value of `--benchmark_min_warmup_time`
254for the single benchmark. How many iterations the warmup run of each
255benchmark takes is determined the same way as described in the paragraph
256above. Per default the warmup phase is set to 0 seconds and is therefore
257disabled.
258
259Average timings are then reported over the iterations run. If multiple
260repetitions are requested using the `--benchmark_repetitions` command-line
261option, or at registration time, the benchmark function will be run several
262times and statistical results across these repetitions will also be reported.
263
264As well as the per-benchmark entries, a preamble in the report will include
265information about the machine on which the benchmarks are run.
266
267<a name="setup-teardown" />
268
269## Setup/Teardown
270
271Global setup/teardown specific to each benchmark can be done by
272passing a callback to Setup/Teardown:
273
274The setup/teardown callbacks will be invoked once for each benchmark. If the
275benchmark is multi-threaded (will run in k threads), they will be invoked
276exactly once before each run with k threads.
277
278If the benchmark uses different size groups of threads, the above will be true
279for each size group.
280
281Eg.,
282
283```c++
284static void DoSetup(const benchmark::State& state) {
285}
286
287static void DoTeardown(const benchmark::State& state) {
288}
289
290static void BM_func(benchmark::State& state) {...}
291
292BENCHMARK(BM_func)->Arg(1)->Arg(3)->Threads(16)->Threads(32)->Setup(DoSetup)->Teardown(DoTeardown);
293
294```
295
296In this example, `DoSetup` and `DoTearDown` will be invoked 4 times each,
297specifically, once for each of this family:
298 - BM_func_Arg_1_Threads_16, BM_func_Arg_1_Threads_32
299 - BM_func_Arg_3_Threads_16, BM_func_Arg_3_Threads_32
300
301<a name="passing-arguments" />
302
303## Passing Arguments
304
305Sometimes a family of benchmarks can be implemented with just one routine that
306takes an extra argument to specify which one of the family of benchmarks to
307run. For example, the following code defines a family of benchmarks for
308measuring the speed of `memcpy()` calls of different lengths:
309
310```c++
311static void BM_memcpy(benchmark::State& state) {
312  char* src = new char[state.range(0)];
313  char* dst = new char[state.range(0)];
314  memset(src, 'x', state.range(0));
315  for (auto _ : state)
316    memcpy(dst, src, state.range(0));
317  state.SetBytesProcessed(int64_t(state.iterations()) *
318                          int64_t(state.range(0)));
319  delete[] src;
320  delete[] dst;
321}
322BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(4<<10)->Arg(8<<10);
323```
324
325The preceding code is quite repetitive, and can be replaced with the following
326short-hand. The following invocation will pick a few appropriate arguments in
327the specified range and will generate a benchmark for each such argument.
328
329```c++
330BENCHMARK(BM_memcpy)->Range(8, 8<<10);
331```
332
333By default the arguments in the range are generated in multiples of eight and
334the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
335range multiplier is changed to multiples of two.
336
337```c++
338BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
339```
340
341Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
342
343The preceding code shows a method of defining a sparse range.  The following
344example shows a method of defining a dense range. It is then used to benchmark
345the performance of `std::vector` initialization for uniformly increasing sizes.
346
347```c++
348static void BM_DenseRange(benchmark::State& state) {
349  for(auto _ : state) {
350    std::vector<int> v(state.range(0), state.range(0));
351    auto data = v.data();
352    benchmark::DoNotOptimize(data);
353    benchmark::ClobberMemory();
354  }
355}
356BENCHMARK(BM_DenseRange)->DenseRange(0, 1024, 128);
357```
358
359Now arguments generated are [ 0, 128, 256, 384, 512, 640, 768, 896, 1024 ].
360
361You might have a benchmark that depends on two or more inputs. For example, the
362following code defines a family of benchmarks for measuring the speed of set
363insertion.
364
365```c++
366static void BM_SetInsert(benchmark::State& state) {
367  std::set<int> data;
368  for (auto _ : state) {
369    state.PauseTiming();
370    data = ConstructRandomSet(state.range(0));
371    state.ResumeTiming();
372    for (int j = 0; j < state.range(1); ++j)
373      data.insert(RandomNumber());
374  }
375}
376BENCHMARK(BM_SetInsert)
377    ->Args({1<<10, 128})
378    ->Args({2<<10, 128})
379    ->Args({4<<10, 128})
380    ->Args({8<<10, 128})
381    ->Args({1<<10, 512})
382    ->Args({2<<10, 512})
383    ->Args({4<<10, 512})
384    ->Args({8<<10, 512});
385```
386
387The preceding code is quite repetitive, and can be replaced with the following
388short-hand. The following macro will pick a few appropriate arguments in the
389product of the two specified ranges and will generate a benchmark for each such
390pair.
