1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2015 The Khronos Group Inc.
6 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7 * Copyright (c) 2016 The Android Open Source Project
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License");
10 * you may not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS,
17 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 *//*!
22 * \file
23 * \brief Random uniform block layout case.
24 *//*--------------------------------------------------------------------*/
25
26 #include "vktRandomUniformBlockCase.hpp"
27 #include "deRandom.hpp"
28
29 namespace vkt
30 {
31 namespace ubo
32 {
33
34 namespace
35 {
36
genName(char first,char last,int ndx)37 static std::string genName (char first, char last, int ndx)
38 {
39 std::string str = "";
40 int alphabetLen = last - first + 1;
41
42 while (ndx > alphabetLen)
43 {
44 str.insert(str.begin(), (char)(first + ((ndx - 1) % alphabetLen)));
45 ndx = (ndx - 1) / alphabetLen;
46 }
47
48 str.insert(str.begin(), (char)(first + (ndx % (alphabetLen + 1)) - 1));
49
50 return str;
51 }
52
53 } // anonymous
54
RandomUniformBlockCase(tcu::TestContext & testCtx,const std::string & name,BufferMode bufferMode,deUint32 features,deUint32 seed)55 RandomUniformBlockCase::RandomUniformBlockCase (tcu::TestContext& testCtx,
56 const std::string& name,
57 BufferMode bufferMode,
58 deUint32 features,
59 deUint32 seed)
60 : UniformBlockCase (testCtx, name, bufferMode, LOAD_FULL_MATRIX, (features & FEATURE_OUT_OF_ORDER_OFFSETS) != 0u)
61 , m_features (features)
62 , m_maxVertexBlocks ((features & FEATURE_VERTEX_BLOCKS) ? 4 : 0)
63 , m_maxFragmentBlocks ((features & FEATURE_FRAGMENT_BLOCKS) ? 4 : 0)
64 , m_maxSharedBlocks ((features & FEATURE_SHARED_BLOCKS) ? 4 : 0)
65 , m_maxInstances ((features & FEATURE_INSTANCE_ARRAYS) ? 3 : 0)
66 , m_maxArrayLength ((features & FEATURE_ARRAYS) ? 8 : 0)
67 , m_maxStructDepth ((features & FEATURE_STRUCTS) ? 2 : 0)
68 , m_maxBlockMembers (5)
69 , m_maxStructMembers (4)
70 , m_seed (seed)
71 , m_blockNdx (1)
72 , m_uniformNdx (1)
73 , m_structNdx (1)
74 , m_availableDescriptorUniformBuffers (12)
75 {
76 de::Random rnd(m_seed);
77
78 int numShared = m_maxSharedBlocks > 0 ? rnd.getInt(1, m_maxSharedBlocks) : 0;
79 int numVtxBlocks = m_maxVertexBlocks-numShared > 0 ? rnd.getInt(1, m_maxVertexBlocks - numShared) : 0;
80 int numFragBlocks = m_maxFragmentBlocks-numShared > 0 ? rnd.getInt(1, m_maxFragmentBlocks - numShared): 0;
81
82 // calculate how many additional descriptors we can use for arrays
83 // this is needed for descriptor_indexing testing as we need to take in to account
84 // maxPerStageDescriptorUniformBuffers limit and we can't query it as we need to
85 // generate shaders before Context is created; minimal value of this limit is 12
86 m_availableDescriptorUniformBuffers -= numVtxBlocks + numFragBlocks;
87
88 for (int ndx = 0; ndx < numShared; ndx++)
89 generateBlock(rnd, DECLARE_VERTEX | DECLARE_FRAGMENT);
90
91 for (int ndx = 0; ndx < numVtxBlocks; ndx++)
92 generateBlock(rnd, DECLARE_VERTEX);
93
94 for (int ndx = 0; ndx < numFragBlocks; ndx++)
95 generateBlock(rnd, DECLARE_FRAGMENT);
96
97 init();
98 }
99
generateBlock(de::Random & rnd,deUint32 layoutFlags)100 void RandomUniformBlockCase::generateBlock (de::Random& rnd, deUint32 layoutFlags)
101 {
102 DE_ASSERT(m_blockNdx <= 'z' - 'a');
103
104 const float instanceArrayWeight = 0.3f;
105 UniformBlock& block = m_interface.allocBlock(std::string("Block") + (char)('A' + m_blockNdx));
106 int numInstances = (m_maxInstances > 0 && rnd.getFloat() < instanceArrayWeight) ? rnd.getInt(0, m_maxInstances) : 0;
107 int numUniforms = rnd.getInt(1, m_maxBlockMembers);
108
109 if (m_features & FEATURE_DESCRIPTOR_INDEXING)
110 {
111 // generate arrays only when we are within the limit
112 if (m_availableDescriptorUniformBuffers > 3)
113 numInstances = rnd.getInt(2, 4);
114 else if (m_availableDescriptorUniformBuffers > 1)
115 numInstances = m_availableDescriptorUniformBuffers;
116 else
117 numInstances = 0;
118 m_availableDescriptorUniformBuffers -= numInstances;
119 }
120
121 if (numInstances > 0)
122 block.setArraySize(numInstances);
123
124 if (numInstances > 0 || rnd.getBool())
125 block.setInstanceName(std::string("block") + (char)('A' + m_blockNdx));
126
127 // Layout flag candidates.
