1 /* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to
5 * deal in the Software without restriction, including without limitation the
6 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7 * sell copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
18 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
19 * IN THE SOFTWARE.
20 */
21
22 #include "uv.h"
23 #include "uv-common.h"
24 #include "uv_log.h"
25
26 #include <assert.h>
27 #include <errno.h>
28 #include <stdarg.h>
29 #include <stddef.h> /* NULL */
30 #include <stdio.h>
31 #include <stdlib.h> /* malloc */
32 #include <string.h> /* memset */
33
34 #if defined(_WIN32)
35 # include <malloc.h> /* malloc */
36 #else
37 # include <net/if.h> /* if_nametoindex */
38 # include <sys/un.h> /* AF_UNIX, sockaddr_un */
39 #endif
40
41
42 typedef struct {
43 uv_malloc_func local_malloc;
44 uv_realloc_func local_realloc;
45 uv_calloc_func local_calloc;
46 uv_free_func local_free;
47 } uv__allocator_t;
48
49 static uv__allocator_t uv__allocator = {
50 malloc,
51 realloc,
52 calloc,
53 free,
54 };
55
uv__strdup(const char * s)56 char* uv__strdup(const char* s) {
57 size_t len = strlen(s) + 1;
58 char* m = uv__malloc(len);
59 if (m == NULL)
60 return NULL;
61 return memcpy(m, s, len);
62 }
63
uv__strndup(const char * s,size_t n)64 char* uv__strndup(const char* s, size_t n) {
65 char* m;
66 size_t len = strlen(s);
67 if (n < len)
68 len = n;
69 m = uv__malloc(len + 1);
70 if (m == NULL)
71 return NULL;
72 m[len] = '\0';
73 return memcpy(m, s, len);
74 }
75
uv__malloc(size_t size)76 void* uv__malloc(size_t size) {
77 if (size > 0)
78 return uv__allocator.local_malloc(size);
79 return NULL;
80 }
81
uv__free(void * ptr)82 void uv__free(void* ptr) {
83 int saved_errno;
84
85 /* Libuv expects that free() does not clobber errno. The system allocator
86 * honors that assumption but custom allocators may not be so careful.
87 */
88 saved_errno = errno;
89 uv__allocator.local_free(ptr);
90 errno = saved_errno;
91 }
92
uv__calloc(size_t count,size_t size)93 void* uv__calloc(size_t count, size_t size) {
94 return uv__allocator.local_calloc(count, size);
95 }
96
uv__realloc(void * ptr,size_t size)97 void* uv__realloc(void* ptr, size_t size) {
98 if (size > 0)
99 return uv__allocator.local_realloc(ptr, size);
100 uv__free(ptr);
101 return NULL;
102 }
103
uv__reallocf(void * ptr,size_t size)104 void* uv__reallocf(void* ptr, size_t size) {
105 void* newptr;
106
107 newptr = uv__realloc(ptr, size);
108 if (newptr == NULL)
109 if (size > 0)
110 uv__free(ptr);
111
112 return newptr;
113 }
114
uv_replace_allocator(uv_malloc_func malloc_func,uv_realloc_func realloc_func,uv_calloc_func calloc_func,uv_free_func free_func)115 int uv_replace_allocator(uv_malloc_func malloc_func,
116 uv_realloc_func realloc_func,
117 uv_calloc_func calloc_func,
118 uv_free_func free_func) {
119 if (malloc_func == NULL || realloc_func == NULL ||
120 calloc_func == NULL || free_func == NULL) {
121 return UV_EINVAL;
122 }
123
124 uv__allocator.local_malloc = malloc_func;
125 uv__allocator.local_realloc = realloc_func;
126 uv__allocator.local_calloc = calloc_func;
127 uv__allocator.local_free = free_func;
128
129 return 0;
130 }
131
132
uv_os_free_passwd(uv_passwd_t * pwd)133 void uv_os_free_passwd(uv_passwd_t* pwd) {
134 if (pwd == NULL)
135 return;
136
137 /* On unix, the memory for name, shell, and homedir are allocated in a single
138 * uv__malloc() call. The base of the pointer is stored in pwd->username, so
139 * that is the field that needs to be freed.
140 */
141 uv__free(pwd->username);
142 #ifdef _WIN32
143 uv__free(pwd->homedir);
144 #endif
145 pwd->username = NULL;
146 pwd->shell = NULL;
147 pwd->homedir = NULL;
148 }
149
150
uv_os_free_group(uv_group_t * grp)151 void uv_os_free_group(uv_group_t *grp) {
152 if (grp == NULL)
153 return;
154
155 /* The memory for is allocated in a single uv__malloc() call. The base of the
156 * pointer is stored in grp->members, so that is the only field that needs to
157 * be freed.
