1 /**
2 * f2fs_format.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * Dual licensed under the GPL or LGPL version 2 licenses.
8 */
9 #ifndef _LARGEFILE64_SOURCE
10 #define _LARGEFILE64_SOURCE
11 #endif
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <fcntl.h>
16 #include <string.h>
17 #include <unistd.h>
18 #include <f2fs_fs.h>
19
20 #ifdef HAVE_SYS_STAT_H
21 #include <sys/stat.h>
22 #endif
23 #ifdef HAVE_SYS_MOUNT_H
24 #include <sys/mount.h>
25 #endif
26 #include <time.h>
27
28 #ifdef HAVE_UUID_UUID_H
29 #include <uuid.h>
30 #endif
31 #ifndef HAVE_LIBUUID
32 #define uuid_parse(a, b) -1
33 #define uuid_generate(a)
34 #endif
35
36 #include "quota.h"
37 #include "f2fs_format_utils.h"
38
39 extern struct f2fs_configuration c;
40 struct f2fs_super_block raw_sb;
41 struct f2fs_super_block *sb = &raw_sb;
42 struct f2fs_checkpoint *cp;
43
44 /* Return first segment number of each area */
45 #define prev_zone(cur) (c.cur_seg[cur] - c.segs_per_zone)
46 #define next_zone(cur) (c.cur_seg[cur] + c.segs_per_zone)
47 #define last_zone(cur) ((cur - 1) * c.segs_per_zone)
48 #define last_section(cur) (cur + (c.secs_per_zone - 1) * c.segs_per_sec)
49
50 /* Return time fixed by the user or current time by default */
51 #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time)
52
53 const char *media_ext_lists[] = {
54 /* common prefix */
55 "mp", // Covers mp3, mp4, mpeg, mpg
56 "wm", // Covers wma, wmb, wmv
57 "og", // Covers oga, ogg, ogm, ogv
58 "jp", // Covers jpg, jpeg, jp2
59
60 /* video */
61 "avi",
62 "m4v",
63 "m4p",
64 "mkv",
65 "mov",
66 "webm",
67
68 /* audio */
69 "wav",
70 "m4a",
71 "3gp",
72 "opus",
73 "flac",
74
75 /* image */
76 "gif",
77 "png",
78 "svg",
79 "webp",
80
81 /* archives */
82 "jar",
83 "deb",
84 "iso",
85 "gz",
86 "xz",
87 "zst",
88
89 /* others */
90 "pdf",
91 "pyc", // Python bytecode
92 "ttc",
93 "ttf",
94 "exe",
95
96 /* android */
97 "apk",
98 "cnt", // Image alias
99 "exo", // YouTube
100 "odex", // Android RunTime
101 "vdex", // Android RunTime
102 "so",
103
104 NULL
105 };
106
107 const char *hot_ext_lists[] = {
108 "db",
109
110 #ifndef WITH_ANDROID
111 /* Virtual machines */
112 "vmdk", // VMware or VirtualBox
113 "vdi", // VirtualBox
114 "qcow2", // QEMU
115 #endif
116 NULL
117 };
118
119 const char **default_ext_list[] = {
120 media_ext_lists,
121 hot_ext_lists
122 };
123
is_extension_exist(const char * name)124 static bool is_extension_exist(const char *name)
125 {
126 int i;
127
128 for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
129 char *ext = (char *)sb->extension_list[i];
130 if (!strcmp(ext, name))
131 return 1;
132 }
133
134 return 0;
135 }
136
cure_extension_list(void)137 static void cure_extension_list(void)
138 {
139 const char **extlist;
140 char *ext_str;
141 char *ue;
142 int name_len;
143 int i, pos = 0;
144
145 set_sb(extension_count, 0);
146 memset(sb->extension_list, 0, sizeof(sb->extension_list));
147
148 for (i = 0; i < 2; i++) {
149 ext_str = c.extension_list[i];
150 extlist = default_ext_list[i];
151
152 while (*extlist) {
153 name_len = strlen(*extlist);
154 memcpy(sb->extension_list[pos++], *extlist, name_len);
155 extlist++;
156 }
157 if (i == 0)
158 set_sb(extension_count, pos);
159 else
160 sb->hot_ext_count = pos - get_sb(extension_count);;
161
162 if (!ext_str)
163 continue;
164
165 /* add user ext list */
166 ue = strtok(ext_str, ", ");
167 while (ue != NULL) {
168 name_len = strlen(ue);
169 if (name_len >= F2FS_EXTENSION_LEN) {
170 MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
171 goto next;
172 }
173 if (!is_extension_exist(ue))
174 memcpy(sb->extension_list[pos++], ue, name_len);
175 next:
176 ue = strtok(NULL, ", ");
177 if (pos >= F2FS_MAX_EXTENSION)
178 break;
179 }
180
181 if (i == 0)
182 set_sb(extension_count, pos);
183 else
184 sb->hot_ext_count = pos - get_sb(extension_count);
185
186 free(c.extension_list[i]);
187 }
188 }
189
verify_cur_segs(void)190 static void verify_cur_segs(void)
191 {
192 int i, j;
193 int reorder = 0;
194
195 for (i = 0; i < NR_CURSEG_TYPE; i++) {
196 for (j = i + 1; j < NR_CURSEG_TYPE; j++) {
197 if (c.cur_seg[i] == c.cur_seg[j]) {
198 reorder = 1;
199 break;
200 }
201 }
202 }
203
204 if (!reorder)
205 return;
206
207 c.cur_seg[0] = 0;
208 for (i = 1; i < NR_CURSEG_TYPE; i++)
209 c.cur_seg[i] = next_zone(i - 1);
210 }
211
f2fs_prepare_super_block(void)212 static int f2fs_prepare_super_block(void)
213 {
214 uint32_t blk_size_bytes;
215 uint32_t log_sectorsize, log_sectors_per_block;
216 uint32_t log_blocksize, log_blks_per_seg;
217 uint32_t segment_size_bytes, zone_size_bytes;
218 uint32_t sit_segments, nat_segments;
219 uint32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
220 uint32_t total_valid_blks_available;
221 uint64_t zone_align_start_offset, diff;
222 uint64_t total_meta_zones, total_meta_segments;
223 uint32_t sit_bitmap_size, max_sit_bitmap_size;
224 uint32_t max_nat_bitmap_size, max_nat_segments;
225 uint32_t total_zones, avail_zones;
226 enum quota_type qtype;
227 int i;
228
229 set_sb(magic, F2FS_SUPER_MAGIC);
230 set_sb(major_ver, F2FS_MAJOR_VERSION);
231 set_sb(minor_ver, F2FS_MINOR_VERSION);
232
233 log_sectorsize = log_base_2(c.sector_size);
234 log_sectors_per_block = log_base_2(c.sectors_per_blk);
235 log_blocksize = log_sectorsize + log_sectors_per_block;
236 log_blks_per_seg = log_base_2(c.blks_per_seg);
237
238 set_sb(log_sectorsize, log_sectorsize);
239 set_sb(log_sectors_per_block, log_sectors_per_block);
240
241 set_sb(log_blocksize, log_blocksize);
242 set_sb(log_blocks_per_seg, log_blks_per_seg);
243
244 set_sb(segs_per_sec, c.segs_per_sec);
245 set_sb(secs_per_zone, c.secs_per_zone);
246
247 blk_size_bytes = 1 << log_blocksize;
248 segment_size_bytes = blk_size_bytes * c.blks_per_seg;
249 zone_size_bytes =
250 blk_size_bytes * c.secs_per_zone *
251 c.segs_per_sec * c.blks_per_seg;
252
253 set_sb(checksum_offset, 0);
254
255 set_sb(block_count, c.total_sectors >> log_sectors_per_block);
256
257 zone_align_start_offset =
258 ((uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE +
259 2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
260 zone_size_bytes * zone_size_bytes -
261 (uint64_t) c.start_sector * DEFAULT_SECTOR_SIZE;
262
263 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
264 zone_align_start_offset = 8192;
265
266 if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
267 MSG(1, "\t%s: Align start sector number to the page unit\n",
268 c.zoned_mode ? "FAIL" : "WARN");
269 MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
270 c.start_sector,
271 c.start_sector % DEFAULT_SECTORS_PER_BLOCK,
272 DEFAULT_SECTORS_PER_BLOCK);
273 if (c.zoned_mode)
274 return -1;
275 }