391
392<!-- {% raw %} -->
393```c++
394BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
395```
396<!-- {% endraw %} -->
397
398Some benchmarks may require specific argument values that cannot be expressed
399with `Ranges`. In this case, `ArgsProduct` offers the ability to generate a
400benchmark input for each combination in the product of the supplied vectors.
401
402<!-- {% raw %} -->
403```c++
404BENCHMARK(BM_SetInsert)
405    ->ArgsProduct({{1<<10, 3<<10, 8<<10}, {20, 40, 60, 80}})
406// would generate the same benchmark arguments as
407BENCHMARK(BM_SetInsert)
408    ->Args({1<<10, 20})
409    ->Args({3<<10, 20})
410    ->Args({8<<10, 20})
411    ->Args({3<<10, 40})
412    ->Args({8<<10, 40})
413    ->Args({1<<10, 40})
414    ->Args({1<<10, 60})
415    ->Args({3<<10, 60})
416    ->Args({8<<10, 60})
417    ->Args({1<<10, 80})
418    ->Args({3<<10, 80})
419    ->Args({8<<10, 80});
420```
421<!-- {% endraw %} -->
422
423For the most common scenarios, helper methods for creating a list of
424integers for a given sparse or dense range are provided.
425
426```c++
427BENCHMARK(BM_SetInsert)
428    ->ArgsProduct({
429      benchmark::CreateRange(8, 128, /*multi=*/2),
430      benchmark::CreateDenseRange(1, 4, /*step=*/1)
431    })
432// would generate the same benchmark arguments as
433BENCHMARK(BM_SetInsert)
434    ->ArgsProduct({
435      {8, 16, 32, 64, 128},
436      {1, 2, 3, 4}
437    });
438```
439
440For more complex patterns of inputs, passing a custom function to `Apply` allows
441programmatic specification of an arbitrary set of arguments on which to run the
442benchmark. The following example enumerates a dense range on one parameter,
443and a sparse range on the second.
444
445```c++
446static void CustomArguments(benchmark::internal::Benchmark* b) {
447  for (int i = 0; i <= 10; ++i)
448    for (int j = 32; j <= 1024*1024; j *= 8)
449      b->Args({i, j});
450}
451BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
452```
453
454### Passing Arbitrary Arguments to a Benchmark
455
456In C++11 it is possible to define a benchmark that takes an arbitrary number
457of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
458macro creates a benchmark that invokes `func`  with the `benchmark::State` as
459the first argument followed by the specified `args...`.
460The `test_case_name` is appended to the name of the benchmark and
461should describe the values passed.
462
463```c++
464template <class ...Args>
465void BM_takes_args(benchmark::State& state, Args&&... args) {
466  auto args_tuple = std::make_tuple(std::move(args)...);
467  for (auto _ : state) {
468    std::cout << std::get<0>(args_tuple) << ": " << std::get<1>(args_tuple)
469              << '\n';
470    [...]
471  }
472}
473// Registers a benchmark named "BM_takes_args/int_string_test" that passes
474// the specified values to `args`.
475BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
476
477// Registers the same benchmark "BM_takes_args/int_test" that passes
478// the specified values to `args`.
479BENCHMARK_CAPTURE(BM_takes_args, int_test, 42, 43);
480```
481
482Note that elements of `...args` may refer to global variables. Users should
483avoid modifying global state inside of a benchmark.
484
485<a name="asymptotic-complexity" />
486
487## Calculating Asymptotic Complexity (Big O)
488
489Asymptotic complexity might be calculated for a family of benchmarks. The
490following code will calculate the coefficient for the high-order term in the
491running time and the normalized root-mean square error of string comparison.
492
493```c++
494static void BM_StringCompare(benchmark::State& state) {
495  std::string s1(state.range(0), '-');
496  std::string s2(state.range(0), '-');
497  for (auto _ : state) {
498    auto comparison_result = s1.compare(s2);
499    benchmark::DoNotOptimize(comparison_result);
500  }
501  state.SetComplexityN(state.range(0));
502}
503BENCHMARK(BM_StringCompare)
504    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
505```
506
507As shown in the following invocation, asymptotic complexity might also be
508calculated automatically.
509
510```c++
511BENCHMARK(BM_StringCompare)
512    ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
513```
514
515The following code will specify asymptotic complexity with a lambda function,
516that might be used to customize high-order term calculation.