158 */
159 uv__free(grp->members);
160 grp->members = NULL;
161 grp->groupname = NULL;
162 }
163
164
165 #define XX(uc, lc) case UV_##uc: return sizeof(uv_##lc##_t);
166
uv_handle_size(uv_handle_type type)167 size_t uv_handle_size(uv_handle_type type) {
168 switch (type) {
169 UV_HANDLE_TYPE_MAP(XX)
170 default:
171 return -1;
172 }
173 }
174
uv_req_size(uv_req_type type)175 size_t uv_req_size(uv_req_type type) {
176 switch(type) {
177 UV_REQ_TYPE_MAP(XX)
178 default:
179 return -1;
180 }
181 }
182
183 #undef XX
184
185
uv_loop_size(void)186 size_t uv_loop_size(void) {
187 return sizeof(uv_loop_t);
188 }
189
190
uv_buf_init(char * base,unsigned int len)191 uv_buf_t uv_buf_init(char* base, unsigned int len) {
192 uv_buf_t buf;
193 buf.base = base;
194 buf.len = len;
195 return buf;
196 }
197
198
uv__unknown_err_code(int err)199 static const char* uv__unknown_err_code(int err) {
200 char buf[32];
201 char* copy;
202
203 snprintf(buf, sizeof(buf), "Unknown system error %d", err);
204 copy = uv__strdup(buf);
205
206 return copy != NULL ? copy : "Unknown system error";
207 }
208
209 #define UV_ERR_NAME_GEN_R(name, _) \
210 case UV_## name: \
211 uv__strscpy(buf, #name, buflen); break;
uv_err_name_r(int err,char * buf,size_t buflen)212 char* uv_err_name_r(int err, char* buf, size_t buflen) {
213 switch (err) {
214 UV_ERRNO_MAP(UV_ERR_NAME_GEN_R)
215 default: snprintf(buf, buflen, "Unknown system error %d", err);
216 }
217 return buf;
218 }
219 #undef UV_ERR_NAME_GEN_R
220
221
222 #define UV_ERR_NAME_GEN(name, _) case UV_ ## name: return #name;
uv_err_name(int err)223 const char* uv_err_name(int err) {
224 switch (err) {
225 UV_ERRNO_MAP(UV_ERR_NAME_GEN)
226 }
227 return uv__unknown_err_code(err);
228 }
229 #undef UV_ERR_NAME_GEN
230
231
232 #define UV_STRERROR_GEN_R(name, msg) \
233 case UV_ ## name: \
234 snprintf(buf, buflen, "%s", msg); break;
uv_strerror_r(int err,char * buf,size_t buflen)235 char* uv_strerror_r(int err, char* buf, size_t buflen) {
236 switch (err) {
237 UV_ERRNO_MAP(UV_STRERROR_GEN_R)
238 default: snprintf(buf, buflen, "Unknown system error %d", err);
239 }
240 return buf;
241 }
242 #undef UV_STRERROR_GEN_R
243
244
245 #define UV_STRERROR_GEN(name, msg) case UV_ ## name: return msg;
uv_strerror(int err)246 const char* uv_strerror(int err) {
247 switch (err) {
248 UV_ERRNO_MAP(UV_STRERROR_GEN)
249 }
250 return uv__unknown_err_code(err);
251 }
252 #undef UV_STRERROR_GEN
253
254
uv_ip4_addr(const char * ip,int port,struct sockaddr_in * addr)255 int uv_ip4_addr(const char* ip, int port, struct sockaddr_in* addr) {
256 memset(addr, 0, sizeof(*addr));
257 addr->sin_family = AF_INET;
258 addr->sin_port = htons(port);
259 #ifdef SIN6_LEN
260 addr->sin_len = sizeof(*addr);
261 #endif
262 return uv_inet_pton(AF_INET, ip, &(addr->sin_addr.s_addr));
263 }
264
265
uv_ip6_addr(const char * ip,int port,struct sockaddr_in6 * addr)266 int uv_ip6_addr(const char* ip, int port, struct sockaddr_in6* addr) {
267 char address_part[40];
268 size_t address_part_size;
269 const char* zone_index;
270
271 memset(addr, 0, sizeof(*addr));
272 addr->sin6_family = AF_INET6;
273 addr->sin6_port = htons(port);
274 #ifdef SIN6_LEN
275 addr->sin6_len = sizeof(*addr);
276 #endif
277
278 zone_index = strchr(ip, '%');
279 if (zone_index != NULL) {
280 address_part_size = zone_index - ip;
281 if (address_part_size >= sizeof(address_part))
282 address_part_size = sizeof(address_part) - 1;
283
284 memcpy(address_part, ip, address_part_size);
285 address_part[address_part_size] = '\0';
286 ip = address_part;
287
288 zone_index++; /* skip '%' */
289 /* NOTE: unknown interface (id=0) is silently ignored */