276
277 if (c.zoned_mode && c.ndevs > 1)
278 zone_align_start_offset +=
279 (c.devices[0].total_sectors * c.sector_size) % zone_size_bytes;
280
281 set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
282 sb->cp_blkaddr = sb->segment0_blkaddr;
283
284 MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
285 get_sb(segment0_blkaddr));
286
287 if (c.zoned_mode &&
288 ((c.ndevs == 1 &&
289 (get_sb(segment0_blkaddr) + c.start_sector /
290 DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) ||
291 (c.ndevs > 1 &&
292 c.devices[1].start_blkaddr % c.zone_blocks))) {
293 MSG(1, "\tError: Unaligned segment0 block address %u\n",
294 get_sb(segment0_blkaddr));
295 return -1;
296 }
297
298 for (i = 0; i < c.ndevs; i++) {
299 if (i == 0) {
300 c.devices[i].total_segments =
301 (c.devices[i].total_sectors *
302 c.sector_size - zone_align_start_offset) /
303 segment_size_bytes;
304 c.devices[i].start_blkaddr = 0;
305 c.devices[i].end_blkaddr = c.devices[i].total_segments *
306 c.blks_per_seg - 1 +
307 sb->segment0_blkaddr;
308 } else {
309 c.devices[i].total_segments =
310 c.devices[i].total_sectors /
311 (c.sectors_per_blk * c.blks_per_seg);
312 c.devices[i].start_blkaddr =
313 c.devices[i - 1].end_blkaddr + 1;
314 c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
315 c.devices[i].total_segments *
316 c.blks_per_seg - 1;
317 }
318 if (c.ndevs > 1) {
319 memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN);
320 sb->devs[i].total_segments =
321 cpu_to_le32(c.devices[i].total_segments);
322 }
323
324 c.total_segments += c.devices[i].total_segments;
325 }
326 set_sb(segment_count, (c.total_segments / c.segs_per_zone *
327 c.segs_per_zone));
328 set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
329
330 set_sb(sit_blkaddr, get_sb(segment0_blkaddr) +
331 get_sb(segment_count_ckpt) * c.blks_per_seg);
332
333 blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
334
335 sit_segments = SEG_ALIGN(blocks_for_sit);
336
337 set_sb(segment_count_sit, sit_segments * 2);
338
339 set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
340 c.blks_per_seg);
341
342 total_valid_blks_available = (get_sb(segment_count) -
343 (get_sb(segment_count_ckpt) +
344 get_sb(segment_count_sit))) * c.blks_per_seg;
345
346 blocks_for_nat = SIZE_ALIGN(total_valid_blks_available,
347 NAT_ENTRY_PER_BLOCK);
348
349 if (c.large_nat_bitmap) {
350 nat_segments = SEG_ALIGN(blocks_for_nat) *
351 DEFAULT_NAT_ENTRY_RATIO / 100;
352 set_sb(segment_count_nat, nat_segments ? nat_segments : 1);
353 max_nat_bitmap_size = (get_sb(segment_count_nat) <<
354 log_blks_per_seg) / 8;
355 set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
356 } else {
357 set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
358 max_nat_bitmap_size = 0;
359 }
360
361 /*
362 * The number of node segments should not be exceeded a "Threshold".
363 * This number resizes NAT bitmap area in a CP page.
364 * So the threshold is determined not to overflow one CP page
365 */
366 sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
367 log_blks_per_seg) / 8;
368
369 if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
370 max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
371 else
372 max_sit_bitmap_size = sit_bitmap_size;
373
374 if (c.large_nat_bitmap) {
375 /* use cp_payload if free space of f2fs_checkpoint is not enough */
376 if (max_sit_bitmap_size + max_nat_bitmap_size >
377 MAX_BITMAP_SIZE_IN_CKPT) {
378 uint32_t diff = max_sit_bitmap_size +
379 max_nat_bitmap_size -
380 MAX_BITMAP_SIZE_IN_CKPT;
381 set_sb(cp_payload, F2FS_BLK_ALIGN(diff));
382 } else {
383 set_sb(cp_payload, 0);
384 }
385 } else {
386 /*
387 * It should be reserved minimum 1 segment for nat.
388 * When sit is too large, we should expand cp area.
389 * It requires more pages for cp.
390 */
391 if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) {
392 max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT;
393 set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
394 } else {
395 max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT -
396 max_sit_bitmap_size;
397 set_sb(cp_payload, 0);
398 }
399 max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
400
401 if (get_sb(segment_count_nat) > max_nat_segments)
402 set_sb(segment_count_nat, max_nat_segments);
403
404 set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
405 }
406
407 set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
408 c.blks_per_seg);
409
410 total_valid_blks_available = (get_sb(segment_count) -
411 (get_sb(segment_count_ckpt) +
412 get_sb(segment_count_sit) +
413 get_sb(segment_count_nat))) *
414 c.blks_per_seg;
415
416 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
417 blocks_for_ssa = 0;
418 else
419 blocks_for_ssa = total_valid_blks_available /
420 c.blks_per_seg + 1;
421
422 set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
423
424 total_meta_segments = get_sb(segment_count_ckpt) +
425 get_sb(segment_count_sit) +
426 get_sb(segment_count_nat) +
427 get_sb(segment_count_ssa);
428 diff = total_meta_segments % (c.segs_per_zone);
429 if (diff)
430 set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
431 (c.segs_per_zone - diff));
432
433 total_meta_zones = ZONE_ALIGN(total_meta_segments *
434 c.blks_per_seg);
435
436 set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones *
437 c.segs_per_zone * c.blks_per_seg);
438
439 if (c.zoned_mode) {
440 /*
441 * Make sure there is enough randomly writeable
442 * space at the beginning of the disk.
443 */
444 unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks;
445
446 if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
447 c.devices[0].nr_rnd_zones < main_blkzone) {
448 MSG(0, "\tError: Device does not have enough random "
449 "write zones for F2FS volume (%lu needed)\n",
450 main_blkzone);
451 return -1;
452 }
453 /*
454 * Check if conventional device has enough space
455 * to accommodate all metadata, zoned device should
456 * not overlap to metadata area.
457 */
458 for (i = 1; i < c.ndevs; i++) {
459 if (c.devices[i].zoned_model != F2FS_ZONED_NONE &&
460 c.devices[i].start_blkaddr < get_sb(main_blkaddr)) {
461 MSG(0, "\tError: Conventional device %s is too small,"
462 " (%"PRIu64" MiB needed).\n", c.devices[0].path,
463 (get_sb(main_blkaddr) -
464 c.devices[i].start_blkaddr) >> 8);
465 return -1;
466 }
467 }
468 }
469
470 total_zones = get_sb(segment_count) / (c.segs_per_zone) -
471 total_meta_zones;
472 if (total_zones == 0)
473 goto too_small;
474 set_sb(section_count, total_zones * c.secs_per_zone);
475
476 set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec);
477
478 /*
479 * Let's determine the best reserved and overprovisioned space.