517
518```c++
519BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
520    ->Range(1<<10, 1<<18)->Complexity([](benchmark::IterationCount n)->double{return n; });
521```
522
523<a name="custom-benchmark-name" />
524
525## Custom Benchmark Name
526
527You can change the benchmark's name as follows:
528
529```c++
530BENCHMARK(BM_memcpy)->Name("memcpy")->RangeMultiplier(2)->Range(8, 8<<10);
531```
532
533The invocation will execute the benchmark as before using `BM_memcpy` but changes
534the prefix in the report to `memcpy`.
535
536<a name="templated-benchmarks" />
537
538## Templated Benchmarks
539
540This example produces and consumes messages of size `sizeof(v)` `range_x`
541times. It also outputs throughput in the absence of multiprogramming.
542
543```c++
544template <class Q> void BM_Sequential(benchmark::State& state) {
545  Q q;
546  typename Q::value_type v;
547  for (auto _ : state) {
548    for (int i = state.range(0); i--; )
549      q.push(v);
550    for (int e = state.range(0); e--; )
551      q.Wait(&v);
552  }
553  // actually messages, not bytes:
554  state.SetBytesProcessed(
555      static_cast<int64_t>(state.iterations())*state.range(0));
556}
557// C++03
558BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
559
560// C++11 or newer, you can use the BENCHMARK macro with template parameters:
561BENCHMARK(BM_Sequential<WaitQueue<int>>)->Range(1<<0, 1<<10);
562
563```
564
565Three macros are provided for adding benchmark templates.
566
567```c++
568#ifdef BENCHMARK_HAS_CXX11
569#define BENCHMARK(func<...>) // Takes any number of parameters.
570#else // C++ < C++11
571#define BENCHMARK_TEMPLATE(func, arg1)
572#endif
573#define BENCHMARK_TEMPLATE1(func, arg1)
574#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
575```
576
577<a name="fixtures" />
578
579## Fixtures
580
581Fixture tests are created by first defining a type that derives from
582`::benchmark::Fixture` and then creating/registering the tests using the
583following macros:
584
585* `BENCHMARK_F(ClassName, Method)`
586* `BENCHMARK_DEFINE_F(ClassName, Method)`
587* `BENCHMARK_REGISTER_F(ClassName, Method)`
588
589For Example:
590
591```c++
592class MyFixture : public benchmark::Fixture {
593public:
594  void SetUp(const ::benchmark::State& state) {
595  }
596
597  void TearDown(const ::benchmark::State& state) {
598  }
599};
600
601BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
602   for (auto _ : st) {
603     ...
604  }
605}
606
607BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
608   for (auto _ : st) {
609     ...
610  }
611}
612/* BarTest is NOT registered */
613BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
614/* BarTest is now registered */
615```
616
617### Templated Fixtures
618
619Also you can create templated fixture by using the following macros:
620
621* `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
622* `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
623
624For example:
625
626```c++
627template<typename T>
628class MyFixture : public benchmark::Fixture {};
629
630BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
631   for (auto _ : st) {
632     ...
633  }
634}
635
636BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
637   for (auto _ : st) {
638     ...
639  }
640}
641
642BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
643```
644
645<a name="custom-counters" />
646
647## Custom Counters
648
649You can add your own counters with user-defined names. The example below
650will add columns "Foo", "Bar" and "Baz" in its output:
651
652```c++
653static void UserCountersExample1(benchmark::State& state) {
654  double numFoos = 0, numBars = 0, numBazs = 0;
655  for (auto _ : state) {
656    // ... count Foo,Bar,Baz events
657  }
658  state.counters["Foo"] = numFoos;
659  state.counters["Bar"] = numBars;
660  state.counters["Baz"] = numBazs;
661}
662```
663
664The `state.counters` object is a `std::map` with `std::string` keys
665and `Counter` values. The latter is a `double`-like class, via an implicit
666conversion to `double&`. Thus you can use all of the standard arithmetic
667assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
668
669In multithreaded benchmarks, each counter is set on the calling thread only.
670When the benchmark finishes, the counters from each thread will be summed;
671the resulting sum is the value which will be shown for the benchmark.
672
673The `Counter` constructor accepts three parameters: the value as a `double`
674; a bit flag which allows you to show counters as rates, and/or as per-thread
675iteration, and/or as per-thread averages, and/or iteration invariants,
676and/or finally inverting the result; and a flag specifying the 'unit' - i.e.
677is 1k a 1000 (default, `benchmark::Counter::OneK::kIs1000`), or 1024
678(`benchmark::Counter::OneK::kIs1024`)?
679
680```c++
681  // sets a simple counter
682  state.counters["Foo"] = numFoos;
683
684  // Set the counter as a rate. It will be presented divided
685  // by the duration of the benchmark.