290 #ifdef _WIN32
291 addr->sin6_scope_id = atoi(zone_index);
292 #else
293 addr->sin6_scope_id = if_nametoindex(zone_index);
294 #endif
295 }
296
297 return uv_inet_pton(AF_INET6, ip, &addr->sin6_addr);
298 }
299
300
uv_ip4_name(const struct sockaddr_in * src,char * dst,size_t size)301 int uv_ip4_name(const struct sockaddr_in* src, char* dst, size_t size) {
302 return uv_inet_ntop(AF_INET, &src->sin_addr, dst, size);
303 }
304
305
uv_ip6_name(const struct sockaddr_in6 * src,char * dst,size_t size)306 int uv_ip6_name(const struct sockaddr_in6* src, char* dst, size_t size) {
307 return uv_inet_ntop(AF_INET6, &src->sin6_addr, dst, size);
308 }
309
310
uv_ip_name(const struct sockaddr * src,char * dst,size_t size)311 int uv_ip_name(const struct sockaddr *src, char *dst, size_t size) {
312 switch (src->sa_family) {
313 case AF_INET:
314 return uv_inet_ntop(AF_INET, &((struct sockaddr_in *)src)->sin_addr,
315 dst, size);
316 case AF_INET6:
317 return uv_inet_ntop(AF_INET6, &((struct sockaddr_in6 *)src)->sin6_addr,
318 dst, size);
319 default:
320 return UV_EAFNOSUPPORT;
321 }
322 }
323
324
uv_tcp_bind(uv_tcp_t * handle,const struct sockaddr * addr,unsigned int flags)325 int uv_tcp_bind(uv_tcp_t* handle,
326 const struct sockaddr* addr,
327 unsigned int flags) {
328 unsigned int addrlen;
329
330 if (handle->type != UV_TCP)
331 return UV_EINVAL;
332 if (uv__is_closing(handle)) {
333 return UV_EINVAL;
334 }
335 if (addr->sa_family == AF_INET)
336 addrlen = sizeof(struct sockaddr_in);
337 else if (addr->sa_family == AF_INET6)
338 addrlen = sizeof(struct sockaddr_in6);
339 else
340 return UV_EINVAL;
341
342 return uv__tcp_bind(handle, addr, addrlen, flags);
343 }
344
345
uv_udp_init_ex(uv_loop_t * loop,uv_udp_t * handle,unsigned flags)346 int uv_udp_init_ex(uv_loop_t* loop, uv_udp_t* handle, unsigned flags) {
347 unsigned extra_flags;
348 int domain;
349 int rc;
350
351 /* Use the lower 8 bits for the domain. */
352 domain = flags & 0xFF;
353 if (domain != AF_INET && domain != AF_INET6 && domain != AF_UNSPEC)
354 return UV_EINVAL;
355
356 /* Use the higher bits for extra flags. */
357 extra_flags = flags & ~0xFF;
358 if (extra_flags & ~UV_UDP_RECVMMSG)
359 return UV_EINVAL;
360
361 rc = uv__udp_init_ex(loop, handle, flags, domain);
362
363 if (rc == 0)
364 if (extra_flags & UV_UDP_RECVMMSG)
365 handle->flags |= UV_HANDLE_UDP_RECVMMSG;
366
367 return rc;
368 }
369
370
uv_udp_init(uv_loop_t * loop,uv_udp_t * handle)371 int uv_udp_init(uv_loop_t* loop, uv_udp_t* handle) {
372 return uv_udp_init_ex(loop, handle, AF_UNSPEC);
373 }
374
375
uv_udp_bind(uv_udp_t * handle,const struct sockaddr * addr,unsigned int flags)376 int uv_udp_bind(uv_udp_t* handle,
377 const struct sockaddr* addr,
378 unsigned int flags) {
379 unsigned int addrlen;
380
381 if (handle->type != UV_UDP)
382 return UV_EINVAL;
383
384 if (addr->sa_family == AF_INET)
385 addrlen = sizeof(struct sockaddr_in);
386 else if (addr->sa_family == AF_INET6)
387 addrlen = sizeof(struct sockaddr_in6);
388 else
389 return UV_EINVAL;
390
391 return uv__udp_bind(handle, addr, addrlen, flags);
392 }
393
394
uv_tcp_connect(uv_connect_t * req,uv_tcp_t * handle,const struct sockaddr * addr,uv_connect_cb cb)395 int uv_tcp_connect(uv_connect_t* req,
396 uv_tcp_t* handle,
397 const struct sockaddr* addr,
398 uv_connect_cb cb) {
399 unsigned int addrlen;
400
401 if (handle->type != UV_TCP)
402 return UV_EINVAL;
403
404 if (addr->sa_family == AF_INET)
405 addrlen = sizeof(struct sockaddr_in);
406 else if (addr->sa_family == AF_INET6)
407 addrlen = sizeof(struct sockaddr_in6);
408 else
409 return UV_EINVAL;
410
411 return uv__tcp_connect(req, handle, addr, addrlen, cb);
