• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesImageMemoryAliasing.cpp
21  * \brief Sparse image memory aliasing tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesImageMemoryAliasing.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkRefUtil.hpp"
35 #include "vkMemUtil.hpp"
36 #include "vkBarrierUtil.hpp"
37 #include "vkQueryUtil.hpp"
38 #include "vkBuilderUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 #include "vkObjUtil.hpp"
42 
43 #include "deStringUtil.hpp"
44 #include "deUniquePtr.hpp"
45 #include "deSharedPtr.hpp"
46 
47 #include "tcuTexture.hpp"
48 #include "tcuTextureUtil.hpp"
49 #include "tcuTexVerifierUtil.hpp"
50 
51 #include <deMath.h>
52 #include <string>
53 #include <vector>
54 
55 using namespace vk;
56 
57 namespace vkt
58 {
59 namespace sparse
60 {
61 namespace
62 {
63 
64 const deUint32 MODULO_DIVISOR = 127;
65 
getCoordStr(const ImageType imageType,const std::string & x,const std::string & y,const std::string & z)66 const std::string getCoordStr	(const ImageType	imageType,
67 								 const std::string&	x,
68 								 const std::string&	y,
69 								 const std::string&	z)
70 {
71 	switch (imageType)
72 	{
73 		case IMAGE_TYPE_1D:
74 		case IMAGE_TYPE_BUFFER:
75 			return x;
76 
77 		case IMAGE_TYPE_1D_ARRAY:
78 		case IMAGE_TYPE_2D:
79 			return "ivec2(" + x + "," + y + ")";
80 
81 		case IMAGE_TYPE_2D_ARRAY:
82 		case IMAGE_TYPE_3D:
83 		case IMAGE_TYPE_CUBE:
84 		case IMAGE_TYPE_CUBE_ARRAY:
85 			return "ivec3(" + x + "," + y + "," + z + ")";
86 
87 		default:
88 			DE_FATAL("Unexpected image type");
89 			return "";
90 	}
91 }
92 
93 class ImageSparseMemoryAliasingCase : public TestCase
94 {
95 public:
96 	ImageSparseMemoryAliasingCase	(tcu::TestContext&		testCtx,
97 									 const std::string&		name,
98 									 const ImageType		imageType,
99 									 const tcu::UVec3&		imageSize,
100 									 const VkFormat			format,
101 									 const glu::GLSLVersion	glslVersion,
102 									 const bool				useDeviceGroups);
103 
104 	void			initPrograms	(SourceCollections&		sourceCollections) const;
105 	TestInstance*	createInstance	(Context&				context) const;
106 	virtual void	checkSupport	(Context&				context) const;
107 
108 
109 private:
110 	const bool				m_useDeviceGroups;
111 	const ImageType			m_imageType;
112 	const tcu::UVec3		m_imageSize;
113 	const VkFormat			m_format;
114 	const glu::GLSLVersion	m_glslVersion;
115 };
116 
ImageSparseMemoryAliasingCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const glu::GLSLVersion glslVersion,const bool useDeviceGroups)117 ImageSparseMemoryAliasingCase::ImageSparseMemoryAliasingCase	(tcu::TestContext&		testCtx,
118 																 const std::string&		name,
119 																 const ImageType		imageType,
120 																 const tcu::UVec3&		imageSize,
121 																 const VkFormat			format,
122 																 const glu::GLSLVersion	glslVersion,
123 																 const bool				useDeviceGroups)
124 	: TestCase			(testCtx, name)
125 	, m_useDeviceGroups	(useDeviceGroups)
126 	, m_imageType		(imageType)
127 	, m_imageSize		(imageSize)
128 	, m_format			(format)
129 	, m_glslVersion		(glslVersion)
130 {
131 }
132 
checkSupport(Context & context) const133 void ImageSparseMemoryAliasingCase::checkSupport (Context& context) const
134 {
135 	const InstanceInterface&	instance		= context.getInstanceInterface();
136 	const VkPhysicalDevice		physicalDevice	= context.getPhysicalDevice();
137 
138 	context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_RESIDENCY_ALIASED);
139 
140 	// Check if image size does not exceed device limits
141 	if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
142 		TCU_THROW(NotSupportedError, "Image size not supported for device");
143 
144 	// Check if device supports sparse operations for image type
145 	if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
146 		TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
147 
148 	if (formatIsR64(m_format))
149 	{
150 		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
151 
152 		if (context.getShaderImageAtomicInt64FeaturesEXT().shaderImageInt64Atomics == VK_FALSE)
153 		{
154 			TCU_THROW(NotSupportedError, "shaderImageInt64Atomics is not supported");
155 		}
156 
157 		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
158 		{
159 			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
160 		}
161 	}
162 }
163 
164 class ImageSparseMemoryAliasingInstance : public SparseResourcesBaseInstance
165 {
166 public:
167 	ImageSparseMemoryAliasingInstance	(Context&			context,
168 										 const ImageType	imageType,
169 										 const tcu::UVec3&	imageSize,
170 										 const VkFormat		format,
171 										 const bool			useDeviceGroups);
172 
173 	tcu::TestStatus	iterate				(void);
174 
175 private:
176 	const bool			m_useDeviceGroups;
177 	const ImageType		m_imageType;
178 	const tcu::UVec3	m_imageSize;
179 	const VkFormat		m_format;
180 };
181 
ImageSparseMemoryAliasingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)182 ImageSparseMemoryAliasingInstance::ImageSparseMemoryAliasingInstance	(Context&			context,