686  // Meaning: per one second, how many 'foo's are processed?
687  state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
688
689  // Set the counter as a rate. It will be presented divided
690  // by the duration of the benchmark, and the result inverted.
691  // Meaning: how many seconds it takes to process one 'foo'?
692  state.counters["FooInvRate"] = Counter(numFoos, benchmark::Counter::kIsRate | benchmark::Counter::kInvert);
693
694  // Set the counter as a thread-average quantity. It will
695  // be presented divided by the number of threads.
696  state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
697
698  // There's also a combined flag:
699  state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
700
701  // This says that we process with the rate of state.range(0) bytes every iteration:
702  state.counters["BytesProcessed"] = Counter(state.range(0), benchmark::Counter::kIsIterationInvariantRate, benchmark::Counter::OneK::kIs1024);
703```
704
705When you're compiling in C++11 mode or later you can use `insert()` with
706`std::initializer_list`:
707
708<!-- {% raw %} -->
709```c++
710  // With C++11, this can be done:
711  state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
712  // ... instead of:
713  state.counters["Foo"] = numFoos;
714  state.counters["Bar"] = numBars;
715  state.counters["Baz"] = numBazs;
716```
717<!-- {% endraw %} -->
718
719### Counter Reporting
720
721When using the console reporter, by default, user counters are printed at
722the end after the table, the same way as ``bytes_processed`` and
723``items_processed``. This is best for cases in which there are few counters,
724or where there are only a couple of lines per benchmark. Here's an example of
725the default output:
726
727```
728------------------------------------------------------------------------------
729Benchmark                        Time           CPU Iterations UserCounters...
730------------------------------------------------------------------------------
731BM_UserCounter/threads:8      2248 ns      10277 ns      68808 Bar=16 Bat=40 Baz=24 Foo=8
732BM_UserCounter/threads:1      9797 ns       9788 ns      71523 Bar=2 Bat=5 Baz=3 Foo=1024m
733BM_UserCounter/threads:2      4924 ns       9842 ns      71036 Bar=4 Bat=10 Baz=6 Foo=2
734BM_UserCounter/threads:4      2589 ns      10284 ns      68012 Bar=8 Bat=20 Baz=12 Foo=4
735BM_UserCounter/threads:8      2212 ns      10287 ns      68040 Bar=16 Bat=40 Baz=24 Foo=8
736BM_UserCounter/threads:16     1782 ns      10278 ns      68144 Bar=32 Bat=80 Baz=48 Foo=16
737BM_UserCounter/threads:32     1291 ns      10296 ns      68256 Bar=64 Bat=160 Baz=96 Foo=32
738BM_UserCounter/threads:4      2615 ns      10307 ns      68040 Bar=8 Bat=20 Baz=12 Foo=4
739BM_Factorial                    26 ns         26 ns   26608979 40320
740BM_Factorial/real_time          26 ns         26 ns   26587936 40320
741BM_CalculatePiRange/1           16 ns         16 ns   45704255 0
742BM_CalculatePiRange/8           73 ns         73 ns    9520927 3.28374
743BM_CalculatePiRange/64         609 ns        609 ns    1140647 3.15746
744BM_CalculatePiRange/512       4900 ns       4901 ns     142696 3.14355
745```
746
747If this doesn't suit you, you can print each counter as a table column by
748passing the flag `--benchmark_counters_tabular=true` to the benchmark
749application. This is best for cases in which there are a lot of counters, or
750a lot of lines per individual benchmark. Note that this will trigger a
751reprinting of the table header any time the counter set changes between
752individual benchmarks. Here's an example of corresponding output when
753`--benchmark_counters_tabular=true` is passed:
754
755```
756---------------------------------------------------------------------------------------
757Benchmark                        Time           CPU Iterations    Bar   Bat   Baz   Foo
758---------------------------------------------------------------------------------------
759BM_UserCounter/threads:8      2198 ns       9953 ns      70688     16    40    24     8
760BM_UserCounter/threads:1      9504 ns       9504 ns      73787      2     5     3     1
761BM_UserCounter/threads:2      4775 ns       9550 ns      72606      4    10     6     2
762BM_UserCounter/threads:4      2508 ns       9951 ns      70332      8    20    12     4
763BM_UserCounter/threads:8      2055 ns       9933 ns      70344     16    40    24     8
764BM_UserCounter/threads:16     1610 ns       9946 ns      70720     32    80    48    16
765BM_UserCounter/threads:32     1192 ns       9948 ns      70496     64   160    96    32
766BM_UserCounter/threads:4      2506 ns       9949 ns      70332      8    20    12     4
767--------------------------------------------------------------
768Benchmark                        Time           CPU Iterations
769--------------------------------------------------------------
770BM_Factorial                    26 ns         26 ns   26392245 40320
771BM_Factorial/real_time          26 ns         26 ns   26494107 40320
772BM_CalculatePiRange/1           15 ns         15 ns   45571597 0
773BM_CalculatePiRange/8           74 ns         74 ns    9450212 3.28374
774BM_CalculatePiRange/64         595 ns        595 ns    1173901 3.15746
775BM_CalculatePiRange/512       4752 ns       4752 ns     147380 3.14355
776BM_CalculatePiRange/4k       37970 ns      37972 ns      18453 3.14184
777BM_CalculatePiRange/32k     303733 ns     303744 ns       2305 3.14162
778BM_CalculatePiRange/256k   2434095 ns    2434186 ns        288 3.1416
779BM_CalculatePiRange/1024k  9721140 ns    9721413 ns         71 3.14159
780BM_CalculatePi/threads:8      2255 ns       9943 ns      70936
781```
782
783Note above the additional header printed when the benchmark changes from
784``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
785not have the same counter set as ``BM_UserCounter``.
