• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesImageSparseBinding.cpp
21  * \brief Sparse fully resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 class ImageSparseBindingCase : public TestCase
59 {
60 public:
61 	ImageSparseBindingCase			(tcu::TestContext&	testCtx,
62 									 const std::string&	name,
63 									 const ImageType	imageType,
64 									 const tcu::UVec3&	imageSize,
65 									 const VkFormat		format,
66 									 const bool			useDeviceGroups = false);
67 
68 	TestInstance*	createInstance	(Context&			context) const;
69 	virtual void	checkSupport	(Context&			context) const;
70 
71 private:
72 	const bool			m_useDeviceGroups;
73 	const ImageType		m_imageType;
74 	const tcu::UVec3	m_imageSize;
75 	const VkFormat		m_format;
76 };
77 
ImageSparseBindingCase(tcu::TestContext & testCtx,const std::string & name,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)78 ImageSparseBindingCase::ImageSparseBindingCase (tcu::TestContext&	testCtx,
79 												const std::string&	name,
80 												const ImageType		imageType,
81 												const tcu::UVec3&	imageSize,
82 												const VkFormat		format,
83 												const bool			useDeviceGroups)
84 
85 	: TestCase			(testCtx, name)
86 	, m_useDeviceGroups	(useDeviceGroups)
87 	, m_imageType		(imageType)
88 	, m_imageSize		(imageSize)
89 	, m_format			(format)
90 {
91 }
92 
checkSupport(Context & context) const93 void ImageSparseBindingCase::checkSupport (Context& context) const
94 {
95 	context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
96 
97 #ifndef CTS_USES_VULKANSC
98 	if (m_format == VK_FORMAT_A8_UNORM_KHR)
99 		context.requireDeviceFunctionality("VK_KHR_maintenance5");
100 #endif // CTS_USES_VULKANSC
101 
102 	if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize))
103 		TCU_THROW(NotSupportedError, "Image size not supported for device");
104 
105 	if (formatIsR64(m_format))
106 	{
107 		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
108 
109 		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
110 		{
111 			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
112 		}
113 	}
114 }
115 
116 class ImageSparseBindingInstance : public SparseResourcesBaseInstance
117 {
118 public:
119 	ImageSparseBindingInstance	(Context&			context,
120 								 const ImageType	imageType,
121 								 const tcu::UVec3&	imageSize,
122 								 const VkFormat		format,
123 								 const bool			useDeviceGroups);
124 
125 	tcu::TestStatus	iterate		(void);
126 
127 private:
128 	const bool			m_useDeviceGroups;
129 	const ImageType		m_imageType;
130 	const tcu::UVec3	m_imageSize;
131 	const VkFormat		m_format;
132 };
133 
ImageSparseBindingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)134 ImageSparseBindingInstance::ImageSparseBindingInstance (Context&			context,
135 														const ImageType		imageType,
136 														const tcu::UVec3&	imageSize,
137 														const VkFormat		format,
138 														const bool			useDeviceGroups)
139 
140 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
141 	, m_useDeviceGroups				(useDeviceGroups)
142 	, m_imageType					(imageType)
143 	, m_imageSize					(imageSize)
144 	, m_format						(format)
145 {
146 }
147 
iterate(void)148 tcu::TestStatus ImageSparseBindingInstance::iterate (void)
149 {
150 	const InstanceInterface&	instance		= m_context.getInstanceInterface();
151 
152 	{
153 		// Create logical device supporting both sparse and compute queues
154 		QueueRequirementsVec queueRequirements;
155 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
156 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
157 
158 		createDeviceSupportingQueues(queueRequirements, false, m_format == VK_FORMAT_A8_UNORM_KHR);
159 	}
160 
161 	const VkPhysicalDevice		physicalDevice	= getPhysicalDevice();
162 	VkImageCreateInfo			imageSparseInfo;
163 	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
164 
165 	const DeviceInterface&			deviceInterface		= getDeviceInterface();
166 	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
167 	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
168 	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
169 
170 	// Go through all physical devices
171 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; ++physDevID)
172 	{
173 		const deUint32	firstDeviceID	= physDevID;
174 		const deUint32	secondDeviceID	= (firstDeviceID + 1) % m_numPhysicalDevices;
175 
176 		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;					//VkStructureType		sType;
177 		imageSparseInfo.pNext					= DE_NULL;												//const void*			pNext;
178 		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_BINDING_BIT;					//VkImageCreateFlags	flags;
179 		imageSparseInfo.imageType				= mapImageType(m_imageType);							//VkImageType			imageType;
180 		imageSparseInfo.format					= m_format;												//VkFormat				format;
181 		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));	//VkExtent3D			extent;