128 std::vector<deUint32> layoutFlagCandidates;
129 layoutFlagCandidates.push_back(0);
130
131 if (m_features & FEATURE_STD140_LAYOUT)
132 layoutFlagCandidates.push_back(LAYOUT_STD140);
133
134 if (m_features & FEATURE_STD430_LAYOUT)
135 layoutFlagCandidates.push_back(LAYOUT_STD430);
136
137 if (m_features & FEATURE_SCALAR_LAYOUT)
138 layoutFlagCandidates.push_back(LAYOUT_SCALAR);
139
140 if (m_features & FEATURE_16BIT_STORAGE)
141 layoutFlags |= LAYOUT_16BIT_STORAGE;
142
143 if (m_features & FEATURE_8BIT_STORAGE)
144 layoutFlags |= LAYOUT_8BIT_STORAGE;
145
146 if (m_features & FEATURE_DESCRIPTOR_INDEXING)
147 layoutFlags |= LAYOUT_DESCRIPTOR_INDEXING;
148
149 layoutFlags |= rnd.choose<deUint32>(layoutFlagCandidates.begin(), layoutFlagCandidates.end());
150
151 if (m_features & FEATURE_MATRIX_LAYOUT)
152 {
153 static const deUint32 matrixCandidates[] = { 0, LAYOUT_ROW_MAJOR, LAYOUT_COLUMN_MAJOR };
154 layoutFlags |= rnd.choose<deUint32>(&matrixCandidates[0], &matrixCandidates[DE_LENGTH_OF_ARRAY(matrixCandidates)]);
155 }
156
157 block.setFlags(layoutFlags);
158
159 for (int ndx = 0; ndx < numUniforms; ndx++)
160 generateUniform(rnd, block, numInstances ? numInstances : 1);
161
162 m_blockNdx += 1;
163 }
164
generateUniform(de::Random & rnd,UniformBlock & block,deUint32 complexity)165 void RandomUniformBlockCase::generateUniform (de::Random& rnd, UniformBlock& block, deUint32 complexity)
166 {
167 const float unusedVtxWeight = 0.15f;
168 const float unusedFragWeight = 0.15f;
169 bool unusedOk = (m_features & FEATURE_UNUSED_UNIFORMS) != 0;
170 deUint32 flags = 0;
171 std::string name = genName('a', 'z', m_uniformNdx);
172 VarType type = generateType(rnd, 0, true, complexity);
173
174 flags |= (unusedOk && rnd.getFloat() < unusedVtxWeight) ? UNUSED_VERTEX : 0;
175 flags |= (unusedOk && rnd.getFloat() < unusedFragWeight) ? UNUSED_FRAGMENT : 0;
176
177 block.addUniform(Uniform(name, type, flags));
178
179 m_uniformNdx += 1;
180 }
181
generateType(de::Random & rnd,int typeDepth,bool arrayOk,deUint32 complexity)182 VarType RandomUniformBlockCase::generateType (de::Random& rnd, int typeDepth, bool arrayOk, deUint32 complexity)
183 {
184 const float structWeight = 0.1f;
185 const float arrayWeight = 0.1f;
186
187 if (typeDepth < m_maxStructDepth && rnd.getFloat() < structWeight)
188 {
189 const float unusedVtxWeight = 0.15f;
190 const float unusedFragWeight = 0.15f;
191 bool unusedOk = (m_features & FEATURE_UNUSED_MEMBERS) != 0;
192 std::vector<VarType> memberTypes;
193 int numMembers = rnd.getInt(1, m_maxStructMembers);
194
195 // Generate members first so nested struct declarations are in correct order.