786
787<a name="multithreaded-benchmarks"/>
788
789## Multithreaded Benchmarks
790
791In a multithreaded test (benchmark invoked by multiple threads simultaneously),
792it is guaranteed that none of the threads will start until all have reached
793the start of the benchmark loop, and all will have finished before any thread
794exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
795API) As such, any global setup or teardown can be wrapped in a check against the thread
796index:
797
798```c++
799static void BM_MultiThreaded(benchmark::State& state) {
800  if (state.thread_index() == 0) {
801    // Setup code here.
802  }
803  for (auto _ : state) {
804    // Run the test as normal.
805  }
806  if (state.thread_index() == 0) {
807    // Teardown code here.
808  }
809}
810BENCHMARK(BM_MultiThreaded)->Threads(2);
811```
812
813To run the benchmark across a range of thread counts, instead of `Threads`, use
814`ThreadRange`. This takes two parameters (`min_threads` and `max_threads`) and
815runs the benchmark once for values in the inclusive range. For example:
816
817```c++
818BENCHMARK(BM_MultiThreaded)->ThreadRange(1, 8);
819```
820
821will run `BM_MultiThreaded` with thread counts 1, 2, 4, and 8.
822
823If the benchmarked code itself uses threads and you want to compare it to
824single-threaded code, you may want to use real-time ("wallclock") measurements
825for latency comparisons:
826
827```c++
828BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
829```
830
831Without `UseRealTime`, CPU time is used by default.
832
833<a name="cpu-timers" />
834
835## CPU Timers
836
837By default, the CPU timer only measures the time spent by the main thread.
838If the benchmark itself uses threads internally, this measurement may not
839be what you are looking for. Instead, there is a way to measure the total
840CPU usage of the process, by all the threads.
841
842```c++
843void callee(int i);
844
845static void MyMain(int size) {
846#pragma omp parallel for
847  for(int i = 0; i < size; i++)
848    callee(i);
849}
850
851static void BM_OpenMP(benchmark::State& state) {
852  for (auto _ : state)
853    MyMain(state.range(0));
854}
855
856// Measure the time spent by the main thread, use it to decide for how long to
857// run the benchmark loop. Depending on the internal implementation detail may
858// measure to anywhere from near-zero (the overhead spent before/after work
859// handoff to worker thread[s]) to the whole single-thread time.
860BENCHMARK(BM_OpenMP)->Range(8, 8<<10);
861
862// Measure the user-visible time, the wall clock (literally, the time that
863// has passed on the clock on the wall), use it to decide for how long to
864// run the benchmark loop. This will always be meaningful, and will match the
865// time spent by the main thread in single-threaded case, in general decreasing
866// with the number of internal threads doing the work.
867BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->UseRealTime();
868
869// Measure the total CPU consumption, use it to decide for how long to
870// run the benchmark loop. This will always measure to no less than the
871// time spent by the main thread in single-threaded case.
872BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime();
873
874// A mixture of the last two. Measure the total CPU consumption, but use the
875// wall clock to decide for how long to run the benchmark loop.
876BENCHMARK(BM_OpenMP)->Range(8, 8<<10)->MeasureProcessCPUTime()->UseRealTime();
877```
878
879### Controlling Timers
880
881Normally, the entire duration of the work loop (`for (auto _ : state) {}`)
882is measured. But sometimes, it is necessary to do some work inside of
883that loop, every iteration, but without counting that time to the benchmark time.