182 		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);				//deUint32				arrayLayers;
183 		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;								//VkSampleCountFlagBits	samples;
184 		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;								//VkImageTiling			tiling;
185 		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;							//VkImageLayout			initialLayout;
186 		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
187 												  VK_IMAGE_USAGE_TRANSFER_DST_BIT;						//VkImageUsageFlags		usage;
188 		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;							//VkSharingMode			sharingMode;
189 		imageSparseInfo.queueFamilyIndexCount	= 0u;													//deUint32				queueFamilyIndexCount;
190 		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;												//const deUint32*		pQueueFamilyIndices;
191 
192 		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
193 		{
194 			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
195 		}
196 
197 		{
198 			VkImageFormatProperties imageFormatProperties;
199 			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
200 				imageSparseInfo.format,
201 				imageSparseInfo.imageType,
202 				imageSparseInfo.tiling,
203 				imageSparseInfo.usage,
204 				imageSparseInfo.flags,
205 				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
206 			{
207 				TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations");
208 			}
209 
210 			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
211 		}
212 
213 		// Create sparse image
214 		const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
215 
216 		// Create sparse image memory bind semaphore
217 		const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
218 
219 		// Get sparse image general memory requirements
220 		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
221 
222 		// Check if required image memory size does not exceed device limits
223 		if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize)
224 			TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
225 
226 		DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
227 
228 		{
229 			std::vector<VkSparseMemoryBind>	sparseMemoryBinds;
230 			const deUint32					numSparseBinds	= static_cast<deUint32>(imageMemoryRequirements.size / imageMemoryRequirements.alignment);
231 			const deUint32					memoryType		= findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
232 
233 			if (memoryType == NO_MATCH_FOUND)
234 				return tcu::TestStatus::fail("No matching memory type found");
235 
236 			if (firstDeviceID != secondDeviceID)
237 			{
238 				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
239 				const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
240 				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
241 
242 				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
243 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
244 				{
245 					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
246 				}
247 			}
248 
249 			for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
250 			{
251 				const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
252 					imageMemoryRequirements.alignment, memoryType, imageMemoryRequirements.alignment * sparseBindNdx);
253 
254 				deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
255 
256 				sparseMemoryBinds.push_back(sparseMemoryBind);
257 			}
258 
259 			const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(*imageSparse, static_cast<deUint32>(sparseMemoryBinds.size()), sparseMemoryBinds.data());
260 
261 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
262 			{
263 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
264 				DE_NULL,												//const void*								pNext;
265 				firstDeviceID,											//deUint32									resourceDeviceIndex;
266 				secondDeviceID,											//deUint32									memoryDeviceIndex;
267 			};
268 
269 			const VkBindSparseInfo bindSparseInfo =
270 			{
271 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
272 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
273 				0u,														//deUint32									waitSemaphoreCount;
274 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
275 				0u,														//deUint32									bufferBindCount;
276 				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
277 				1u,														//deUint32									imageOpaqueBindCount;
278 				&opaqueBindInfo,										//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
279 				0u,														//deUint32									imageBindCount;
280 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
281 				1u,														//deUint32									signalSemaphoreCount;
282 				&imageMemoryBindSemaphore.get()							//const VkSemaphore*						pSignalSemaphores;
283 			};
284 
285 			// Submit sparse bind commands for execution
286 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
287 		}
288 
289 		deUint32 imageSizeInBytes = 0;
290 
291 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
292 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