480 * For Zoned device, if zone capacity less than zone size, the segments
481 * starting after the zone capacity are unusable in each zone. So get
482 * overprovision ratio and reserved seg count based on avg usable
483 * segs_per_sec.
484 */
485 if (c.overprovision == 0)
486 c.overprovision = get_best_overprovision(sb);
487
488 c.reserved_segments =
489 (2 * (100 / c.overprovision + 1) + NR_CURSEG_TYPE) *
490 round_up(f2fs_get_usable_segments(sb), get_sb(section_count));
491
492 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
493 c.overprovision = 0;
494 c.reserved_segments = 0;
495 }
496 if ((!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)) &&
497 c.overprovision == 0) ||
498 c.total_segments < F2FS_MIN_SEGMENTS ||
499 (c.devices[0].total_sectors *
500 c.sector_size < zone_align_start_offset) ||
501 (get_sb(segment_count_main) - NR_CURSEG_TYPE) <
502 c.reserved_segments) {
503 goto too_small;
504 }
505
506 if (c.vol_uuid) {
507 if (uuid_parse(c.vol_uuid, sb->uuid)) {
508 MSG(0, "\tError: supplied string is not a valid UUID\n");
509 return -1;
510 }
511 } else {
512 uuid_generate(sb->uuid);
513 }
514
515 /* precompute checksum seed for metadata */
516 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
517 c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
518
519 utf8_to_utf16(sb->volume_name, (const char *)c.vol_label,
520 MAX_VOLUME_NAME, strlen(c.vol_label));
521 set_sb(node_ino, 1);
522 set_sb(meta_ino, 2);
523 set_sb(root_ino, 3);
524 c.next_free_nid = 4;
525
526 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
527 if (!((1 << qtype) & c.quota_bits))
528 continue;
529 sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++);
530 MSG(0, "Info: add quota type = %u => %u\n",
531 qtype, c.next_free_nid - 1);
532 }
533
534 if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND))
535 c.lpf_ino = c.next_free_nid++;
536
537 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
538 avail_zones = 2;
539 else
540 avail_zones = 6;
541
542 if (total_zones <= avail_zones) {
543 MSG(1, "\tError: %d zones: Need more zones "
544 "by shrinking zone size\n", total_zones);
545 return -1;
546 }
547
548 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
549 c.cur_seg[CURSEG_HOT_NODE] = last_section(last_zone(total_zones));
550 c.cur_seg[CURSEG_WARM_NODE] = 0;
551 c.cur_seg[CURSEG_COLD_NODE] = 0;
552 c.cur_seg[CURSEG_HOT_DATA] = 0;
553 c.cur_seg[CURSEG_COLD_DATA] = 0;
554 c.cur_seg[CURSEG_WARM_DATA] = 0;
555 } else if (c.heap) {
556 c.cur_seg[CURSEG_HOT_NODE] =
557 last_section(last_zone(total_zones));
558 c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE);
559 c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE);
560 c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE);
561 c.cur_seg[CURSEG_COLD_DATA] = 0;
562 c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
563 } else if (c.zoned_mode) {
564 c.cur_seg[CURSEG_HOT_NODE] = 0;
565 c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
566 c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
567 c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
568 c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA);
569 c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA);
570 } else {
571 c.cur_seg[CURSEG_HOT_NODE] = 0;
572 c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
573 c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
574 c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
575 c.cur_seg[CURSEG_COLD_DATA] =
576 max(last_zone((total_zones >> 2)),
577 next_zone(CURSEG_HOT_DATA));
578 c.cur_seg[CURSEG_WARM_DATA] =
579 max(last_zone((total_zones >> 1)),
580 next_zone(CURSEG_COLD_DATA));
581 }
582
583 /* if there is redundancy, reassign it */
584 if (!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)))
585 verify_cur_segs();
586
587 cure_extension_list();
588
589 /* get kernel version */
590 if (c.kd >= 0) {
591 dev_read_version(c.version, 0, VERSION_LEN);
592 get_kernel_version(c.version);
593 } else {
594 get_kernel_uname_version(c.version);
595 }
596 MSG(0, "Info: format version with\n \"%s\"\n", c.version);
597
598 memcpy(sb->version, c.version, VERSION_LEN);
599 memcpy(sb->init_version, c.version, VERSION_LEN);
600
601 if (c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
602 set_sb(s_encoding, c.s_encoding);
603 set_sb(s_encoding_flags, c.s_encoding_flags);
604 }
605
606 sb->feature = c.feature;
607
608 if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
609 set_sb(checksum_offset, SB_CHKSUM_OFFSET);
610 set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
611 SB_CHKSUM_OFFSET));
612 MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n",
613 get_sb(checksum_offset), get_sb(crc));
614 }
615
616 return 0;
617
618 too_small:
619 MSG(0, "\tError: Device size is not sufficient for F2FS volume\n");
620 return -1;
621 }
622
f2fs_init_sit_area(void)623 static int f2fs_init_sit_area(void)
624 {
625 uint32_t blk_size, seg_size;
626 uint32_t index = 0;
627 uint64_t sit_seg_addr = 0;
628 uint8_t *zero_buf = NULL;
629
630 blk_size = 1 << get_sb(log_blocksize);
631 seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
632
633 zero_buf = calloc(sizeof(uint8_t), seg_size);
634 if(zero_buf == NULL) {
635 MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
636 return -1;
637 }
638
639 sit_seg_addr = get_sb(sit_blkaddr);
640 sit_seg_addr *= blk_size;
641
642 DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
643 for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
644 if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
645 MSG(1, "\tError: While zeroing out the sit area "
646 "on disk!!!\n");
647 free(zero_buf);
648 return -1;
649 }
650 sit_seg_addr += seg_size;
651 }
652
653 free(zero_buf);
654 return 0 ;
655 }
656
f2fs_init_nat_area(void)657 static int f2fs_init_nat_area(void)
658 {
659 uint32_t blk_size, seg_size;
660 uint32_t index = 0;
661 uint64_t nat_seg_addr = 0;
662 uint8_t *nat_buf = NULL;
663
664 blk_size = 1 << get_sb(log_blocksize);
665 seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
666
667 nat_buf = calloc(sizeof(uint8_t), seg_size);
668 if (nat_buf == NULL) {
669 MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
670 return -1;
671 }
672
673 nat_seg_addr = get_sb(nat_blkaddr);
674 nat_seg_addr *= blk_size;
675
676 DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
677 for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
678 if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
679 MSG(1, "\tError: While zeroing out the nat area "
680 "on disk!!!\n");
681 free(nat_buf);
682 return -1;
683 }
684 nat_seg_addr = nat_seg_addr + (2 * seg_size);
685 }
686
687 free(nat_buf);
688 return 0 ;
689 }
690
f2fs_write_check_point_pack(void)691 static int f2fs_write_check_point_pack(void)
692 {
693 struct f2fs_summary_block *sum = NULL;
694 struct f2fs_journal *journal;
695 uint32_t blk_size_bytes;
696 uint32_t nat_bits_bytes, nat_bits_blocks;
697 unsigned char *nat_bits = NULL, *empty_nat_bits;
698 uint64_t cp_seg_blk = 0;
699 uint32_t crc = 0, flags;
700 unsigned int i;
701 char *cp_payload = NULL;
702 char *sum_compact, *sum_compact_p;
703 struct f2fs_summary *sum_entry;
704 enum quota_type qtype;
705 int off;
706 int ret = -1;
707
708 cp = calloc(F2FS_BLKSIZE, 1);
709 if (cp == NULL) {
710 MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n");
711 return ret;
712 }
713
714 sum = calloc(F2FS_BLKSIZE, 1);
715 if (sum == NULL) {
716 MSG(1, "\tError: Calloc failed for summary_node!!!\n");
717 goto free_cp;
718 }
719
720 sum_compact = calloc(F2FS_BLKSIZE, 1);
721 if (sum_compact == NULL) {
722 MSG(1, "\tError: Calloc failed for summary buffer!!!\n");
723 goto free_sum;
724 }
725 sum_compact_p = sum_compact;
726
727 nat_bits_bytes = get_sb(segment_count_nat) << 5;
728 nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
729 F2FS_BLKSIZE - 1);
730 nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
731 if (nat_bits == NULL) {
732 MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n");
733 goto free_sum_compact;
734 }
735
736 cp_payload = calloc(F2FS_BLKSIZE, 1);
737 if (cp_payload == NULL) {
738 MSG(1, "\tError: Calloc failed for cp_payload!!!\n");
739 goto free_nat_bits;
740 }
741
742 /* 1. cp page 1 of checkpoint pack 1 */
743 srand((c.fake_seed) ? 0 : time(NULL));
744 cp->checkpoint_ver = cpu_to_le64(rand() | 0x1);
745 set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]);
746 set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]);
747 set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]);
748 set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]);
749 set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]);
750 set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]);
751 for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
752 set_cp(cur_node_segno[i], 0xffffffff);
753 set_cp(cur_data_segno[i], 0xffffffff);
754 }
755
756 set_cp(cur_node_blkoff[0], 1 + c.quota_inum + c.lpf_inum);
757 set_cp(cur_data_blkoff[0], 1 + c.quota_dnum + c.lpf_dnum);
758 set_cp(valid_block_count, 2 + c.quota_inum + c.quota_dnum +
759 c.lpf_inum + c.lpf_dnum);
760 set_cp(rsvd_segment_count, c.reserved_segments);
761
762 /*
763 * For zoned devices, if zone capacity less than zone size, get
764 * overprovision segment count based on usable segments in the device.