884That is possible, although it is not recommended, since it has high overhead.
885
886<!-- {% raw %} -->
887```c++
888static void BM_SetInsert_With_Timer_Control(benchmark::State& state) {
889  std::set<int> data;
890  for (auto _ : state) {
891    state.PauseTiming(); // Stop timers. They will not count until they are resumed.
892    data = ConstructRandomSet(state.range(0)); // Do something that should not be measured
893    state.ResumeTiming(); // And resume timers. They are now counting again.
894    // The rest will be measured.
895    for (int j = 0; j < state.range(1); ++j)
896      data.insert(RandomNumber());
897  }
898}
899BENCHMARK(BM_SetInsert_With_Timer_Control)->Ranges({{1<<10, 8<<10}, {128, 512}});
900```
901<!-- {% endraw %} -->
902
903<a name="manual-timing" />
904
905## Manual Timing
906
907For benchmarking something for which neither CPU time nor real-time are
908correct or accurate enough, completely manual timing is supported using
909the `UseManualTime` function.
910
911When `UseManualTime` is used, the benchmarked code must call
912`SetIterationTime` once per iteration of the benchmark loop to
913report the manually measured time.
914
915An example use case for this is benchmarking GPU execution (e.g. OpenCL
916or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
917be accurately measured using CPU time or real-time. Instead, they can be
918measured accurately using a dedicated API, and these measurement results
919can be reported back with `SetIterationTime`.
920
921```c++
922static void BM_ManualTiming(benchmark::State& state) {
923  int microseconds = state.range(0);
924  std::chrono::duration<double, std::micro> sleep_duration {
925    static_cast<double>(microseconds)
926  };
927
928  for (auto _ : state) {
929    auto start = std::chrono::high_resolution_clock::now();
930    // Simulate some useful workload with a sleep
931    std::this_thread::sleep_for(sleep_duration);
932    auto end = std::chrono::high_resolution_clock::now();
933
934    auto elapsed_seconds =
935      std::chrono::duration_cast<std::chrono::duration<double>>(
936        end - start);
937
938    state.SetIterationTime(elapsed_seconds.count());
939  }
940}
941BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
942```
943
944<a name="setting-the-time-unit" />
945
946## Setting the Time Unit
947
948If a benchmark runs a few milliseconds it may be hard to visually compare the
949measured times, since the output data is given in nanoseconds per default. In
950order to manually set the time unit, you can specify it manually:
951
952```c++
953BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
954```
955
956Additionally the default time unit can be set globally with the
957`--benchmark_time_unit={ns|us|ms|s}` command line argument. The argument only
958affects benchmarks where the time unit is not set explicitly.
959
960<a name="preventing-optimization" />
961
962## Preventing Optimization
963
964To prevent a value or expression from being optimized away by the compiler
965the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
966functions can be used.
967
968```c++
969static void BM_test(benchmark::State& state) {
970  for (auto _ : state) {
971      int x = 0;
972      for (int i=0; i < 64; ++i) {
973        benchmark::DoNotOptimize(x += i);
974      }
975  }
976}
977```
978
979`DoNotOptimize(<expr>)` forces the  *result* of `<expr>` to be stored in either
980memory or a register. For GNU based compilers it acts as read/write barrier
981for global memory. More specifically it forces the compiler to flush pending
982writes to memory and reload any other values as necessary.
983
984Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
985in any way. `<expr>` may even be removed entirely when the result is already
986known. For example:
987
988```c++
989  /* Example 1: `<expr>` is removed entirely. */
990  int foo(int x) { return x + 42; }
991  while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
992
993  /*  Example 2: Result of '<expr>' is only reused */
994  int bar(int) __attribute__((const));
995  while (...) DoNotOptimize(bar(0)); // Optimized to:
996  // int __result__ = bar(0);
997  // while (...) DoNotOptimize(__result__);
998```
999
1000The second tool for preventing optimizations is `ClobberMemory()`. In essence
1001`ClobberMemory()` forces the compiler to perform all pending writes to global
1002memory. Memory managed by block scope objects must be "escaped" using
1003`DoNotOptimize(...)` before it can be clobbered. In the below example
1004`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
1005away.
1006
1007```c++
1008static void BM_vector_push_back(benchmark::State& state) {
1009  for (auto _ : state) {
1010    std::vector<int> v;
1011    v.reserve(1);
1012    auto data = v.data();           // Allow v.data() to be clobbered. Pass as non-const
1013    benchmark::DoNotOptimize(data); // lvalue to avoid undesired compiler optimizations
1014    v.push_back(42);
1015    benchmark::ClobberMemory(); // Force 42 to be written to memory.