183 																		 const ImageType	imageType,
184 																		 const tcu::UVec3&	imageSize,
185 																		 const VkFormat		format,
186 																		 const bool			useDeviceGroups)
187 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
188 	, m_useDeviceGroups				(useDeviceGroups)
189 	, m_imageType					(imageType)
190 	, m_imageSize					(imageSize)
191 	, m_format						(format)
192 {
193 }
194 
iterate(void)195 tcu::TestStatus ImageSparseMemoryAliasingInstance::iterate (void)
196 {
197 	const float					epsilon					= 1e-5f;
198 	const InstanceInterface&	instance				= m_context.getInstanceInterface();
199 
200 	{
201 		// Create logical device supporting both sparse and compute queues
202 		QueueRequirementsVec queueRequirements;
203 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
204 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
205 
206 		createDeviceSupportingQueues(queueRequirements, formatIsR64(m_format));
207 	}
208 
209 	const VkPhysicalDevice		physicalDevice			= getPhysicalDevice();
210 	const tcu::UVec3			maxWorkGroupSize		= tcu::UVec3(128u, 128u, 64u);
211 	const tcu::UVec3			maxWorkGroupCount		= tcu::UVec3(65535u, 65535u, 65535u);
212 	const deUint32				maxWorkGroupInvocations	= 128u;
213 	VkImageCreateInfo			imageSparseInfo;
214 	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
215 
216 	//vsk getting queues should be outside the loop
217 	//see these in all image files
218 
219 	const DeviceInterface&			deviceInterface		= getDeviceInterface();
220 	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
221 	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
222 	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
223 
224 	// Go through all physical devices
225 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
226 	{
227 		const deUint32	firstDeviceID	= physDevID;
228 		const deUint32	secondDeviceID	= (firstDeviceID + 1) % m_numPhysicalDevices;
229 
230 		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
231 		imageSparseInfo.pNext					= DE_NULL;
232 		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT |
233 												  VK_IMAGE_CREATE_SPARSE_ALIASED_BIT   |
234 												  VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
235 		imageSparseInfo.imageType				= mapImageType(m_imageType);
236 		imageSparseInfo.format					= m_format;
237 		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
238 		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);
239 		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;
240 		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;
241 		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
242 		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_DST_BIT |
243 												  VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
244 												  VK_IMAGE_USAGE_STORAGE_BIT;
245 		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
246 		imageSparseInfo.queueFamilyIndexCount	= 0u;
247 		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;
248 
249 		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
250 			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
251 
252 		// Check if device supports sparse operations for image format
253 		if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
254 			TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
255 
256 		{
257 			// Assign maximum allowed mipmap levels to image
258 			VkImageFormatProperties imageFormatProperties;
259 			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
260 				imageSparseInfo.format,
261 				imageSparseInfo.imageType,
262 				imageSparseInfo.tiling,
263 				imageSparseInfo.usage,
264 				imageSparseInfo.flags,
265 				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
266 			{
267 				TCU_THROW(NotSupportedError, "Image format does not support sparse operations");
268 			}
269 
270 			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
271 		}
272 
273 		// Create sparse image
274 		const Unique<VkImage> imageRead(createImage(deviceInterface, getDevice(), &imageSparseInfo));
275 		const Unique<VkImage> imageWrite(createImage(deviceInterface, getDevice(), &imageSparseInfo));
276 
277 		// Create semaphores to synchronize sparse binding operations with other operations on the sparse images
278 		const Unique<VkSemaphore> memoryBindSemaphoreTransfer(createSemaphore(deviceInterface, getDevice()));
279 		const Unique<VkSemaphore> memoryBindSemaphoreCompute(createSemaphore(deviceInterface, getDevice()));
280 
281 		const VkSemaphore imageMemoryBindSemaphores[] = { memoryBindSemaphoreTransfer.get(), memoryBindSemaphoreCompute.get() };
282 
283 		std::vector<VkSparseImageMemoryRequirements> sparseMemoryRequirements;
284 
285 		{
286 			// Get sparse image general memory requirements
287 			const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageRead);
288 
289 			// Check if required image memory size does not exceed device limits
290 			if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize)