293 				imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
294 
295 		std::vector<VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels);
296 		{
297 			deUint32 bufferOffset = 0;
298 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
299 			{
300 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
301 
302 				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
303 				{
304 					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
305 					{
306 						bufferOffset,																		//	VkDeviceSize				bufferOffset;
307 						0u,																					//	deUint32					bufferRowLength;
308 						0u,																					//	deUint32					bufferImageHeight;
309 						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
310 						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
311 						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
312 					};
313 					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
314 				}
315 			}
316 		}
317 
318 		// Create command buffer for compute and transfer operations
319 		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
320 		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
321 
322 		// Start recording commands
323 		beginCommandBuffer(deviceInterface, *commandBuffer);
324 
325 		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
326 		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
327 		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
328 
329 		std::vector<deUint8>			referenceData(imageSizeInBytes);
330 		for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
331 		{
332 			referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
333 		}
334 
335 		{
336 			deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
337 			flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
338 
339 			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier (
340 				VK_ACCESS_HOST_WRITE_BIT,
341 				VK_ACCESS_TRANSFER_READ_BIT,
342 				*inputBuffer,
343 				0u,
344 				imageSizeInBytes
345 			);
346 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
347 		}
348 
349 		{
350 			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
351 
352 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
353 			{
354 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
355 
356 				imageSparseTransferDstBarriers.push_back( makeImageMemoryBarrier (
357 					0u,
358 					VK_ACCESS_TRANSFER_WRITE_BIT,
359 					VK_IMAGE_LAYOUT_UNDEFINED,
360 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
361 					*imageSparse,
362 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
363 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
364 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
365 				));
366 			}
367 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
368 		}
369 
370 		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
371 
372 		{
373 			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
374 
375 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
376 			{
377 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
378 
379 				imageSparseTransferSrcBarriers.push_back( makeImageMemoryBarrier (
380 					VK_ACCESS_TRANSFER_WRITE_BIT,
381 					VK_ACCESS_TRANSFER_READ_BIT,
382 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
383 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
384 					*imageSparse,
385 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
386 				));
387 			}
388 
389 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
390 		}
391 
392 		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
393 		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
394 		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
395 
396 		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
397 
398 		{
399 			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
400 			(
401 				VK_ACCESS_TRANSFER_WRITE_BIT,
402 				VK_ACCESS_HOST_READ_BIT,
403 				*outputBuffer,
404 				0u,
405 				imageSizeInBytes
406 			);
407 
408 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
409 		}
410 
411 		// End recording commands
412 		endCommandBuffer(deviceInterface, *commandBuffer);
413 
414 		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
415 
416 		// Submit commands for execution and wait for completion
417 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
418 			0, DE_NULL, m_useDeviceGroups, firstDeviceID);
419 
420 		// Retrieve data from buffer to host memory
421 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
422 
423 		// Wait for sparse queue to become idle
424 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
425 
426 		const deUint8*	outputData		= static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
427 		bool			ignoreLsb6Bits	= areLsb6BitsDontCare(imageSparseInfo.format);
428 		bool			ignoreLsb4Bits	= areLsb4BitsDontCare(imageSparseInfo.format);
429 
430 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
431 		{
432 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
