• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2006 Rob Sykes <robs@users.sourceforge.net>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/avstring.h"
22 #include "libavutil/opt.h"
23 #include "libavutil/samplefmt.h"
24 #include "avfilter.h"
25 #include "audio.h"
26 #include "internal.h"
27 #include "generate_wave_table.h"
28 
29 #define INTERPOLATION_LINEAR    0
30 #define INTERPOLATION_QUADRATIC 1
31 
32 typedef struct FlangerContext {
33     const AVClass *class;
34     double delay_min;
35     double delay_depth;
36     double feedback_gain;
37     double delay_gain;
38     double speed;
39     int wave_shape;
40     double channel_phase;
41     int interpolation;
42     double in_gain;
43     int max_samples;
44     uint8_t **delay_buffer;
45     int delay_buf_pos;
46     double *delay_last;
47     float *lfo;
48     int lfo_length;
49     int lfo_pos;
50 } FlangerContext;
51 
52 #define OFFSET(x) offsetof(FlangerContext, x)
53 #define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
54 
55 static const AVOption flanger_options[] = {
56     { "delay", "base delay in milliseconds",        OFFSET(delay_min),   AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 30, A },
57     { "depth", "added swept delay in milliseconds", OFFSET(delay_depth), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 0, 10, A },
58     { "regen", "percentage regeneration (delayed signal feedback)", OFFSET(feedback_gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -95, 95, A },
59     { "width", "percentage of delayed signal mixed with original", OFFSET(delay_gain), AV_OPT_TYPE_DOUBLE, {.dbl=71}, 0, 100, A },
60     { "speed", "sweeps per second (Hz)", OFFSET(speed), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0.1, 10, A },
61     { "shape", "swept wave shape", OFFSET(wave_shape), AV_OPT_TYPE_INT, {.i64=WAVE_SIN}, WAVE_SIN, WAVE_NB-1, A, "type" },
62     { "triangular",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
63     { "t",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
64     { "sinusoidal",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
65     { "s",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
66     { "phase", "swept wave percentage phase-shift for multi-channel", OFFSET(channel_phase), AV_OPT_TYPE_DOUBLE, {.dbl=25}, 0, 100, A },
67     { "interp", "delay-line interpolation", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A, "itype" },
68     { "linear",     NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_LINEAR},    0, 0, A, "itype" },
69     { "quadratic",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_QUADRATIC}, 0, 0, A, "itype" },
70     { NULL }
71 };
72 
73 AVFILTER_DEFINE_CLASS(flanger);
74 
init(AVFilterContext * ctx)75 static av_cold int init(AVFilterContext *ctx)
76 {
77     FlangerContext *s = ctx->priv;
78 
79     s->feedback_gain /= 100;
80     s->delay_gain    /= 100;
81     s->channel_phase /= 100;
82     s->delay_min     /= 1000;
83     s->delay_depth   /= 1000;
84     s->in_gain        = 1 / (1 + s->delay_gain);
85     s->delay_gain    /= 1 + s->delay_gain;
86     s->delay_gain    *= 1 - fabs(s->feedback_gain);
87 
88     return 0;
89 }
90 
config_input(AVFilterLink * inlink)91 static int config_input(AVFilterLink *inlink)
92 {
93     AVFilterContext *ctx = inlink->dst;
94     FlangerContext *s = ctx->priv;
95 
96     s->max_samples = (s->delay_min + s->delay_depth) * inlink->sample_rate + 2.5;
97     s->lfo_length  = inlink->sample_rate / s->speed;
98     s->delay_last  = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->delay_last));
99     s->lfo         = av_calloc(s->lfo_length, sizeof(*s->lfo));
100     if (!s->lfo || !s->delay_last)
101         return AVERROR(ENOMEM);
102 
103     ff_generate_wave_table(s->wave_shape, AV_SAMPLE_FMT_FLT, s->lfo, s->lfo_length,
104                            rint(s->delay_min * inlink->sample_rate),
105                            s->max_samples - 2., 3 * M_PI_2);
106 
107     return av_samples_alloc_array_and_samples(&s->delay_buffer, NULL,
108                                               inlink->ch_layout.nb_channels, s->max_samples,