291 				TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
292 
293 			DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
294 
295 			const deUint32 memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
296 
297 			if (memoryType == NO_MATCH_FOUND)
298 				return tcu::TestStatus::fail("No matching memory type found");
299 
300 			if (firstDeviceID != secondDeviceID)
301 			{
302 				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags	= (VkPeerMemoryFeatureFlags)0;
303 				const deUint32				heapIndex				= getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
304 				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
305 
306 				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
307 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0) ||
308 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT) == 0))
309 				{
310 					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC, COPY_DST, and GENERIC_DST");
311 				}
312 			}
313 
314 			// Get sparse image sparse memory requirements
315 			sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageRead);
316 
317 			DE_ASSERT(sparseMemoryRequirements.size() != 0);
318 
319 			std::vector<VkSparseImageMemoryBind> imageResidencyMemoryBinds;
320 			std::vector<VkSparseMemoryBind>		 imageReadMipTailBinds;
321 			std::vector<VkSparseMemoryBind>		 imageWriteMipTailBinds;
322 
323 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
324 			{
325 				const VkImageAspectFlags		aspect				= (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
326 				const deUint32					aspectIndex			= getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
327 
328 				if (aspectIndex == NO_MATCH_FOUND)
329 					TCU_THROW(NotSupportedError, "Not supported image aspect");
330 
331 				VkSparseImageMemoryRequirements	aspectRequirements	= sparseMemoryRequirements[aspectIndex];
332 
333 				DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
334 
335 				VkExtent3D						imageGranularity	= aspectRequirements.formatProperties.imageGranularity;
336 
337 				// Bind memory for each layer
338 				for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
339 				{
340 					for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
341 					{
342 						const VkExtent3D			mipExtent			= getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx);
343 						const tcu::UVec3			sparseBlocks		= alignedDivide(mipExtent, imageGranularity);
344 						const deUint32				numSparseBlocks		= sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
345 						const VkImageSubresource	subresource			= { aspect, mipLevelNdx, layerNdx };
346 
347 						const VkSparseImageMemoryBind imageMemoryBind	= makeSparseImageMemoryBind(deviceInterface, getDevice(),
348 							imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
349 
350 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
351 
352 						imageResidencyMemoryBinds.push_back(imageMemoryBind);
353 					}
354 
355 					if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
356 					{
357 						const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
358 							aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
359 
360 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
361 
362 						imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind);
363 
364 						const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
365 							aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
366 
367 						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
368 
369 						imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind);
370 					}
371 				}
372 
373 				if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
374 				{
375 					const VkSparseMemoryBind imageReadMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
376 						aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
377 
378 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageReadMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
379 
380 					imageReadMipTailBinds.push_back(imageReadMipTailMemoryBind);
381 
382 					const VkSparseMemoryBind imageWriteMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
383 						aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
384 
385 					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageWriteMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
386 
387 					imageWriteMipTailBinds.push_back(imageWriteMipTailMemoryBind);
388 				}
389 			}
390 
391 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
392 			{
393 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
394 				DE_NULL,												//const void*								pNext;
395 				firstDeviceID,											//deUint32									resourceDeviceIndex;
396 				secondDeviceID,											//deUint32									memoryDeviceIndex;
397 			};
398 
399 			VkBindSparseInfo bindSparseInfo =
400 			{
401 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
402 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
403 				0u,														//deUint32									waitSemaphoreCount;
404 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