412 }
413
414
uv_udp_connect(uv_udp_t * handle,const struct sockaddr * addr)415 int uv_udp_connect(uv_udp_t* handle, const struct sockaddr* addr) {
416 unsigned int addrlen;
417
418 if (handle->type != UV_UDP)
419 return UV_EINVAL;
420
421 /* Disconnect the handle */
422 if (addr == NULL) {
423 if (!(handle->flags & UV_HANDLE_UDP_CONNECTED))
424 return UV_ENOTCONN;
425
426 return uv__udp_disconnect(handle);
427 }
428
429 if (addr->sa_family == AF_INET)
430 addrlen = sizeof(struct sockaddr_in);
431 else if (addr->sa_family == AF_INET6)
432 addrlen = sizeof(struct sockaddr_in6);
433 else
434 return UV_EINVAL;
435
436 if (handle->flags & UV_HANDLE_UDP_CONNECTED)
437 return UV_EISCONN;
438
439 return uv__udp_connect(handle, addr, addrlen);
440 }
441
442
uv__udp_is_connected(uv_udp_t * handle)443 int uv__udp_is_connected(uv_udp_t* handle) {
444 struct sockaddr_storage addr;
445 int addrlen;
446 if (handle->type != UV_UDP)
447 return 0;
448
449 addrlen = sizeof(addr);
450 if (uv_udp_getpeername(handle, (struct sockaddr*) &addr, &addrlen) != 0)
451 return 0;
452
453 return addrlen > 0;
454 }
455
456
uv__udp_check_before_send(uv_udp_t * handle,const struct sockaddr * addr)457 int uv__udp_check_before_send(uv_udp_t* handle, const struct sockaddr* addr) {
458 unsigned int addrlen;
459
460 if (handle->type != UV_UDP)
461 return UV_EINVAL;
462
463 if (addr != NULL && (handle->flags & UV_HANDLE_UDP_CONNECTED))
464 return UV_EISCONN;
465
466 if (addr == NULL && !(handle->flags & UV_HANDLE_UDP_CONNECTED))
467 return UV_EDESTADDRREQ;
468
469 if (addr != NULL) {
470 if (addr->sa_family == AF_INET)
471 addrlen = sizeof(struct sockaddr_in);
472 else if (addr->sa_family == AF_INET6)
473 addrlen = sizeof(struct sockaddr_in6);
474 #if defined(AF_UNIX) && !defined(_WIN32)
475 else if (addr->sa_family == AF_UNIX)
476 addrlen = sizeof(struct sockaddr_un);
477 #endif
478 else
479 return UV_EINVAL;
480 } else {
481 addrlen = 0;
482 }
483
484 return addrlen;
485 }
486
487
uv_udp_send(uv_udp_send_t * req,uv_udp_t * handle,const uv_buf_t bufs[],unsigned int nbufs,const struct sockaddr * addr,uv_udp_send_cb send_cb)488 int uv_udp_send(uv_udp_send_t* req,
489 uv_udp_t* handle,
490 const uv_buf_t bufs[],
491 unsigned int nbufs,
492 const struct sockaddr* addr,
493 uv_udp_send_cb send_cb) {
494 int addrlen;
495
496 addrlen = uv__udp_check_before_send(handle, addr);
497 if (addrlen < 0)
498 return addrlen;
499
500 return uv__udp_send(req, handle, bufs, nbufs, addr, addrlen, send_cb);
501 }
502
503
uv_udp_try_send(uv_udp_t * handle,const uv_buf_t bufs[],unsigned int nbufs,const struct sockaddr * addr)504 int uv_udp_try_send(uv_udp_t* handle,
505 const uv_buf_t bufs[],
506 unsigned int nbufs,
507 const struct sockaddr* addr) {
508 int addrlen;
509
510 addrlen = uv__udp_check_before_send(handle, addr);
511 if (addrlen < 0)
512 return addrlen;
513
514 return uv__udp_try_send(handle, bufs, nbufs, addr, addrlen);
515 }
516
517
uv_udp_recv_start(uv_udp_t * handle,uv_alloc_cb alloc_cb,uv_udp_recv_cb recv_cb)518 int uv_udp_recv_start(uv_udp_t* handle,
519 uv_alloc_cb alloc_cb,
520 uv_udp_recv_cb recv_cb) {
521 if (handle->type != UV_UDP || alloc_cb == NULL || recv_cb == NULL)
522 return UV_EINVAL;
523 else
524 return uv__udp_recv_start(handle, alloc_cb, recv_cb);
525 }
526
527
uv_udp_recv_stop(uv_udp_t * handle)528 int uv_udp_recv_stop(uv_udp_t* handle) {
529 if (handle->type != UV_UDP)
530 return UV_EINVAL;
531 else
532 return uv__udp_recv_stop(handle);
533 }
534
535
uv_walk(uv_loop_t * loop,uv_walk_cb walk_cb,void * arg)536 void uv_walk(uv_loop_t* loop, uv_walk_cb walk_cb, void* arg) {
537 struct uv__queue queue;