765 */
766 set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) -
767 get_cp(rsvd_segment_count)) *
768 c.overprovision / 100);
769 set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
770 get_cp(rsvd_segment_count));
771
772 if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) {
773 MSG(0, "\tError: Not enough segments to create F2FS Volume\n");
774 goto free_cp_payload;
775 }
776 MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision);
777 MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
778 get_cp(overprov_segment_count),
779 c.reserved_segments);
780
781 /* main segments - reserved segments - (node + data segments) */
782 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
783 set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2);
784 set_cp(user_block_count, ((get_cp(free_segment_count) + 2 -
785 get_cp(overprov_segment_count)) * c.blks_per_seg));
786 } else {
787 set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6);
788 set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
789 get_cp(overprov_segment_count)) * c.blks_per_seg));
790 }
791 /* cp page (2), data summaries (1), node summaries (3) */
792 set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
793 flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG;
794 if (get_cp(cp_pack_total_block_count) <=
795 (1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
796 flags |= CP_NAT_BITS_FLAG;
797
798 if (c.trimmed)
799 flags |= CP_TRIMMED_FLAG;
800
801 if (c.large_nat_bitmap)
802 flags |= CP_LARGE_NAT_BITMAP_FLAG;
803
804 set_cp(ckpt_flags, flags);
805 set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
806 set_cp(valid_node_count, 1 + c.quota_inum + c.lpf_inum);
807 set_cp(valid_inode_count, 1 + c.quota_inum + c.lpf_inum);
808 set_cp(next_free_nid, c.next_free_nid);
809 set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
810 get_sb(log_blocks_per_seg)) / 8);
811
812 set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
813 get_sb(log_blocks_per_seg)) / 8);
814
815 if (c.large_nat_bitmap)
816 set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
817 else
818 set_cp(checksum_offset, CP_CHKSUM_OFFSET);
819
820 crc = f2fs_checkpoint_chksum(cp);
821 *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
822 cpu_to_le32(crc);
823
824 blk_size_bytes = 1 << get_sb(log_blocksize);
825
826 if (blk_size_bytes != F2FS_BLKSIZE) {
827 MSG(1, "\tError: Wrong block size %d / %d!!!\n",
828 blk_size_bytes, F2FS_BLKSIZE);
829 goto free_cp_payload;
830 }
831
832 cp_seg_blk = get_sb(segment0_blkaddr);
833
834 DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n",
835 cp_seg_blk);
836 if (dev_write_block(cp, cp_seg_blk)) {
837 MSG(1, "\tError: While writing the cp to disk!!!\n");
838 goto free_cp_payload;
839 }
840
841 for (i = 0; i < get_sb(cp_payload); i++) {
842 cp_seg_blk++;
843 if (dev_fill_block(cp_payload, cp_seg_blk)) {
844 MSG(1, "\tError: While zeroing out the sit bitmap area "
845 "on disk!!!\n");
846 goto free_cp_payload;
847 }
848 }
849
850 /* Prepare and write Segment summary for HOT/WARM/COLD DATA
851 *
852 * The structure of compact summary
853 * +-------------------+
854 * | nat_journal |
855 * +-------------------+
856 * | sit_journal |
857 * +-------------------+
858 * | hot data summary |
859 * +-------------------+
860 * | warm data summary |
861 * +-------------------+
862 * | cold data summary |
863 * +-------------------+
864 */
865 memset(sum, 0, sizeof(struct f2fs_summary_block));
866 SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
867
868 journal = &sum->journal;
869 journal->n_nats = cpu_to_le16(1 + c.quota_inum + c.lpf_inum);
870 journal->nat_j.entries[0].nid = sb->root_ino;
871 journal->nat_j.entries[0].ne.version = 0;
872 journal->nat_j.entries[0].ne.ino = sb->root_ino;
873 journal->nat_j.entries[0].ne.block_addr = cpu_to_le32(
874 get_sb(main_blkaddr) +
875 get_cp(cur_node_segno[0]) * c.blks_per_seg);
876
877 for (qtype = 0, i = 1; qtype < F2FS_MAX_QUOTAS; qtype++) {
878 if (!((1 << qtype) & c.quota_bits))
879 continue;
880 journal->nat_j.entries[i].nid = sb->qf_ino[qtype];
881 journal->nat_j.entries[i].ne.version = 0;
882 journal->nat_j.entries[i].ne.ino = sb->qf_ino[qtype];
883 journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
884 get_sb(main_blkaddr) +
885 get_cp(cur_node_segno[0]) *
886 c.blks_per_seg + i);
887 i++;
888 }
889
890 if (c.lpf_inum) {
891 journal->nat_j.entries[i].nid = cpu_to_le32(c.lpf_ino);
892 journal->nat_j.entries[i].ne.version = 0;
893 journal->nat_j.entries[i].ne.ino = cpu_to_le32(c.lpf_ino);
894 journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
895 get_sb(main_blkaddr) +
896 get_cp(cur_node_segno[0]) *
897 c.blks_per_seg + i);
898 }
899
900 memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE);
901 sum_compact_p += SUM_JOURNAL_SIZE;
902
903 memset(sum, 0, sizeof(struct f2fs_summary_block));
904
905 /* inode sit for root */
906 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
907 journal->n_sits = cpu_to_le16(2);
908 else
909 journal->n_sits = cpu_to_le16(6);
910
911 journal->sit_j.entries[0].segno = cp->cur_node_segno[0];
912 journal->sit_j.entries[0].se.vblocks =
913 cpu_to_le16((CURSEG_HOT_NODE << 10) |
914 (1 + c.quota_inum + c.lpf_inum));
915 f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map);
916 for (i = 1; i <= c.quota_inum; i++)
917 f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
918 if (c.lpf_inum)
919 f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
920
921 if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
922 /* data sit for root */
923 journal->sit_j.entries[1].segno = cp->cur_data_segno[0];
924 journal->sit_j.entries[1].se.vblocks =
925 cpu_to_le16((CURSEG_HOT_DATA << 10) |
926 (1 + c.quota_dnum + c.lpf_dnum));
927 f2fs_set_bit(0, (char *)journal->sit_j.entries[1].se.valid_map);
928 for (i = 1; i <= c.quota_dnum; i++)
929 f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
930 if (c.lpf_dnum)
931 f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
932 } else {
933 journal->sit_j.entries[1].segno = cp->cur_node_segno[1];
934 journal->sit_j.entries[1].se.vblocks =
935 cpu_to_le16((CURSEG_WARM_NODE << 10));
936 journal->sit_j.entries[2].segno = cp->cur_node_segno[2];
937 journal->sit_j.entries[2].se.vblocks =
938 cpu_to_le16((CURSEG_COLD_NODE << 10));
939
940 /* data sit for root */
941 journal->sit_j.entries[3].segno = cp->cur_data_segno[0];
942 journal->sit_j.entries[3].se.vblocks =
943 cpu_to_le16((CURSEG_HOT_DATA << 10) |
944 (1 + c.quota_dnum + c.lpf_dnum));
945 f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map);
946 for (i = 1; i <= c.quota_dnum; i++)