405 				0u,														//deUint32									bufferBindCount;
406 				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
407 				0u,														//deUint32									imageOpaqueBindCount;
408 				DE_NULL,												//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
409 				0u,														//deUint32									imageBindCount;
410 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
411 				2u,														//deUint32									signalSemaphoreCount;
412 				imageMemoryBindSemaphores								//const VkSemaphore*						pSignalSemaphores;
413 			};
414 
415 			VkSparseImageMemoryBindInfo			imageResidencyBindInfo[2];
416 			VkSparseImageOpaqueMemoryBindInfo	imageMipTailBindInfo[2];
417 
418 			if (imageResidencyMemoryBinds.size() > 0)
419 			{
420 				imageResidencyBindInfo[0].image		= *imageRead;
421 				imageResidencyBindInfo[0].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
422 				imageResidencyBindInfo[0].pBinds	= imageResidencyMemoryBinds.data();
423 
424 				imageResidencyBindInfo[1].image		= *imageWrite;
425 				imageResidencyBindInfo[1].bindCount = static_cast<deUint32>(imageResidencyMemoryBinds.size());
426 				imageResidencyBindInfo[1].pBinds	= imageResidencyMemoryBinds.data();
427 
428 				bindSparseInfo.imageBindCount		= 2u;
429 				bindSparseInfo.pImageBinds			= imageResidencyBindInfo;
430 			}
431 
432 			if (imageReadMipTailBinds.size() > 0)
433 			{
434 				imageMipTailBindInfo[0].image		= *imageRead;
435 				imageMipTailBindInfo[0].bindCount	= static_cast<deUint32>(imageReadMipTailBinds.size());
436 				imageMipTailBindInfo[0].pBinds		= imageReadMipTailBinds.data();
437 
438 				imageMipTailBindInfo[1].image		= *imageWrite;
439 				imageMipTailBindInfo[1].bindCount	= static_cast<deUint32>(imageWriteMipTailBinds.size());
440 				imageMipTailBindInfo[1].pBinds		= imageWriteMipTailBinds.data();
441 
442 				bindSparseInfo.imageOpaqueBindCount = 2u;
443 				bindSparseInfo.pImageOpaqueBinds	= imageMipTailBindInfo;
444 			}
445 
446 			// Submit sparse bind commands for execution
447 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
448 		}
449 
450 		deUint32							imageSizeInBytes = 0;
451 		std::vector<std::vector<deUint32>>	planeOffsets( imageSparseInfo.mipLevels );
452 		std::vector<std::vector<deUint32>>	planeRowPitches( imageSparseInfo.mipLevels );
453 
454 		for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
455 		{
456 			planeOffsets[mipmapNdx].resize(formatDescription.numPlanes, 0);
457 			planeRowPitches[mipmapNdx].resize(formatDescription.numPlanes, 0);
458 		}
459 
460 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
461 		{
462 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
463 			{
464 				const tcu::UVec3	gridSize			= getShaderGridSize(m_imageType, m_imageSize, mipmapNdx);
465 				planeOffsets[mipmapNdx][planeNdx]		= imageSizeInBytes;
466 				const deUint32		planeW				= gridSize.x() / (formatDescription.blockWidth * formatDescription.planes[planeNdx].widthDivisor);
467 				planeRowPitches[mipmapNdx][planeNdx]	= formatDescription.planes[planeNdx].elementSizeBytes * planeW;
468 				imageSizeInBytes						+= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
469 			}
470 		}
471 
472 		std::vector <VkBufferImageCopy>	bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels);
473 		{
474 			deUint32 bufferOffset = 0;
475 
476 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
477 			{
478 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
479 
480 				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
481 				{
482 					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
483 					{
484 						bufferOffset,																		//	VkDeviceSize				bufferOffset;
485 						0u,																					//	deUint32					bufferRowLength;
486 						0u,																					//	deUint32					bufferImageHeight;
487 						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
488 						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
489 						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
490 					};
491 					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
492 				}
493 			}
494 		}
495 
496 		// Create command buffer for compute and transfer operations
497 		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
498 		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
499 
500 		// Start recording commands
501 		beginCommandBuffer(deviceInterface, *commandBuffer);
502 
503 		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
504 		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
505 		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
506 
507 		std::vector<deUint8> referenceData(imageSizeInBytes);
508 
509 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
510 			for (deUint32 mipmapNdx = 0u; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
511 			{
512 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
513 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
514 
515 				deMemset(&referenceData[bufferOffset], mipmapNdx + 1u, mipLevelSizeInBytes);
516 			}
517 
518 		deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