538 struct uv__queue* q;
539 uv_handle_t* h;
540
541 UV_LOGI("clean up handles in loop(%{public}zu)", (size_t)loop);
542 uv__queue_move(&loop->handle_queue, &queue);
543 while (!uv__queue_empty(&queue)) {
544 q = uv__queue_head(&queue);
545 h = uv__queue_data(q, uv_handle_t, handle_queue);
546
547 uv__queue_remove(q);
548 uv__queue_insert_tail(&loop->handle_queue, q);
549
550 if (h->flags & UV_HANDLE_INTERNAL) continue;
551 walk_cb(h, arg);
552 }
553 }
554
555
uv__print_handles(uv_loop_t * loop,int only_active,FILE * stream)556 static void uv__print_handles(uv_loop_t* loop, int only_active, FILE* stream) {
557 const char* type;
558 struct uv__queue* q;
559 uv_handle_t* h;
560
561 if (loop == NULL)
562 loop = uv_default_loop();
563
564 if (stream == NULL)
565 stream = stderr;
566
567 uv__queue_foreach(q, &loop->handle_queue) {
568 h = uv__queue_data(q, uv_handle_t, handle_queue);
569
570 if (only_active && !uv__is_active(h))
571 continue;
572
573 switch (h->type) {
574 #define X(uc, lc) case UV_##uc: type = #lc; break;
575 UV_HANDLE_TYPE_MAP(X)
576 #undef X
577 default: type = "<unknown>";
578 }
579
580 fprintf(stream,
581 "[%c%c%c] %-8s %p\n",
582 "R-"[!(h->flags & UV_HANDLE_REF)],
583 "A-"[!(h->flags & UV_HANDLE_ACTIVE)],
584 "I-"[!(h->flags & UV_HANDLE_INTERNAL)],
585 type,
586 (void*)h);
587 }
588 }
589
590
uv_print_all_handles(uv_loop_t * loop,FILE * stream)591 void uv_print_all_handles(uv_loop_t* loop, FILE* stream) {
592 uv__print_handles(loop, 0, stream);
593 }
594
595
uv_print_active_handles(uv_loop_t * loop,FILE * stream)596 void uv_print_active_handles(uv_loop_t* loop, FILE* stream) {
597 uv__print_handles(loop, 1, stream);
598 }
599
600
uv_ref(uv_handle_t * handle)601 void uv_ref(uv_handle_t* handle) {
602 uv__handle_ref(handle);
603 }
604
605
uv_unref(uv_handle_t * handle)606 void uv_unref(uv_handle_t* handle) {
607 uv__handle_unref(handle);
608 }
609
610
uv_has_ref(const uv_handle_t * handle)611 int uv_has_ref(const uv_handle_t* handle) {
612 return uv__has_ref(handle);
613 }
614
615
uv_stop(uv_loop_t * loop)616 void uv_stop(uv_loop_t* loop) {
617 loop->stop_flag = 1;
618 }
619
620
uv_now(const uv_loop_t * loop)621 uint64_t uv_now(const uv_loop_t* loop) {
622 return loop->time;
623 }
624
625
626
uv__count_bufs(const uv_buf_t bufs[],unsigned int nbufs)627 size_t uv__count_bufs(const uv_buf_t bufs[], unsigned int nbufs) {
628 unsigned int i;
629 size_t bytes;
630
631 bytes = 0;
632 for (i = 0; i < nbufs; i++)
633 bytes += (size_t) bufs[i].len;
634
635 return bytes;
636 }
637
uv_recv_buffer_size(uv_handle_t * handle,int * value)638 int uv_recv_buffer_size(uv_handle_t* handle, int* value) {
639 return uv__socket_sockopt(handle, SO_RCVBUF, value);
640 }
641
uv_send_buffer_size(uv_handle_t * handle,int * value)642 int uv_send_buffer_size(uv_handle_t* handle, int *value) {
643 return uv__socket_sockopt(handle, SO_SNDBUF, value);
644 }
645
uv_fs_event_getpath(uv_fs_event_t * handle,char * buffer,size_t * size)646 int uv_fs_event_getpath(uv_fs_event_t* handle, char* buffer, size_t* size) {
647 size_t required_len;
648
649 if (!uv__is_active(handle)) {
650 *size = 0;
651 return UV_EINVAL;
652 }
653
654 required_len = strlen(handle->path);
655 if (required_len >= *size) {
656 *size = required_len + 1;
657 return UV_ENOBUFS;
658 }
659
660 memcpy(buffer, handle->path, required_len);
661 *size = required_len;
662 buffer[required_len] = '\0';
663
664 return 0;
665 }
666
667 /* The windows implementation does not have the same structure layout as
668 * the unix implementation (nbufs is not directly inside req but is
669 * contained in a nested union/struct) so this function locates it.