1016  }
1017}
1018```
1019
1020Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
1021
1022<a name="reporting-statistics" />
1023
1024## Statistics: Reporting the Mean, Median and Standard Deviation / Coefficient of variation of Repeated Benchmarks
1025
1026By default each benchmark is run once and that single result is reported.
1027However benchmarks are often noisy and a single result may not be representative
1028of the overall behavior. For this reason it's possible to repeatedly rerun the
1029benchmark.
1030
1031The number of runs of each benchmark is specified globally by the
1032`--benchmark_repetitions` flag or on a per benchmark basis by calling
1033`Repetitions` on the registered benchmark object. When a benchmark is run more
1034than once the mean, median, standard deviation and coefficient of variation
1035of the runs will be reported.
1036
1037Additionally the `--benchmark_report_aggregates_only={true|false}`,
1038`--benchmark_display_aggregates_only={true|false}` flags or
1039`ReportAggregatesOnly(bool)`, `DisplayAggregatesOnly(bool)` functions can be
1040used to change how repeated tests are reported. By default the result of each
1041repeated run is reported. When `report aggregates only` option is `true`,
1042only the aggregates (i.e. mean, median, standard deviation and coefficient
1043of variation, maybe complexity measurements if they were requested) of the runs
1044is reported, to both the reporters - standard output (console), and the file.
1045However when only the `display aggregates only` option is `true`,
1046only the aggregates are displayed in the standard output, while the file
1047output still contains everything.
1048Calling `ReportAggregatesOnly(bool)` / `DisplayAggregatesOnly(bool)` on a
1049registered benchmark object overrides the value of the appropriate flag for that
1050benchmark.
1051
1052<a name="custom-statistics" />
1053
1054## Custom Statistics
1055
1056While having these aggregates is nice, this may not be enough for everyone.
1057For example you may want to know what the largest observation is, e.g. because
1058you have some real-time constraints. This is easy. The following code will
1059specify a custom statistic to be calculated, defined by a lambda function.
1060
1061```c++
1062void BM_spin_empty(benchmark::State& state) {
1063  for (auto _ : state) {
1064    for (int x = 0; x < state.range(0); ++x) {
1065      benchmark::DoNotOptimize(x);
1066    }
1067  }
1068}
1069
1070BENCHMARK(BM_spin_empty)
1071  ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
1072    return *(std::max_element(std::begin(v), std::end(v)));
1073  })
1074  ->Arg(512);
1075```
1076
1077While usually the statistics produce values in time units,
1078you can also produce percentages:
1079
1080```c++
1081void BM_spin_empty(benchmark::State& state) {
1082  for (auto _ : state) {
1083    for (int x = 0; x < state.range(0); ++x) {
1084      benchmark::DoNotOptimize(x);
1085    }
1086  }
1087}
1088
1089BENCHMARK(BM_spin_empty)
1090  ->ComputeStatistics("ratio", [](const std::vector<double>& v) -> double {
1091    return std::begin(v) / std::end(v);
1092  }, benchmark::StatisticUnit::kPercentage)
1093  ->Arg(512);
1094```
1095
1096<a name="memory-usage" />
1097
1098## Memory Usage
1099
1100It's often useful to also track memory usage for benchmarks, alongside CPU
1101performance. For this reason, benchmark offers the `RegisterMemoryManager`
1102method that allows a custom `MemoryManager` to be injected.
1103
1104If set, the `MemoryManager::Start` and `MemoryManager::Stop` methods will be
1105called at the start and end of benchmark runs to allow user code to fill out
1106a report on the number of allocations, bytes used, etc.
1107
1108This data will then be reported alongside other performance data, currently
1109only when using JSON output.
1110
1111<a name="using-register-benchmark" />
1112
1113## Using RegisterBenchmark(name, fn, args...)
1114
1115The `RegisterBenchmark(name, func, args...)` function provides an alternative
1116way to create and register benchmarks.
1117`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
1118pointer to a new benchmark with the specified `name` that invokes
1119`func(st, args...)` where `st` is a `benchmark::State` object.
1120
1121Unlike the `BENCHMARK` registration macros, which can only be used at the global
1122scope, the `RegisterBenchmark` can be called anywhere. This allows for
1123benchmark tests to be registered programmatically.
1124
1125Additionally `RegisterBenchmark` allows any callable object to be registered
1126as a benchmark. Including capturing lambdas and function objects.