519 
520 		flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
521 
522 		{
523 			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
524 			(
525 				VK_ACCESS_HOST_WRITE_BIT,
526 				VK_ACCESS_TRANSFER_READ_BIT,
527 				*inputBuffer,
528 				0u,
529 				imageSizeInBytes
530 			);
531 
532 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
533 		}
534 
535 		{
536 			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
537 
538 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
539 			{
540 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
541 
542 				imageSparseTransferDstBarriers.emplace_back(makeImageMemoryBarrier
543 				(
544 					0u,
545 					VK_ACCESS_TRANSFER_WRITE_BIT,
546 					VK_IMAGE_LAYOUT_UNDEFINED,
547 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
548 					*imageRead,
549 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
550 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
551 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
552 				));
553 			}
554 
555 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
556 		}
557 
558 		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
559 
560 		{
561 			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
562 
563 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
564 			{
565 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
566 
567 				imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier
568 				(
569 					VK_ACCESS_TRANSFER_WRITE_BIT,
570 					VK_ACCESS_TRANSFER_READ_BIT,
571 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
572 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
573 					*imageRead,
574 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
575 				));
576 			}
577 
578 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
579 		}
580 
581 		{
582 			std::vector<VkImageMemoryBarrier> imageSparseShaderStorageBarriers;
583 
584 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
585 			{
586 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
587 
588 				imageSparseShaderStorageBarriers.emplace_back(makeImageMemoryBarrier
589 				(
590 					0u,
591 					VK_ACCESS_SHADER_WRITE_BIT,
592 					VK_IMAGE_LAYOUT_UNDEFINED,
593 					VK_IMAGE_LAYOUT_GENERAL,
594 					*imageWrite,
595 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
596 				));
597 			}
598 
599 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseShaderStorageBarriers.size()), imageSparseShaderStorageBarriers.data());
600 		}
601 
602 		// Create descriptor set layout
603 		const Unique<VkDescriptorSetLayout> descriptorSetLayout(
604 			DescriptorSetLayoutBuilder()
605 			.addSingleBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT)
606 			.build(deviceInterface, getDevice()));
607 
608 		Unique<VkPipelineLayout> pipelineLayout(makePipelineLayout(deviceInterface, getDevice(), *descriptorSetLayout));
609 
610 		Unique<VkDescriptorPool> descriptorPool(
611 			DescriptorPoolBuilder()
612 			.addType(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, imageSparseInfo.mipLevels)
613 			.build(deviceInterface, getDevice(), VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, imageSparseInfo.mipLevels));
614 
615 		typedef de::SharedPtr< Unique<VkImageView> >		SharedVkImageView;
616 		std::vector<SharedVkImageView>						imageViews;
617 		imageViews.resize(imageSparseInfo.mipLevels);
618 
619 		typedef de::SharedPtr< Unique<VkDescriptorSet> >	SharedVkDescriptorSet;
620 		std::vector<SharedVkDescriptorSet>					descriptorSets;
621 		descriptorSets.resize(imageSparseInfo.mipLevels);
622 
623 		typedef de::SharedPtr< Unique<VkPipeline> >			SharedVkPipeline;
624 		std::vector<SharedVkPipeline>						computePipelines;
625 		computePipelines.resize(imageSparseInfo.mipLevels);
626 
627 		for (deUint32 mipLevelNdx = 0u; mipLevelNdx < imageSparseInfo.mipLevels; ++mipLevelNdx)
628 		{
629 			std::ostringstream name;
630 			name << "comp" << mipLevelNdx;
631 
632 			// Create and bind compute pipeline
633 			Unique<VkShaderModule> shaderModule(createShaderModule(deviceInterface, getDevice(), m_context.getBinaryCollection().get(name.str()), DE_NULL));
634 
635 			computePipelines[mipLevelNdx]	= makeVkSharedPtr(makeComputePipeline(deviceInterface, getDevice(), *pipelineLayout, *shaderModule));
636 			VkPipeline computePipeline		= **computePipelines[mipLevelNdx];
637 
638 			deviceInterface.cmdBindPipeline(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipeline);
639 
640 			// Create and bind descriptor set
641 			descriptorSets[mipLevelNdx]		= makeVkSharedPtr(makeDescriptorSet(deviceInterface, getDevice(), *descriptorPool, *descriptorSetLayout));
642 			VkDescriptorSet descriptorSet	= **descriptorSets[mipLevelNdx];
643 
644 			// Select which mipmap level to bind
645 			const VkImageSubresourceRange subresourceRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, mipLevelNdx, 1u, 0u, imageSparseInfo.arrayLayers);
646 
647 			imageViews[mipLevelNdx] = makeVkSharedPtr(makeImageView(deviceInterface, getDevice(), *imageWrite, mapImageViewType(m_imageType), imageSparseInfo.format, subresourceRange));