670 */
uv__get_nbufs(uv_fs_t * req)671 static unsigned int* uv__get_nbufs(uv_fs_t* req) {
672 #ifdef _WIN32
673 return &req->fs.info.nbufs;
674 #else
675 return &req->nbufs;
676 #endif
677 }
678
679 /* uv_fs_scandir() uses the system allocator to allocate memory on non-Windows
680 * systems. So, the memory should be released using free(). On Windows,
681 * uv__malloc() is used, so use uv__free() to free memory.
682 */
683 #ifdef _WIN32
684 # define uv__fs_scandir_free uv__free
685 #else
686 # define uv__fs_scandir_free free
687 #endif
688
uv__fs_scandir_cleanup(uv_fs_t * req)689 void uv__fs_scandir_cleanup(uv_fs_t* req) {
690 uv__dirent_t** dents;
691 unsigned int* nbufs;
692 unsigned int i;
693 unsigned int n;
694
695 if (req->result >= 0) {
696 dents = req->ptr;
697 nbufs = uv__get_nbufs(req);
698
699 i = 0;
700 if (*nbufs > 0)
701 i = *nbufs - 1;
702
703 n = (unsigned int) req->result;
704 for (; i < n; i++)
705 uv__fs_scandir_free(dents[i]);
706 }
707
708 uv__fs_scandir_free(req->ptr);
709 req->ptr = NULL;
710 }
711
712
uv_fs_scandir_next(uv_fs_t * req,uv_dirent_t * ent)713 int uv_fs_scandir_next(uv_fs_t* req, uv_dirent_t* ent) {
714 uv__dirent_t** dents;
715 uv__dirent_t* dent;
716 unsigned int* nbufs;
717
718 /* Check to see if req passed */
719 if (req->result < 0)
720 return req->result;
721
722 /* Ptr will be null if req was canceled or no files found */
723 if (!req->ptr)
724 return UV_EOF;
725
726 nbufs = uv__get_nbufs(req);
727 assert(nbufs);
728
729 dents = req->ptr;
730
731 /* Free previous entity */
732 if (*nbufs > 0)
733 uv__fs_scandir_free(dents[*nbufs - 1]);
734
735 /* End was already reached */
736 if (*nbufs == (unsigned int) req->result) {
737 uv__fs_scandir_free(dents);
738 req->ptr = NULL;
739 return UV_EOF;
740 }
741
742 dent = dents[(*nbufs)++];
743
744 ent->name = dent->d_name;
745 ent->type = uv__fs_get_dirent_type(dent);
746
747 return 0;
748 }
749
uv__fs_get_dirent_type(uv__dirent_t * dent)750 uv_dirent_type_t uv__fs_get_dirent_type(uv__dirent_t* dent) {
751 uv_dirent_type_t type;
752
753 #ifdef HAVE_DIRENT_TYPES
754 switch (dent->d_type) {
755 case UV__DT_DIR:
756 type = UV_DIRENT_DIR;
757 break;
758 case UV__DT_FILE:
759 type = UV_DIRENT_FILE;
760 break;
761 case UV__DT_LINK:
762 type = UV_DIRENT_LINK;
763 break;
764 case UV__DT_FIFO:
765 type = UV_DIRENT_FIFO;
766 break;
767 case UV__DT_SOCKET:
768 type = UV_DIRENT_SOCKET;
769 break;
770 case UV__DT_CHAR:
771 type = UV_DIRENT_CHAR;
772 break;
773 case UV__DT_BLOCK:
774 type = UV_DIRENT_BLOCK;
775 break;
776 default:
777 type = UV_DIRENT_UNKNOWN;
778 }
779 #else
780 type = UV_DIRENT_UNKNOWN;
781 #endif
782
783 return type;
784 }
785
uv__fs_readdir_cleanup(uv_fs_t * req)786 void uv__fs_readdir_cleanup(uv_fs_t* req) {
787 uv_dir_t* dir;
788 uv_dirent_t* dirents;
789 int i;
790
791 if (req->ptr == NULL)
792 return;
793
794 dir = req->ptr;
795 dirents = dir->dirents;
796 req->ptr = NULL;
797
798 if (dirents == NULL)
799 return;
800
801 for (i = 0; i < req->result; ++i) {
802 uv__free((char*) dirents[i].name);
803 dirents[i].name = NULL;
804 }
805 }
806
807
uv_loop_configure(uv_loop_t * loop,uv_loop_option option,...)808 int uv_loop_configure(uv_loop_t* loop, uv_loop_option option, ...) {
809 va_list ap;
810 int err;
811
812 va_start(ap, option);
813 /* Any platform-agnostic options should be handled here. */
814 err = uv__loop_configure(loop, option, ap);
815 va_end(ap);
816
817 return err;