947 f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
948 if (c.lpf_dnum)
949 f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
950
951 journal->sit_j.entries[4].segno = cp->cur_data_segno[1];
952 journal->sit_j.entries[4].se.vblocks =
953 cpu_to_le16((CURSEG_WARM_DATA << 10));
954 journal->sit_j.entries[5].segno = cp->cur_data_segno[2];
955 journal->sit_j.entries[5].se.vblocks =
956 cpu_to_le16((CURSEG_COLD_DATA << 10));
957 }
958
959 memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE);
960 sum_compact_p += SUM_JOURNAL_SIZE;
961
962 /* hot data summary */
963 sum_entry = (struct f2fs_summary *)sum_compact_p;
964 sum_entry->nid = sb->root_ino;
965 sum_entry->ofs_in_node = 0;
966
967 off = 1;
968 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
969 int j;
970
971 if (!((1 << qtype) & c.quota_bits))
972 continue;
973
974 for (j = 0; j < QUOTA_DATA(qtype); j++) {
975 (sum_entry + off + j)->nid = sb->qf_ino[qtype];
976 (sum_entry + off + j)->ofs_in_node = cpu_to_le16(j);
977 }
978 off += QUOTA_DATA(qtype);
979 }
980
981 if (c.lpf_dnum) {
982 (sum_entry + off)->nid = cpu_to_le32(c.lpf_ino);
983 (sum_entry + off)->ofs_in_node = 0;
984 }
985
986 /* warm data summary, nothing to do */
987 /* cold data summary, nothing to do */
988
989 cp_seg_blk++;
990 DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
991 cp_seg_blk);
992 if (dev_write_block(sum_compact, cp_seg_blk)) {
993 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
994 goto free_cp_payload;
995 }
996
997 /* Prepare and write Segment summary for HOT_NODE */
998 memset(sum, 0, sizeof(struct f2fs_summary_block));
999 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1000
1001 sum->entries[0].nid = sb->root_ino;
1002 sum->entries[0].ofs_in_node = 0;
1003 for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1004 if (!((1 << qtype) & c.quota_bits))
1005 continue;
1006 sum->entries[1 + i].nid = sb->qf_ino[qtype];
1007 sum->entries[1 + i].ofs_in_node = 0;
1008 i++;
1009 }
1010 if (c.lpf_inum) {
1011 i++;
1012 sum->entries[i].nid = cpu_to_le32(c.lpf_ino);
1013 sum->entries[i].ofs_in_node = 0;
1014 }
1015
1016 cp_seg_blk++;
1017 DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
1018 cp_seg_blk);
1019 if (dev_write_block(sum, cp_seg_blk)) {
1020 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1021 goto free_cp_payload;
1022 }
1023
1024 /* Fill segment summary for WARM_NODE to zero. */
1025 memset(sum, 0, sizeof(struct f2fs_summary_block));
1026 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1027
1028 cp_seg_blk++;
1029 DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
1030 cp_seg_blk);
1031 if (dev_write_block(sum, cp_seg_blk)) {
1032 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1033 goto free_cp_payload;
1034 }
1035
1036 /* Fill segment summary for COLD_NODE to zero. */
1037 memset(sum, 0, sizeof(struct f2fs_summary_block));
1038 SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1039 cp_seg_blk++;
1040 DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
1041 cp_seg_blk);
1042 if (dev_write_block(sum, cp_seg_blk)) {
1043 MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1044 goto free_cp_payload;
1045 }
1046
1047 /* cp page2 */
1048 cp_seg_blk++;
1049 DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk);
1050 if (dev_write_block(cp, cp_seg_blk)) {
1051 MSG(1, "\tError: While writing the cp to disk!!!\n");
1052 goto free_cp_payload;
1053 }
1054
1055 /* write NAT bits, if possible */
1056 if (flags & CP_NAT_BITS_FLAG) {
1057 uint32_t i;
1058
1059 *(__le64 *)nat_bits = get_cp_crc(cp);
1060 empty_nat_bits = nat_bits + 8 + nat_bits_bytes;
1061 memset(empty_nat_bits, 0xff, nat_bits_bytes);
1062 test_and_clear_bit_le(0, empty_nat_bits);
1063
1064 /* write the last blocks in cp pack */
1065 cp_seg_blk = get_sb(segment0_blkaddr) + (1 <<
1066 get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1067
1068 DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n",
1069 cp_seg_blk);
1070
1071 for (i = 0; i < nat_bits_blocks; i++) {
1072 if (dev_write_block(nat_bits + i *
1073 F2FS_BLKSIZE, cp_seg_blk + i)) {
1074 MSG(1, "\tError: write NAT bits to disk!!!\n");
1075 goto free_cp_payload;
1076 }
1077 }
1078 }
1079
1080 /* cp page 1 of check point pack 2
1081 * Initialize other checkpoint pack with version zero
1082 */
1083 cp->checkpoint_ver = 0;
1084
1085 crc = f2fs_checkpoint_chksum(cp);
1086 *((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
1087 cpu_to_le32(crc);
1088 cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg;
1089 DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1090 cp_seg_blk);
1091 if (dev_write_block(cp, cp_seg_blk)) {
1092 MSG(1, "\tError: While writing the cp to disk!!!\n");
1093 goto free_cp_payload;
1094 }
1095
1096 for (i = 0; i < get_sb(cp_payload); i++) {
1097 cp_seg_blk++;
1098 if (dev_fill_block(cp_payload, cp_seg_blk)) {
1099 MSG(1, "\tError: While zeroing out the sit bitmap area "
1100 "on disk!!!\n");
1101 goto free_cp_payload;
1102 }
1103 }
1104
1105 /* cp page 2 of check point pack 2 */
1106 cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) -
1107 get_sb(cp_payload) - 1);
1108 DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1109 cp_seg_blk);
1110 if (dev_write_block(cp, cp_seg_blk)) {
1111 MSG(1, "\tError: While writing the cp to disk!!!\n");
1112 goto free_cp_payload;
1113 }
1114
1115 ret = 0;
1116
1117 free_cp_payload:
1118 free(cp_payload);
1119 free_nat_bits:
1120 free(nat_bits);
1121 free_sum_compact:
1122 free(sum_compact);
1123 free_sum:
1124 free(sum);
1125 free_cp:
1126 free(cp);
1127 return ret;
1128 }
1129
f2fs_write_super_block(void)1130 static int f2fs_write_super_block(void)
1131 {
1132 int index;
1133 uint8_t *zero_buff;
1134
1135 zero_buff = calloc(F2FS_BLKSIZE, 1);
1136 if (zero_buff == NULL) {
1137 MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n");
1138 return -1;
1139 }
1140
1141 memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
1142 DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
1143 for (index = 0; index < 2; index++) {
1144 if (dev_write_block(zero_buff, index)) {
1145 MSG(1, "\tError: While while writing super_blk "
1146 "on disk!!! index : %d\n", index);
1147 free(zero_buff);
1148 return -1;
1149 }
1150 }
1151
1152 free(zero_buff);
1153 return 0;
1154 }
1155
1156 #ifndef WITH_ANDROID
f2fs_discard_obsolete_dnode(void)1157 static int f2fs_discard_obsolete_dnode(void)
1158 {
1159 struct f2fs_node *raw_node;
1160 uint64_t next_blkaddr = 0, offset;
1161 u64 end_blkaddr = (get_sb(segment_count_main) <<
1162 get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