648 			VkImageView imageView	= **imageViews[mipLevelNdx];
649 
650 			const VkDescriptorImageInfo descriptorImageSparseInfo = makeDescriptorImageInfo(DE_NULL, imageView, VK_IMAGE_LAYOUT_GENERAL);
651 
652 			DescriptorSetUpdateBuilder()
653 				.writeSingle(descriptorSet, DescriptorSetUpdateBuilder::Location::binding(0u), VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, &descriptorImageSparseInfo)
654 				.update(deviceInterface, getDevice());
655 
656 			deviceInterface.cmdBindDescriptorSets(*commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, *pipelineLayout, 0u, 1u, &descriptorSet, 0u, DE_NULL);
657 
658 			const tcu::UVec3	gridSize			= getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx);
659 			const deUint32		xWorkGroupSize		= std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations);
660 			const deUint32		yWorkGroupSize		= std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize);
661 			const deUint32		zWorkGroupSize		= std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize));
662 
663 			const deUint32		xWorkGroupCount		= gridSize.x() / xWorkGroupSize + (gridSize.x() % xWorkGroupSize ? 1u : 0u);
664 			const deUint32		yWorkGroupCount		= gridSize.y() / yWorkGroupSize + (gridSize.y() % yWorkGroupSize ? 1u : 0u);
665 			const deUint32		zWorkGroupCount		= gridSize.z() / zWorkGroupSize + (gridSize.z() % zWorkGroupSize ? 1u : 0u);
666 
667 			if (maxWorkGroupCount.x() < xWorkGroupCount ||
668 				maxWorkGroupCount.y() < yWorkGroupCount ||
669 				maxWorkGroupCount.z() < zWorkGroupCount)
670 			{
671 				TCU_THROW(NotSupportedError, "Image size is not supported");
672 			}
673 
674 			deviceInterface.cmdDispatch(*commandBuffer, xWorkGroupCount, yWorkGroupCount, zWorkGroupCount);
675 		}
676 
677 		{
678 			const VkMemoryBarrier memoryBarrier = makeMemoryBarrier(VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT);
679 
680 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 1u, &memoryBarrier, 0u, DE_NULL, 0u, DE_NULL);
681 		}
682 
683 		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
684 		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
685 		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
686 
687 		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageRead, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
688 
689 		{
690 			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
691 			(
692 				VK_ACCESS_TRANSFER_WRITE_BIT,
693 				VK_ACCESS_HOST_READ_BIT,
694 				*outputBuffer,
695 				0u,
696 				imageSizeInBytes
697 			);
698 
699 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
700 		}
701 
702 		// End recording commands
703 		endCommandBuffer(deviceInterface, *commandBuffer);
704 
705 		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT };
706 
707 		// Submit commands for execution and wait for completion
708 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 2u, imageMemoryBindSemaphores, stageBits,
709 								0, DE_NULL, m_useDeviceGroups, firstDeviceID);
710 
711 		// Retrieve data from buffer to host memory
712 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
713 
714 		deUint8* outputData = static_cast<deUint8*>(outputBufferAlloc->getHostPtr());
715 
716 		std::vector<std::vector<void*>> planePointers(imageSparseInfo.mipLevels);
717 
718 		for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
719 			planePointers[mipmapNdx].resize(formatDescription.numPlanes);
720 
721 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
722 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
723 				planePointers[mipmapNdx][planeNdx] = outputData + static_cast<size_t>(planeOffsets[mipmapNdx][planeNdx]);
724 
725 		// Wait for sparse queue to become idle
726 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
727 
728 		for (deUint32 channelNdx = 0; channelNdx < 4; ++channelNdx)
729 		{
730 			if (!formatDescription.hasChannelNdx(channelNdx))
731 				continue;
732 
733 			deUint32							planeNdx			= formatDescription.channels[channelNdx].planeNdx;
734 			const VkImageAspectFlags			aspect				= (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
735 			const deUint32						aspectIndex			= getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
736 
737 			if (aspectIndex == NO_MATCH_FOUND)
738 				TCU_THROW(NotSupportedError, "Not supported image aspect");
739 
740 			VkSparseImageMemoryRequirements aspectRequirements	= sparseMemoryRequirements[aspectIndex];
741 
742 			for (deUint32 mipmapNdx = 0; mipmapNdx < aspectRequirements.imageMipTailFirstLod; ++mipmapNdx)
743 			{
744 				const	tcu::UVec3						gridSize		= getShaderGridSize(m_imageType, m_imageSize, mipmapNdx);
745 				const	tcu::ConstPixelBufferAccess		pixelBuffer		= vk::getChannelAccess(formatDescription, gridSize, planeRowPitches[mipmapNdx].data(), (const void* const*)planePointers[mipmapNdx].data(), channelNdx);
746 				tcu::IVec3								pixelDivider	= pixelBuffer.getDivider();
747 
748 				for (deUint32 offsetZ = 0u; offsetZ < gridSize.z(); ++offsetZ)