818 }
819
820
821 static uv_loop_t default_loop_struct;
822 static uv_loop_t* default_loop_ptr;
823
824
uv_default_loop(void)825 uv_loop_t* uv_default_loop(void) {
826 if (default_loop_ptr != NULL)
827 return default_loop_ptr;
828
829 if (uv_loop_init(&default_loop_struct))
830 return NULL;
831
832 default_loop_ptr = &default_loop_struct;
833 return default_loop_ptr;
834 }
835
836
uv_loop_new(void)837 uv_loop_t* uv_loop_new(void) {
838 uv_loop_t* loop;
839
840 loop = uv__malloc(sizeof(*loop));
841 if (loop == NULL)
842 return NULL;
843
844 if (uv_loop_init(loop)) {
845 uv__free(loop);
846 return NULL;
847 }
848
849 return loop;
850 }
851
852
853 void on_uv_loop_close(uv_loop_t* loop);
uv_loop_close(uv_loop_t * loop)854 int uv_loop_close(uv_loop_t* loop) {
855 struct uv__queue* q;
856 uv_handle_t* h;
857 #ifndef NDEBUG
858 void* saved_data;
859 #endif
860
861 if (uv__has_active_reqs(loop)) {
862 #ifdef USE_OHOS_DFX
863 UV_LOGI("loop:%{public}zu, active reqs:%{public}u", (size_t)loop, loop->active_reqs.count);
864 #endif
865 return UV_EBUSY;
866 }
867 uv__queue_foreach(q, &loop->handle_queue) {
868 h = uv__queue_data(q, uv_handle_t, handle_queue);
869 if (!(h->flags & UV_HANDLE_INTERNAL)) {
870 #ifdef USE_OHOS_DFX
871 UV_LOGI("loop:%{public}zu, active handle:%{public}zu", (size_t)loop, (size_t)h);
872 #endif
873 return UV_EBUSY;
874 }
875 }
876
877 on_uv_loop_close(loop);
878 uv__loop_close(loop);
879
880 #ifndef NDEBUG
881 saved_data = loop->data;
882 memset(loop, -1, sizeof(*loop));
883 loop->data = saved_data;
884 #endif
885 if (loop == default_loop_ptr)
886 default_loop_ptr = NULL;
887
888 return 0;
889 }
890
891
uv_loop_delete(uv_loop_t * loop)892 void uv_loop_delete(uv_loop_t* loop) {
893 uv_loop_t* default_loop;
894 int err;
895
896 default_loop = default_loop_ptr;
897
898 err = uv_loop_close(loop);
899 (void) err; /* Squelch compiler warnings. */
900 assert(err == 0);
901 #ifdef USE_OHOS_DFX
902 if (err != 0)
903 on_uv_loop_close(loop);
904 #endif
905 if (loop != default_loop)
906 uv__free(loop);
907 }
908
909
uv_read_start(uv_stream_t * stream,uv_alloc_cb alloc_cb,uv_read_cb read_cb)910 int uv_read_start(uv_stream_t* stream,
911 uv_alloc_cb alloc_cb,
912 uv_read_cb read_cb) {
913 if (stream == NULL || alloc_cb == NULL || read_cb == NULL)
914 return UV_EINVAL;
915
916 if (stream->flags & UV_HANDLE_CLOSING)
917 return UV_EINVAL;
918
919 if (stream->flags & UV_HANDLE_READING)
920 return UV_EALREADY;
921
922 if (!(stream->flags & UV_HANDLE_READABLE))
923 return UV_ENOTCONN;
924
925 return uv__read_start(stream, alloc_cb, read_cb);
926 }
927
928
uv_os_free_environ(uv_env_item_t * envitems,int count)929 void uv_os_free_environ(uv_env_item_t* envitems, int count) {
930 int i;
931
932 for (i = 0; i < count; i++) {
933 uv__free(envitems[i].name);
934 }
935
936 uv__free(envitems);
937 }
938
939
uv_free_cpu_info(uv_cpu_info_t * cpu_infos,int count)940 void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count) {
941 #ifdef __linux__
942 (void) &count;
943 uv__free(cpu_infos);
944 #else
945 int i;
946
947 for (i = 0; i < count; i++)
948 uv__free(cpu_infos[i].model);
949
950 uv__free(cpu_infos);
951 #endif /* __linux__ */
952 }
953
954
955 /* Also covers __clang__ and __INTEL_COMPILER. Disabled on Windows because
956 * threads have already been forcibly terminated by the operating system
957 * by the time destructors run, ergo, it's not safe to try to clean them up.