1163 uint64_t start_inode_pos = get_sb(main_blkaddr);
1164 uint64_t last_inode_pos;
1165
1166 if (c.zoned_mode || c.feature & cpu_to_le32(F2FS_FEATURE_RO))
1167 return 0;
1168
1169 raw_node = calloc(sizeof(struct f2fs_node), 1);
1170 if (raw_node == NULL) {
1171 MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n");
1172 return -1;
1173 }
1174
1175 /* avoid power-off-recovery based on roll-forward policy */
1176 offset = get_sb(main_blkaddr);
1177 offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg;
1178
1179 last_inode_pos = start_inode_pos +
1180 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + c.quota_inum + c.lpf_inum;
1181
1182 do {
1183 if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr)
1184 break;
1185
1186 if (dev_read_block(raw_node, offset)) {
1187 MSG(1, "\tError: While traversing direct node!!!\n");
1188 free(raw_node);
1189 return -1;
1190 }
1191
1192 next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr);
1193 memset(raw_node, 0, F2FS_BLKSIZE);
1194
1195 DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset);
1196 if (dev_write_block(raw_node, offset)) {
1197 MSG(1, "\tError: While discarding direct node!!!\n");
1198 free(raw_node);
1199 return -1;
1200 }
1201 offset = next_blkaddr;
1202 /* should avoid recursive chain due to stale data */
1203 if (offset >= start_inode_pos || offset <= last_inode_pos)
1204 break;
1205 } while (1);
1206
1207 free(raw_node);
1208 return 0;
1209 }
1210 #endif
1211
f2fs_write_root_inode(void)1212 static int f2fs_write_root_inode(void)
1213 {
1214 struct f2fs_node *raw_node = NULL;
1215 uint64_t blk_size_bytes, data_blk_nor;
1216 uint64_t main_area_node_seg_blk_offset = 0;
1217
1218 raw_node = calloc(F2FS_BLKSIZE, 1);
1219 if (raw_node == NULL) {
1220 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1221 return -1;
1222 }
1223
1224 raw_node->footer.nid = sb->root_ino;
1225 raw_node->footer.ino = sb->root_ino;
1226 raw_node->footer.cp_ver = cpu_to_le64(1);
1227 raw_node->footer.next_blkaddr = cpu_to_le32(
1228 get_sb(main_blkaddr) +
1229 c.cur_seg[CURSEG_HOT_NODE] *
1230 c.blks_per_seg + 1);
1231
1232 raw_node->i.i_mode = cpu_to_le16(0x41ed);
1233 if (c.lpf_ino)
1234 raw_node->i.i_links = cpu_to_le32(3);
1235 else
1236 raw_node->i.i_links = cpu_to_le32(2);
1237 raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1238 raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1239
1240 blk_size_bytes = 1 << get_sb(log_blocksize);
1241 raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
1242 raw_node->i.i_blocks = cpu_to_le64(2);
1243
1244 raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1245 raw_node->i.i_atime_nsec = 0;
1246 raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1247 raw_node->i.i_ctime_nsec = 0;
1248 raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1249 raw_node->i.i_mtime_nsec = 0;
1250 raw_node->i.i_generation = 0;
1251 raw_node->i.i_xattr_nid = 0;
1252 raw_node->i.i_flags = 0;
1253 raw_node->i.i_current_depth = cpu_to_le32(1);
1254 raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1255
1256 if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1257 raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1258 raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1259 }
1260
1261 if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1262 raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1263
1264 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1265 raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1266 raw_node->i.i_crtime_nsec = 0;
1267 }
1268
1269 if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1270 raw_node->i.i_compress_algrithm = 0;
1271 raw_node->i.i_log_cluster_size = 0;
1272 raw_node->i.i_padding = 0;
1273 }
1274
1275 data_blk_nor = get_sb(main_blkaddr) +
1276 c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg;
1277 raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1278
1279 raw_node->i.i_ext.fofs = 0;
1280 raw_node->i.i_ext.blk_addr = 0;
1281 raw_node->i.i_ext.len = 0;
1282
1283 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1284 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1285 c.blks_per_seg;
1286
1287 DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1288 get_sb(main_blkaddr),
1289 c.cur_seg[CURSEG_HOT_NODE],
1290 c.blks_per_seg, main_area_node_seg_blk_offset);
1291 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1292 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1293 free(raw_node);
1294 return -1;
1295 }
1296
1297 free(raw_node);
1298 return 0;
1299 }
1300
f2fs_write_default_quota(int qtype,unsigned int blkaddr,__le32 raw_id)1301 static int f2fs_write_default_quota(int qtype, unsigned int blkaddr,
1302 __le32 raw_id)
1303 {
1304 char *filebuf = calloc(F2FS_BLKSIZE, 2);
1305 int file_magics[] = INITQMAGICS;
1306 struct v2_disk_dqheader ddqheader;
1307 struct v2_disk_dqinfo ddqinfo;
1308 struct v2r1_disk_dqblk dqblk;
1309
1310 if (filebuf == NULL) {
1311 MSG(1, "\tError: Calloc Failed for filebuf!!!\n");
1312 return -1;
1313 }
1314
1315 /* Write basic quota header */
1316 ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]);
1317 /* only support QF_VFSV1 */
1318 ddqheader.dqh_version = cpu_to_le32(1);
1319
1320 memcpy(filebuf, &ddqheader, sizeof(ddqheader));
1321
1322 /* Fill Initial quota file content */
1323 ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME);
1324 ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME);
1325 ddqinfo.dqi_flags = cpu_to_le32(0);
1326 ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5);
1327 ddqinfo.dqi_free_blk = cpu_to_le32(0);
1328 ddqinfo.dqi_free_entry = cpu_to_le32(5);
1329
1330 memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo));
1331
1332 filebuf[1024] = 2;
1333 filebuf[2048] = 3;
1334 filebuf[3072] = 4;
1335 filebuf[4096] = 5;
1336
1337 filebuf[5120 + 8] = 1;
1338
1339 dqblk.dqb_id = raw_id;
1340 dqblk.dqb_pad = cpu_to_le32(0);
1341 dqblk.dqb_ihardlimit = cpu_to_le64(0);
1342 dqblk.dqb_isoftlimit = cpu_to_le64(0);
1343 if (c.lpf_ino)
1344 dqblk.dqb_curinodes = cpu_to_le64(2);
1345 else
1346 dqblk.dqb_curinodes = cpu_to_le64(1);
1347 dqblk.dqb_bhardlimit = cpu_to_le64(0);
1348 dqblk.dqb_bsoftlimit = cpu_to_le64(0);
1349 if (c.lpf_ino)
1350 dqblk.dqb_curspace = cpu_to_le64(8192);
1351 else
1352 dqblk.dqb_curspace = cpu_to_le64(4096);
1353 dqblk.dqb_btime = cpu_to_le64(0);
1354 dqblk.dqb_itime = cpu_to_le64(0);
1355
1356 memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk));
1357
1358 /* Write two blocks */
1359 if (dev_write_block(filebuf, blkaddr) ||
1360 dev_write_block(filebuf + F2FS_BLKSIZE, blkaddr + 1)) {
1361 MSG(1, "\tError: While writing the quota_blk to disk!!!\n");