1127
1128For Example:
1129```c++
1130auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
1131
1132int main(int argc, char** argv) {
1133  for (auto& test_input : { /* ... */ })
1134      benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
1135  benchmark::Initialize(&argc, argv);
1136  benchmark::RunSpecifiedBenchmarks();
1137  benchmark::Shutdown();
1138}
1139```
1140
1141<a name="exiting-with-an-error" />
1142
1143## Exiting with an Error
1144
1145When errors caused by external influences, such as file I/O and network
1146communication, occur within a benchmark the
1147`State::SkipWithError(const std::string& msg)` function can be used to skip that run
1148of benchmark and report the error. Note that only future iterations of the
1149`KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
1150Users must explicitly exit the loop, otherwise all iterations will be performed.
1151Users may explicitly return to exit the benchmark immediately.
1152
1153The `SkipWithError(...)` function may be used at any point within the benchmark,
1154including before and after the benchmark loop. Moreover, if `SkipWithError(...)`
1155has been used, it is not required to reach the benchmark loop and one may return
1156from the benchmark function early.
1157
1158For example:
1159
1160```c++
1161static void BM_test(benchmark::State& state) {
1162  auto resource = GetResource();
1163  if (!resource.good()) {
1164    state.SkipWithError("Resource is not good!");
1165    // KeepRunning() loop will not be entered.
1166  }
1167  while (state.KeepRunning()) {
1168    auto data = resource.read_data();
1169    if (!resource.good()) {
1170      state.SkipWithError("Failed to read data!");
1171      break; // Needed to skip the rest of the iteration.
1172    }
1173    do_stuff(data);
1174  }
1175}
1176
1177static void BM_test_ranged_fo(benchmark::State & state) {
1178  auto resource = GetResource();
1179  if (!resource.good()) {
1180    state.SkipWithError("Resource is not good!");
1181    return; // Early return is allowed when SkipWithError() has been used.
1182  }
1183  for (auto _ : state) {
1184    auto data = resource.read_data();
1185    if (!resource.good()) {
1186      state.SkipWithError("Failed to read data!");
1187      break; // REQUIRED to prevent all further iterations.
1188    }
1189    do_stuff(data);
1190  }
1191}
1192```
1193<a name="a-faster-keep-running-loop" />
1194
1195## A Faster KeepRunning Loop
1196
1197In C++11 mode, a ranged-based for loop should be used in preference to
1198the `KeepRunning` loop for running the benchmarks. For example:
1199
1200```c++
1201static void BM_Fast(benchmark::State &state) {
1202  for (auto _ : state) {
1203    FastOperation();
1204  }
1205}
1206BENCHMARK(BM_Fast);
1207```
1208
1209The reason the ranged-for loop is faster than using `KeepRunning`, is
1210because `KeepRunning` requires a memory load and store of the iteration count
1211ever iteration, whereas the ranged-for variant is able to keep the iteration count
1212in a register.
1213
1214For example, an empty inner loop of using the ranged-based for method looks like:
1215
1216```asm
1217# Loop Init
1218  mov rbx, qword ptr [r14 + 104]
1219  call benchmark::State::StartKeepRunning()
1220  test rbx, rbx
1221  je .LoopEnd
1222.LoopHeader: # =>This Inner Loop Header: Depth=1
1223  add rbx, -1
1224  jne .LoopHeader
1225.LoopEnd:
1226```
1227
1228Compared to an empty `KeepRunning` loop, which looks like:
1229
1230```asm
1231.LoopHeader: # in Loop: Header=BB0_3 Depth=1
1232  cmp byte ptr [rbx], 1
1233  jne .LoopInit
1234.LoopBody: # =>This Inner Loop Header: Depth=1
1235  mov rax, qword ptr [rbx + 8]
1236  lea rcx, [rax + 1]
1237  mov qword ptr [rbx + 8], rcx
1238  cmp rax, qword ptr [rbx + 104]
1239  jb .LoopHeader
1240  jmp .LoopEnd
1241.LoopInit:
1242  mov rdi, rbx
1243  call benchmark::State::StartKeepRunning()
1244  jmp .LoopBody
1245.LoopEnd:
1246```
1247
1248Unless C++03 compatibility is required, the ranged-for variant of writing
1249the benchmark loop should be preferred.
1250
1251<a name="disabling-cpu-frequency-scaling" />
1252
1253## Disabling CPU Frequency Scaling
1254
1255If you see this error:
1256
1257```
1258***WARNING*** CPU scaling is enabled, the benchmark real time measurements may
1259be noisy and will incur extra overhead.
1260```
1261
1262you might want to disable the CPU frequency scaling while running the
1263benchmark, as well as consider other ways to stabilize the performance of
1264your system while benchmarking.
1265
1266See [Reducing Variance](reducing_variance.md) for more information.
1267