749 				for (deUint32 offsetY = 0u; offsetY < gridSize.y(); ++offsetY)
750 				for (deUint32 offsetX = 0u; offsetX < gridSize.x(); ++offsetX)
751 				{
752 					const deUint32	index			= offsetX + gridSize.x() * offsetY + gridSize.x() * gridSize.y() * offsetZ;
753 					deUint32		iReferenceValue;
754 					float			fReferenceValue;
755 					float			acceptableError	= epsilon;
756 
757 					switch (channelNdx)
758 					{
759 						case 0:
760 						case 1:
761 						case 2:
762 							iReferenceValue = index % MODULO_DIVISOR;
763 							fReferenceValue = static_cast<float>(iReferenceValue) / static_cast<float>(MODULO_DIVISOR);
764 							break;
765 						case 3:
766 							iReferenceValue = 1u;
767 							fReferenceValue = 1.f;
768 							break;
769 						default:	DE_FATAL("Unexpected channel index");	break;
770 					}
771 
772 					switch (formatDescription.channels[channelNdx].type)
773 					{
774 						case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
775 						case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
776 						{
777 							const tcu::UVec4 outputValue = pixelBuffer.getPixelUint(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z());
778 
779 							if (outputValue.x() != iReferenceValue)
780 								return tcu::TestStatus::fail("Failed");
781 
782 							break;
783 						}
784 						case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
785 						case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
786 						{
787 							float fixedPointError = tcu::TexVerifierUtil::computeFixedPointError(formatDescription.channels[channelNdx].sizeBits);
788 							acceptableError += fixedPointError;
789 							const tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z());
790 
791 							if (deAbs(outputValue.x() - fReferenceValue) > acceptableError)
792 								return tcu::TestStatus::fail("Failed");
793 
794 							break;
795 						}
796 						case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
797 						{
798 							const tcu::Vec4 outputValue = pixelBuffer.getPixel(offsetX * pixelDivider.x(), offsetY * pixelDivider.y(), offsetZ * pixelDivider.z());
799 
800 							if (deAbs(outputValue.x() - fReferenceValue) > acceptableError)
801 								return tcu::TestStatus::fail("Failed");
802 
803 							break;
804 						}
805 						default:	DE_FATAL("Unexpected channel type");	break;
806 					}
807 				}
808 			}
809 
810 			for (deUint32 mipmapNdx = aspectRequirements.imageMipTailFirstLod; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
811 			{
812 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
813 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
814 
815 				if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
816 					return tcu::TestStatus::fail("Failed");
817 			}
818 		}
819 	}
820 
821 	return tcu::TestStatus::pass("Passed");
822 }
823 
initPrograms(SourceCollections & sourceCollections) const824 void ImageSparseMemoryAliasingCase::initPrograms(SourceCollections&	sourceCollections) const
825 {
826 	const char* const				versionDecl				= glu::getGLSLVersionDeclaration(m_glslVersion);
827 	const PlanarFormatDescription	formatDescription		= getPlanarFormatDescription(m_format);
828 	const std::string				imageTypeStr			= getShaderImageType(formatDescription, m_imageType);
829 	const std::string				formatQualifierStr		= getShaderImageFormatQualifier(m_format);
830 	const std::string				formatDataStr			= getShaderImageDataType(formatDescription);
831 	const deUint32					maxWorkGroupInvocations = 128u;
832 	const tcu::UVec3				maxWorkGroupSize		= tcu::UVec3(128u, 128u, 64u);
833 	VkExtent3D						layerExtent				= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
834 	VkImageFormatProperties			imageFormatProperties;
835 	imageFormatProperties.maxMipLevels						= 20;
836 	const deUint32					mipLevels				= getMipmapCount(m_format, formatDescription, imageFormatProperties, layerExtent);
837 
838 	std::ostringstream formatValueStr;
839 	switch (formatDescription.channels[0].type)
840 	{
841 		case tcu::TEXTURECHANNELCLASS_SIGNED_INTEGER:
842 		case tcu::TEXTURECHANNELCLASS_UNSIGNED_INTEGER:
843 			formatValueStr << "( index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", index % " << MODULO_DIVISOR << ", 1)";
844 			break;
845 		case tcu::TEXTURECHANNELCLASS_UNSIGNED_FIXED_POINT:
846 		case tcu::TEXTURECHANNELCLASS_SIGNED_FIXED_POINT:
847 		case tcu::TEXTURECHANNELCLASS_FLOATING_POINT:
848 			formatValueStr << "( float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, float( index % " << MODULO_DIVISOR << ") / " << MODULO_DIVISOR << ".0, 1.0)";
849 			break;
850 		default:	DE_FATAL("Unexpected channel type");	break;
851 	}
852 
853 
854 	for (deUint32 mipLevelNdx = 0; mipLevelNdx < mipLevels; ++mipLevelNdx)
855 	{
856 		// Create compute program
857 		const tcu::UVec3	gridSize		= getShaderGridSize(m_imageType, m_imageSize, mipLevelNdx);
858 		const deUint32		xWorkGroupSize  = std::min(std::min(gridSize.x(), maxWorkGroupSize.x()), maxWorkGroupInvocations);
859 		const deUint32		yWorkGroupSize  = std::min(std::min(gridSize.y(), maxWorkGroupSize.y()), maxWorkGroupInvocations / xWorkGroupSize);