958 */
959 #if defined(__GNUC__) && !defined(_WIN32)
960 __attribute__((destructor))
961 #endif
uv_library_shutdown(void)962 void uv_library_shutdown(void) {
963 static int was_shutdown;
964
965 if (uv__exchange_int_relaxed(&was_shutdown, 1))
966 return;
967
968 uv__process_title_cleanup();
969 uv__signal_cleanup();
970 #ifdef __MVS__
971 /* TODO(itodorov) - zos: revisit when Woz compiler is available. */
972 uv__os390_cleanup();
973 #else
974 uv__threadpool_cleanup();
975 #endif
976 }
977
978
uv__metrics_update_idle_time(uv_loop_t * loop)979 void uv__metrics_update_idle_time(uv_loop_t* loop) {
980 uv__loop_metrics_t* loop_metrics;
981 uint64_t entry_time;
982 uint64_t exit_time;
983
984 if (!(uv__get_internal_fields(loop)->flags & UV_METRICS_IDLE_TIME))
985 return;
986
987 loop_metrics = uv__get_loop_metrics(loop);
988
989 /* The thread running uv__metrics_update_idle_time() is always the same
990 * thread that sets provider_entry_time. So it's unnecessary to lock before
991 * retrieving this value.
992 */
993 if (loop_metrics->provider_entry_time == 0)
994 return;
995
996 exit_time = uv_hrtime();
997
998 uv_mutex_lock(&loop_metrics->lock);
999 entry_time = loop_metrics->provider_entry_time;
1000 loop_metrics->provider_entry_time = 0;
1001 loop_metrics->provider_idle_time += exit_time - entry_time;
1002 uv_mutex_unlock(&loop_metrics->lock);
1003 }
1004
1005
uv__metrics_set_provider_entry_time(uv_loop_t * loop)1006 void uv__metrics_set_provider_entry_time(uv_loop_t* loop) {
1007 uv__loop_metrics_t* loop_metrics;
1008 uint64_t now;
1009
1010 if (!(uv__get_internal_fields(loop)->flags & UV_METRICS_IDLE_TIME))
1011 return;
1012
1013 now = uv_hrtime();
1014 loop_metrics = uv__get_loop_metrics(loop);
1015 uv_mutex_lock(&loop_metrics->lock);
1016 loop_metrics->provider_entry_time = now;
1017 uv_mutex_unlock(&loop_metrics->lock);
1018 }
1019
1020
uv_metrics_info(uv_loop_t * loop,uv_metrics_t * metrics)1021 int uv_metrics_info(uv_loop_t* loop, uv_metrics_t* metrics) {
1022 memcpy(metrics,
1023 &uv__get_loop_metrics(loop)->metrics,
1024 sizeof(*metrics));
1025
1026 return 0;
1027 }
1028
1029
uv_metrics_idle_time(uv_loop_t * loop)1030 uint64_t uv_metrics_idle_time(uv_loop_t* loop) {
1031 uv__loop_metrics_t* loop_metrics;
1032 uint64_t entry_time;
1033 uint64_t idle_time;
1034
1035 loop_metrics = uv__get_loop_metrics(loop);
1036 uv_mutex_lock(&loop_metrics->lock);
1037 idle_time = loop_metrics->provider_idle_time;
1038 entry_time = loop_metrics->provider_entry_time;
1039 uv_mutex_unlock(&loop_metrics->lock);
1040
1041 if (entry_time > 0)
1042 idle_time += uv_hrtime() - entry_time;
1043 return idle_time;
1044 }
1045
1046
uv__get_addr_tag(void * addr)1047 uint64_t uv__get_addr_tag(void* addr) {
1048 uint64_t tag = 0;
1049
1050 #ifdef USE_OHOS_DFX
1051 if (addr != NULL) {
1052 tag = fdsan_create_owner_tag(FDSAN_OWNER_TYPE_FILE, (uint64_t)addr);
1053 }
1054 #endif
1055 return tag;
1056 }