433 			{
434 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
435 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[ planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
436 
437 				// Validate results
438 				for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++)
439 				{
440 					const deUint8	res	= *(outputData + bufferOffset + byteNdx);
441 					const deUint8	ref	= referenceData[bufferOffset + byteNdx];
442 
443 					deUint8 mask = 0xFF;
444 
445 					if (!(byteNdx & 0x01) && (ignoreLsb6Bits))
446 						mask = 0xC0;
447 					else if (!(byteNdx & 0x01) && (ignoreLsb4Bits))
448 						mask = 0xF0;
449 
450 					if ((res & mask) != (ref & mask))
451 					{
452 						return tcu::TestStatus::fail("Failed");
453 					}
454 				}
455 			}
456 		}
457 	}
458 
459 	return tcu::TestStatus::pass("Passed");
460 }
461 
createInstance(Context & context) const462 TestInstance* ImageSparseBindingCase::createInstance (Context& context) const
463 {
464 	return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
465 }
466 
getSparseBindingTestFormats(ImageType imageType,bool addExtraFormat)467 std::vector<TestFormat> getSparseBindingTestFormats (ImageType imageType, bool addExtraFormat)
468 {
469 	auto formats = getTestFormats(imageType);
470 #ifndef CTS_USES_VULKANSC
471 	if (addExtraFormat)
472 		formats.push_back(TestFormat{ VK_FORMAT_A8_UNORM_KHR });
473 #endif // CTS_USES_VULKANSC
474 	return formats;
475 }
476 
477 } // anonymous ns
478 
createImageSparseBindingTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)479 tcu::TestCaseGroup* createImageSparseBindingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
480 {
481 	const std::vector<TestImageParameters> imageParameters
482 	{
483 		{ IMAGE_TYPE_1D,			{ tcu::UVec3(512u, 1u,   1u ),	tcu::UVec3(1024u, 1u,   1u),	tcu::UVec3(11u,  1u,   1u) },	getSparseBindingTestFormats(IMAGE_TYPE_1D, !useDeviceGroup) },
484 		{ IMAGE_TYPE_1D_ARRAY,		{ tcu::UVec3(512u, 1u,   64u),	tcu::UVec3(1024u, 1u,   8u),	tcu::UVec3(11u,  1u,   3u) },	getSparseBindingTestFormats(IMAGE_TYPE_1D_ARRAY, !useDeviceGroup) },
485 		{ IMAGE_TYPE_2D,			{ tcu::UVec3(512u, 256u, 1u ),	tcu::UVec3(1024u, 128u, 1u),	tcu::UVec3(11u,  137u, 1u) },	getSparseBindingTestFormats(IMAGE_TYPE_2D, !useDeviceGroup) },
486 		{ IMAGE_TYPE_2D_ARRAY,		{ tcu::UVec3(512u, 256u, 6u ),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getSparseBindingTestFormats(IMAGE_TYPE_2D_ARRAY, !useDeviceGroup) },
487 		{ IMAGE_TYPE_3D,			{ tcu::UVec3(512u, 256u, 6u ),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getSparseBindingTestFormats(IMAGE_TYPE_3D, !useDeviceGroup) },
488 		{ IMAGE_TYPE_CUBE,			{ tcu::UVec3(256u, 256u, 1u ),	tcu::UVec3(128u,  128u, 1u),	tcu::UVec3(137u, 137u, 1u) },	getSparseBindingTestFormats(IMAGE_TYPE_CUBE, !useDeviceGroup) },
489 		{ IMAGE_TYPE_CUBE_ARRAY,	{ tcu::UVec3(256u, 256u, 6u ),	tcu::UVec3(128u,  128u, 8u),	tcu::UVec3(137u, 137u, 3u) },	getSparseBindingTestFormats(IMAGE_TYPE_CUBE_ARRAY, !useDeviceGroup) }
490 	};
491 
492 	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
493 	{
494 		const ImageType					imageType		= imageParameters[imageTypeNdx].imageType;
495 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup	(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
496 
497 		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
498 		{
499 			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
500 			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
501 			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
502 
503 			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
504 			{
505 				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
506 
507 				// skip test for images with odd sizes for some YCbCr formats
508 				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
509 					continue;
510 				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
511 					continue;
512 
513 				std::ostringstream	stream;
514 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
515 
516 				formatGroup->addChild(new ImageSparseBindingCase(testCtx, stream.str(), imageType, imageSize, format, useDeviceGroup));
517 			}
518 			imageTypeGroup->addChild(formatGroup.release());
519 		}
520 		testGroup->addChild(imageTypeGroup.release());
521 	}
522 
523 	return testGroup.release();
524 }
525 
createImageSparseBindingTests(tcu::TestContext & testCtx)526 tcu::TestCaseGroup* createImageSparseBindingTests(tcu::TestContext& testCtx)
527 {
528 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding"));
529 	return createImageSparseBindingTestsCommon(testCtx, testGroup);
530 }
531 
createDeviceGroupImageSparseBindingTests(tcu::TestContext & testCtx)532 tcu::TestCaseGroup* createDeviceGroupImageSparseBindingTests(tcu::TestContext& testCtx)
533 {
534 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding"));
535 	return createImageSparseBindingTestsCommon(testCtx, testGroup, true);
536 }
537 
538 } // sparse
539 } // vkt
540