1362 free(filebuf);
1363 return -1;
1364 }
1365 DBG(1, "\tWriting quota data, at offset %08x, %08x\n",
1366 blkaddr, blkaddr + 1);
1367 free(filebuf);
1368 c.quota_dnum += QUOTA_DATA(qtype);
1369 return 0;
1370 }
1371
f2fs_write_qf_inode(int qtype,int offset)1372 static int f2fs_write_qf_inode(int qtype, int offset)
1373 {
1374 struct f2fs_node *raw_node = NULL;
1375 uint64_t data_blk_nor;
1376 uint64_t main_area_node_seg_blk_offset = 0;
1377 __le32 raw_id;
1378 int i;
1379
1380 raw_node = calloc(F2FS_BLKSIZE, 1);
1381 if (raw_node == NULL) {
1382 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1383 return -1;
1384 }
1385 f2fs_init_qf_inode(sb, raw_node, qtype, mkfs_time);
1386
1387 raw_node->footer.next_blkaddr = cpu_to_le32(
1388 get_sb(main_blkaddr) +
1389 c.cur_seg[CURSEG_HOT_NODE] *
1390 c.blks_per_seg + 1 + qtype + 1);
1391 raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA(qtype));
1392
1393 data_blk_nor = get_sb(main_blkaddr) +
1394 c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg + 1
1395 + offset * QUOTA_DATA(i);
1396
1397 if (qtype == 0)
1398 raw_id = raw_node->i.i_uid;
1399 else if (qtype == 1)
1400 raw_id = raw_node->i.i_gid;
1401 else if (qtype == 2)
1402 raw_id = raw_node->i.i_projid;
1403 else
1404 ASSERT(0);
1405
1406 /* write two blocks */
1407 if (f2fs_write_default_quota(qtype, data_blk_nor, raw_id)) {
1408 free(raw_node);
1409 return -1;
1410 }
1411
1412 for (i = 0; i < QUOTA_DATA(qtype); i++)
1413 raw_node->i.i_addr[get_extra_isize(raw_node) + i] =
1414 cpu_to_le32(data_blk_nor + i);
1415
1416 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1417 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1418 c.blks_per_seg + offset + 1;
1419
1420 DBG(1, "\tWriting quota inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1421 get_sb(main_blkaddr),
1422 c.cur_seg[CURSEG_HOT_NODE],
1423 c.blks_per_seg, main_area_node_seg_blk_offset);
1424 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1425 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1426 free(raw_node);
1427 return -1;
1428 }
1429
1430 free(raw_node);
1431 c.quota_inum++;
1432 return 0;
1433 }
1434
f2fs_update_nat_root(void)1435 static int f2fs_update_nat_root(void)
1436 {
1437 struct f2fs_nat_block *nat_blk = NULL;
1438 uint64_t nat_seg_blk_offset = 0;
1439 enum quota_type qtype;
1440 int i;
1441
1442 nat_blk = calloc(F2FS_BLKSIZE, 1);
1443 if(nat_blk == NULL) {
1444 MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
1445 return -1;
1446 }
1447
1448 /* update quota */
1449 for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1450 if (!((1 << qtype) & c.quota_bits))
1451 continue;
1452 nat_blk->entries[sb->qf_ino[qtype]].block_addr =
1453 cpu_to_le32(get_sb(main_blkaddr) +
1454 c.cur_seg[CURSEG_HOT_NODE] *
1455 c.blks_per_seg + i + 1);
1456 nat_blk->entries[sb->qf_ino[qtype]].ino = sb->qf_ino[qtype];
1457 i++;
1458 }
1459
1460 /* update root */
1461 nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32(
1462 get_sb(main_blkaddr) +
1463 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg);
1464 nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino;
1465
1466 /* update node nat */
1467 nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
1468 nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino;
1469
1470 /* update meta nat */
1471 nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
1472 nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino;
1473
1474 nat_seg_blk_offset = get_sb(nat_blkaddr);
1475
1476 DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n",
1477 nat_seg_blk_offset);
1478 if (dev_write_block(nat_blk, nat_seg_blk_offset)) {
1479 MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
1480 free(nat_blk);
1481 return -1;
1482 }
1483
1484 free(nat_blk);
1485 return 0;
1486 }
1487
f2fs_add_default_dentry_lpf(void)1488 static block_t f2fs_add_default_dentry_lpf(void)
1489 {
1490 struct f2fs_dentry_block *dent_blk;
1491 uint64_t data_blk_offset;
1492
1493 dent_blk = calloc(F2FS_BLKSIZE, 1);
1494 if (dent_blk == NULL) {
1495 MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1496 return 0;
1497 }
1498
1499 dent_blk->dentry[0].hash_code = 0;
1500 dent_blk->dentry[0].ino = cpu_to_le32(c.lpf_ino);
1501 dent_blk->dentry[0].name_len = cpu_to_le16(1);
1502 dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1503 memcpy(dent_blk->filename[0], ".", 1);
1504
1505 dent_blk->dentry[1].hash_code = 0;
1506 dent_blk->dentry[1].ino = sb->root_ino;
1507 dent_blk->dentry[1].name_len = cpu_to_le16(2);
1508 dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1509 memcpy(dent_blk->filename[1], "..", 2);
1510
1511 test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1512 test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1513
1514 data_blk_offset = get_sb(main_blkaddr);
1515 data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg +
1516 1 + c.quota_dnum;
1517
1518 DBG(1, "\tWriting default dentry lost+found, at offset 0x%08"PRIx64"\n",
1519 data_blk_offset);
1520 if (dev_write_block(dent_blk, data_blk_offset)) {
1521 MSG(1, "\tError While writing the dentry_blk to disk!!!\n");
1522 free(dent_blk);
1523 return 0;
1524 }
1525
1526 free(dent_blk);
1527 c.lpf_dnum++;
1528 return data_blk_offset;
1529 }
1530
f2fs_write_lpf_inode(void)1531 static int f2fs_write_lpf_inode(void)
1532 {
1533 struct f2fs_node *raw_node;
1534 uint64_t blk_size_bytes, main_area_node_seg_blk_offset;
1535 block_t data_blk_nor;
1536 int err = 0;
1537
1538 ASSERT(c.lpf_ino);
1539
1540 raw_node = calloc(F2FS_BLKSIZE, 1);
1541 if (raw_node == NULL) {
1542 MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1543 return -1;
1544 }
1545
1546 raw_node->footer.nid = cpu_to_le32(c.lpf_ino);
1547 raw_node->footer.ino = raw_node->footer.nid;
1548 raw_node->footer.cp_ver = cpu_to_le64(1);
1549 raw_node->footer.next_blkaddr = cpu_to_le32(
1550 get_sb(main_blkaddr) +
1551 c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg +
1552 1 + c.quota_inum + 1);
1553
1554 raw_node->i.i_mode = cpu_to_le16(0x41c0); /* 0700 */
1555 raw_node->i.i_links = cpu_to_le32(2);
1556 raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1557 raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1558
1559 blk_size_bytes = 1 << get_sb(log_blocksize);
1560 raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes);
1561 raw_node->i.i_blocks = cpu_to_le64(2);
1562
1563 raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1564 raw_node->i.i_atime_nsec = 0;
1565 raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1566 raw_node->i.i_ctime_nsec = 0;