109                                               inlink->format, 0);
110 }
111 
filter_frame(AVFilterLink * inlink,AVFrame * frame)112 static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
113 {
114     AVFilterContext *ctx = inlink->dst;
115     FlangerContext *s = ctx->priv;
116     AVFrame *out_frame;
117     int chan, i;
118 
119     if (av_frame_is_writable(frame)) {
120         out_frame = frame;
121     } else {
122         out_frame = ff_get_audio_buffer(ctx->outputs[0], frame->nb_samples);
123         if (!out_frame) {
124             av_frame_free(&frame);
125             return AVERROR(ENOMEM);
126         }
127         av_frame_copy_props(out_frame, frame);
128     }
129 
130     for (i = 0; i < frame->nb_samples; i++) {
131 
132         s->delay_buf_pos = (s->delay_buf_pos + s->max_samples - 1) % s->max_samples;
133 
134         for (chan = 0; chan < inlink->ch_layout.nb_channels; chan++) {
135             double *src = (double *)frame->extended_data[chan];
136             double *dst = (double *)out_frame->extended_data[chan];
137             double delayed_0, delayed_1;
138             double delayed;
139             double in, out;
140             int channel_phase = chan * s->lfo_length * s->channel_phase + .5;
141             double delay = s->lfo[(s->lfo_pos + channel_phase) % s->lfo_length];
142             int int_delay = (int)delay;
143             double frac_delay = modf(delay, &delay);
144             double *delay_buffer = (double *)s->delay_buffer[chan];
145 
146             in = src[i];
147             delay_buffer[s->delay_buf_pos] = in + s->delay_last[chan] *
148                                                            s->feedback_gain;
149             delayed_0 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
150             delayed_1 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
151 
152             if (s->interpolation == INTERPOLATION_LINEAR) {
153                 delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay;
154             } else {
155                 double a, b;
156                 double delayed_2 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
157                 delayed_2 -= delayed_0;
158                 delayed_1 -= delayed_0;
159                 a = delayed_2 * .5 - delayed_1;
160                 b = delayed_1 *  2 - delayed_2 *.5;
161                 delayed = delayed_0 + (a * frac_delay + b) * frac_delay;
162             }
163 
164             s->delay_last[chan] = delayed;
165             out = in * s->in_gain + delayed * s->delay_gain;
166             dst[i] = out;
167         }
168         s->lfo_pos = (s->lfo_pos + 1) % s->lfo_length;
169     }
170 
171     if (frame != out_frame)
172         av_frame_free(&frame);
173 
174     return ff_filter_frame(ctx->outputs[0], out_frame);
175 }
176 
uninit(AVFilterContext * ctx)177 static av_cold void uninit(AVFilterContext *ctx)
178 {
179     FlangerContext *s = ctx->priv;
180 
181     av_freep(&s->lfo);
182     av_freep(&s->delay_last);
183 
184     if (s->delay_buffer)
185         av_freep(&s->delay_buffer[0]);
186     av_freep(&s->delay_buffer);
187 }
188 
189 static const AVFilterPad flanger_inputs[] = {
190     {
191         .name         = "default",
192         .type         = AVMEDIA_TYPE_AUDIO,
193         .config_props = config_input,
194         .filter_frame = filter_frame,
195     },
196 };
197 
198 static const AVFilterPad flanger_outputs[] = {
199     {
200         .name          = "default",
201         .type          = AVMEDIA_TYPE_AUDIO,
202     },
203 };
204 
205 const AVFilter ff_af_flanger = {
206     .name          = "flanger",
207     .description   = NULL_IF_CONFIG_SMALL("Apply a flanging effect to the audio."),
208     .priv_size     = sizeof(FlangerContext),
209     .priv_class    = &flanger_class,
210     .init          = init,
211     .uninit        = uninit,
212     FILTER_INPUTS(flanger_inputs),
213     FILTER_OUTPUTS(flanger_outputs),
214     FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_DBLP),
215 };
216