860 		const deUint32		zWorkGroupSize  = std::min(std::min(gridSize.z(), maxWorkGroupSize.z()), maxWorkGroupInvocations / (xWorkGroupSize * yWorkGroupSize));
861 
862 		std::ostringstream src;
863 
864 		src << versionDecl << "\n";
865 		if (formatIsR64(m_format))
866 		{
867 			src << "#extension GL_EXT_shader_explicit_arithmetic_types_int64 : require\n"
868 				<< "#extension GL_EXT_shader_image_int64 : require\n";
869 		}
870 		src << "layout (local_size_x = " << xWorkGroupSize << ", local_size_y = " << yWorkGroupSize << ", local_size_z = " << zWorkGroupSize << ") in; \n"
871 			<< "layout (binding = 0, " << formatQualifierStr << ") writeonly uniform highp " << imageTypeStr << " u_image;\n"
872 			<< "void main (void)\n"
873 			<< "{\n"
874 			<< "	if( gl_GlobalInvocationID.x < " << gridSize.x() << " ) \n"
875 			<< "	if( gl_GlobalInvocationID.y < " << gridSize.y() << " ) \n"
876 			<< "	if( gl_GlobalInvocationID.z < " << gridSize.z() << " ) \n"
877 			<< "	{\n"
878 			<< "		int index = int( gl_GlobalInvocationID.x + "<< gridSize.x() << " * gl_GlobalInvocationID.y + " << gridSize.x() << " * " << gridSize.y() << " * gl_GlobalInvocationID.z );\n"
879 			<< "		imageStore(u_image, " << getCoordStr(m_imageType, "gl_GlobalInvocationID.x", "gl_GlobalInvocationID.y", "gl_GlobalInvocationID.z") << ","
880 			<< formatDataStr << formatValueStr.str() <<"); \n"
881 			<< "	}\n"
882 			<< "}\n";
883 
884 		std::ostringstream name;
885 		name << "comp" << mipLevelNdx;
886 		sourceCollections.glslSources.add(name.str()) << glu::ComputeSource(src.str());
887 	}
888 }
889 
createInstance(Context & context) const890 TestInstance* ImageSparseMemoryAliasingCase::createInstance (Context& context) const
891 {
892 	return new ImageSparseMemoryAliasingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
893 }
894 
895 } // anonymous ns
896 
createImageSparseMemoryAliasingTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)897 tcu::TestCaseGroup* createImageSparseMemoryAliasingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
898 {
899 
900 	const std::vector<TestImageParameters> imageParameters
901 	{
902 		{ IMAGE_TYPE_2D,		{ tcu::UVec3(512u, 256u, 1u),	tcu::UVec3(128u, 128u, 1u),	tcu::UVec3(503u, 137u, 1u),	tcu::UVec3(11u, 37u, 1u) },	getTestFormats(IMAGE_TYPE_2D) },
903 		{ IMAGE_TYPE_2D_ARRAY,	{ tcu::UVec3(512u, 256u, 6u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(503u, 137u, 3u),	tcu::UVec3(11u, 37u, 3u) },	getTestFormats(IMAGE_TYPE_2D_ARRAY) },
904 		{ IMAGE_TYPE_CUBE,		{ tcu::UVec3(256u, 256u, 1u),	tcu::UVec3(128u, 128u, 1u),	tcu::UVec3(137u, 137u, 1u),	tcu::UVec3(11u, 11u, 1u) },	getTestFormats(IMAGE_TYPE_CUBE) },
905 		{ IMAGE_TYPE_CUBE_ARRAY,{ tcu::UVec3(256u, 256u, 6u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(137u, 137u, 3u),	tcu::UVec3(11u, 11u, 3u) },	getTestFormats(IMAGE_TYPE_CUBE_ARRAY) },
906 		{ IMAGE_TYPE_3D,		{ tcu::UVec3(256u, 256u, 16u),	tcu::UVec3(128u, 128u, 8u),	tcu::UVec3(503u, 137u, 3u),	tcu::UVec3(11u, 37u, 3u) },	getTestFormats(IMAGE_TYPE_3D) }
907 	};
908 
909 	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
910 	{
911 		const ImageType					imageType = imageParameters[imageTypeNdx].imageType;
912 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
913 
914 		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
915 		{
916 			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
917 			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
918 			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
919 
920 			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
921 			{
922 				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
923 
924 				// skip test for images with odd sizes for some YCbCr formats
925 				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
926 					continue;
927 				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
928 					continue;
929 
930 				std::ostringstream stream;
931 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
932 
933 				formatGroup->addChild(new ImageSparseMemoryAliasingCase(testCtx, stream.str(), imageType, imageSize, format, glu::GLSL_VERSION_440, useDeviceGroup));
934 			}
935 			imageTypeGroup->addChild(formatGroup.release());
936 		}
937 		testGroup->addChild(imageTypeGroup.release());
938 	}
939 
940 	return testGroup.release();
941 }
942 
createImageSparseMemoryAliasingTests(tcu::TestContext & testCtx)943 tcu::TestCaseGroup* createImageSparseMemoryAliasingTests(tcu::TestContext& testCtx)
944 {
945 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_memory_aliasing"));
946 	return createImageSparseMemoryAliasingTestsCommon(testCtx, testGroup);
947 }
948 
createDeviceGroupImageSparseMemoryAliasingTests(tcu::TestContext & testCtx)949 tcu::TestCaseGroup* createDeviceGroupImageSparseMemoryAliasingTests(tcu::TestContext& testCtx)
950 {
951 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_memory_aliasing"));
952 	return createImageSparseMemoryAliasingTestsCommon(testCtx, testGroup, true);
953 }
954 
955 } // sparse
956 } // vkt
957