1567 raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1568 raw_node->i.i_mtime_nsec = 0;
1569 raw_node->i.i_generation = 0;
1570 raw_node->i.i_xattr_nid = 0;
1571 raw_node->i.i_flags = 0;
1572 raw_node->i.i_pino = le32_to_cpu(sb->root_ino);
1573 raw_node->i.i_namelen = le32_to_cpu(strlen(LPF));
1574 memcpy(raw_node->i.i_name, LPF, strlen(LPF));
1575 raw_node->i.i_current_depth = cpu_to_le32(1);
1576 raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1577
1578 if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1579 raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1580 raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1581 }
1582
1583 if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1584 raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1585
1586 if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1587 raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1588 raw_node->i.i_crtime_nsec = 0;
1589 }
1590
1591 if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1592 raw_node->i.i_compress_algrithm = 0;
1593 raw_node->i.i_log_cluster_size = 0;
1594 raw_node->i.i_padding = 0;
1595 }
1596
1597 data_blk_nor = f2fs_add_default_dentry_lpf();
1598 if (data_blk_nor == 0) {
1599 MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n");
1600 err = -1;
1601 goto exit;
1602 }
1603 raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1604
1605 main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1606 main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1607 c.blks_per_seg + c.quota_inum + 1;
1608
1609 DBG(1, "\tWriting lost+found inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1610 get_sb(main_blkaddr),
1611 c.cur_seg[CURSEG_HOT_NODE],
1612 c.blks_per_seg, main_area_node_seg_blk_offset);
1613 if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1614 MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1615 err = -1;
1616 goto exit;
1617 }
1618
1619 c.lpf_inum++;
1620 exit:
1621 free(raw_node);
1622 return err;
1623 }
1624
f2fs_add_default_dentry_root(void)1625 static int f2fs_add_default_dentry_root(void)
1626 {
1627 struct f2fs_dentry_block *dent_blk = NULL;
1628 uint64_t data_blk_offset = 0;
1629
1630 dent_blk = calloc(F2FS_BLKSIZE, 1);
1631 if(dent_blk == NULL) {
1632 MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1633 return -1;
1634 }
1635
1636 dent_blk->dentry[0].hash_code = 0;
1637 dent_blk->dentry[0].ino = sb->root_ino;
1638 dent_blk->dentry[0].name_len = cpu_to_le16(1);
1639 dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1640 memcpy(dent_blk->filename[0], ".", 1);
1641
1642 dent_blk->dentry[1].hash_code = 0;
1643 dent_blk->dentry[1].ino = sb->root_ino;
1644 dent_blk->dentry[1].name_len = cpu_to_le16(2);
1645 dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1646 memcpy(dent_blk->filename[1], "..", 2);
1647
1648 /* bitmap for . and .. */
1649 test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1650 test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1651
1652 if (c.lpf_ino) {
1653 int len = strlen(LPF);
1654 f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len);
1655
1656 dent_blk->dentry[2].hash_code = cpu_to_le32(hash);
1657 dent_blk->dentry[2].ino = cpu_to_le32(c.lpf_ino);
1658 dent_blk->dentry[2].name_len = cpu_to_le16(len);
1659 dent_blk->dentry[2].file_type = F2FS_FT_DIR;
1660 memcpy(dent_blk->filename[2], LPF, F2FS_SLOT_LEN);
1661
1662 memcpy(dent_blk->filename[3], &LPF[F2FS_SLOT_LEN],
1663 len - F2FS_SLOT_LEN);
1664
1665 test_and_set_bit_le(2, dent_blk->dentry_bitmap);
1666 test_and_set_bit_le(3, dent_blk->dentry_bitmap);
1667 }
1668
1669 data_blk_offset = get_sb(main_blkaddr);
1670 data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] *
1671 c.blks_per_seg;
1672
1673 DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n",
1674 data_blk_offset);
1675 if (dev_write_block(dent_blk, data_blk_offset)) {
1676 MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
1677 free(dent_blk);
1678 return -1;
1679 }
1680
1681 free(dent_blk);
1682 return 0;
1683 }
1684
f2fs_create_root_dir(void)1685 static int f2fs_create_root_dir(void)
1686 {
1687 enum quota_type qtype;
1688 int err = 0, i = 0;
1689
1690 err = f2fs_write_root_inode();
1691 if (err < 0) {
1692 MSG(1, "\tError: Failed to write root inode!!!\n");
1693 goto exit;
1694 }
1695
1696 for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1697 if (!((1 << qtype) & c.quota_bits))
1698 continue;
1699 err = f2fs_write_qf_inode(qtype, i++);
1700 if (err < 0) {
1701 MSG(1, "\tError: Failed to write quota inode!!!\n");
1702 goto exit;
1703 }
1704 }
1705
1706 if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
1707 err = f2fs_write_lpf_inode();
1708 if (err < 0) {
1709 MSG(1, "\tError: Failed to write lost+found inode!!!\n");
1710 goto exit;
1711 }
1712 }
1713
1714 #ifndef WITH_ANDROID
1715 err = f2fs_discard_obsolete_dnode();
1716 if (err < 0) {
1717 MSG(1, "\tError: Failed to discard obsolete dnode!!!\n");
1718 goto exit;
1719 }
1720 #endif
1721
1722 err = f2fs_update_nat_root();
1723 if (err < 0) {
1724 MSG(1, "\tError: Failed to update NAT for root!!!\n");
1725 goto exit;
1726 }
1727
1728 err = f2fs_add_default_dentry_root();
1729 if (err < 0) {
1730 MSG(1, "\tError: Failed to add default dentries for root!!!\n");
1731 goto exit;
1732 }
1733 exit:
1734 if (err)
1735 MSG(1, "\tError: Could not create the root directory!!!\n");
1736
1737 return err;
1738 }
1739
f2fs_format_device(void)1740 int f2fs_format_device(void)
1741 {
1742 int err = 0;
1743
1744 err= f2fs_prepare_super_block();
1745 if (err < 0) {
1746 MSG(0, "\tError: Failed to prepare a super block!!!\n");
1747 goto exit;
1748 }
1749
1750 if (c.trim) {
1751 err = f2fs_trim_devices();
1752 if (err < 0) {
1753 MSG(0, "\tError: Failed to trim whole device!!!\n");
1754 goto exit;
1755 }
1756 }
1757
1758 err = f2fs_init_sit_area();
1759 if (err < 0) {
1760 MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n");
1761 goto exit;
1762 }
1763
1764 err = f2fs_init_nat_area();
1765 if (err < 0) {
1766 MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n");
1767 goto exit;
1768 }
1769
1770 err = f2fs_create_root_dir();
1771 if (err < 0) {
1772 MSG(0, "\tError: Failed to create the root directory!!!\n");
1773 goto exit;
1774 }
1775
1776 err = f2fs_write_check_point_pack();
1777 if (err < 0) {
1778 MSG(0, "\tError: Failed to write the check point pack!!!\n");
1779 goto exit;
1780 }
1781
1782 err = f2fs_write_super_block();
1783 if (err < 0) {
1784 MSG(0, "\tError: Failed to write the super block!!!\n");
1785 goto exit;
1786 }
1787 exit:
1788 if (err)
1789 MSG(0, "\tError: Could not format the device!!!\n");
1790
1791 return err;
1792 }
1793