196 for (int ndx = 0; ndx < numMembers; ndx++)
197 memberTypes.push_back(generateType(rnd, typeDepth+1, true, complexity));
198
199 StructType& structType = m_interface.allocStruct(std::string("s") + genName('A', 'Z', m_structNdx));
200 m_structNdx += 1;
201
202 DE_ASSERT(numMembers <= 'Z' - 'A');
203 for (int ndx = 0; ndx < numMembers; ndx++)
204 {
205 deUint32 flags = 0;
206
207 flags |= (unusedOk && rnd.getFloat() < unusedVtxWeight) ? UNUSED_VERTEX : 0;
208 flags |= (unusedOk && rnd.getFloat() < unusedFragWeight) ? UNUSED_FRAGMENT : 0;
209
210 structType.addMember(std::string("m") + (char)('A' + ndx), memberTypes[ndx], flags);
211 }
212
213 return VarType(&structType, m_shuffleUniformMembers ? static_cast<deUint32>(LAYOUT_OFFSET) : 0u);
214 }
215 else if (m_maxArrayLength > 0 && arrayOk && rnd.getFloat() < arrayWeight)
216 {
217 const bool arraysOfArraysOk = (m_features & FEATURE_ARRAYS_OF_ARRAYS) != 0;
218 int arrayLength = rnd.getInt(1, m_maxArrayLength);
219
220 if (complexity * arrayLength >= 70)
221 {
222 // Trim overly complicated cases (affects 18 cases out of 1576)
223 arrayLength = 1;
224 }
225
226 VarType elementType = generateType(rnd, typeDepth, arraysOfArraysOk, complexity * arrayLength);
227 return VarType(elementType, arrayLength);
228 }
229 else
230 {
231 std::vector<glu::DataType> typeCandidates;
232
233 typeCandidates.push_back(glu::TYPE_FLOAT);
234 typeCandidates.push_back(glu::TYPE_INT);
235 typeCandidates.push_back(glu::TYPE_UINT);
236 typeCandidates.push_back(glu::TYPE_BOOL);
237
238 if (m_features & FEATURE_16BIT_STORAGE) {
239 typeCandidates.push_back(glu::TYPE_UINT16);
240 typeCandidates.push_back(glu::TYPE_INT16);
241 typeCandidates.push_back(glu::TYPE_FLOAT16);
242 }
243
244 if (m_features & FEATURE_8BIT_STORAGE) {
245 typeCandidates.push_back(glu::TYPE_UINT8);
246 typeCandidates.push_back(glu::TYPE_INT8);
247 }
248
249 if (m_features & FEATURE_VECTORS)
250 {
251 typeCandidates.push_back(glu::TYPE_FLOAT_VEC2);
252 typeCandidates.push_back(glu::TYPE_FLOAT_VEC3);
253 typeCandidates.push_back(glu::TYPE_FLOAT_VEC4);
254 typeCandidates.push_back(glu::TYPE_INT_VEC2);
255 typeCandidates.push_back(glu::TYPE_INT_VEC3);
256 typeCandidates.push_back(glu::TYPE_INT_VEC4);
257 typeCandidates.push_back(glu::TYPE_UINT_VEC2);
258 typeCandidates.push_back(glu::TYPE_UINT_VEC3);
259 typeCandidates.push_back(glu::TYPE_UINT_VEC4);
260 typeCandidates.push_back(glu::TYPE_BOOL_VEC2);
261 typeCandidates.push_back(glu::TYPE_BOOL_VEC3);
262 typeCandidates.push_back(glu::TYPE_BOOL_VEC4);
263 if (m_features & FEATURE_16BIT_STORAGE)
264 {
265 typeCandidates.push_back(glu::TYPE_FLOAT16_VEC2);
266 typeCandidates.push_back(glu::TYPE_FLOAT16_VEC3);
267 typeCandidates.push_back(glu::TYPE_FLOAT16_VEC4);
268 typeCandidates.push_back(glu::TYPE_INT16_VEC2);
269 typeCandidates.push_back(glu::TYPE_INT16_VEC3);
270 typeCandidates.push_back(glu::TYPE_INT16_VEC4);
271 typeCandidates.push_back(glu::TYPE_UINT16_VEC2);
272 typeCandidates.push_back(glu::TYPE_UINT16_VEC3);
273 typeCandidates.push_back(glu::TYPE_UINT16_VEC4);
274 }
275 if (m_features & FEATURE_8BIT_STORAGE)
276 {
277 typeCandidates.push_back(glu::TYPE_INT8_VEC2);
278 typeCandidates.push_back(glu::TYPE_INT8_VEC3);
279 typeCandidates.push_back(glu::TYPE_INT8_VEC4);
280 typeCandidates.push_back(glu::TYPE_UINT8_VEC2);
281 typeCandidates.push_back(glu::TYPE_UINT8_VEC3);
282 typeCandidates.push_back(glu::TYPE_UINT8_VEC4);
283 }
284 }
285
286 if (m_features & FEATURE_MATRICES)
287 {
288 typeCandidates.push_back(glu::TYPE_FLOAT_MAT2);
289 typeCandidates.push_back(glu::TYPE_FLOAT_MAT2X3);
290 typeCandidates.push_back(glu::TYPE_FLOAT_MAT3X2);
291 typeCandidates.push_back(glu::TYPE_FLOAT_MAT3);
292 typeCandidates.push_back(glu::TYPE_FLOAT_MAT3X4);
293 typeCandidates.push_back(glu::TYPE_FLOAT_MAT4X2);
294 typeCandidates.push_back(glu::TYPE_FLOAT_MAT4X3);
295 typeCandidates.push_back(glu::TYPE_FLOAT_MAT4);
296 }
297
298 glu::DataType type = rnd.choose<glu::DataType>(typeCandidates.begin(), typeCandidates.end());
299 deUint32 flags = (m_shuffleUniformMembers ? static_cast<deUint32>(LAYOUT_OFFSET) : 0u);
300
301 if (glu::dataTypeSupportsPrecisionModifier(type))
302 {
303 // Precision.
304 static const deUint32 precisionCandidates[] = { PRECISION_LOW, PRECISION_MEDIUM, PRECISION_HIGH };
305 flags |= rnd.choose<deUint32>(&precisionCandidates[0], &precisionCandidates[DE_LENGTH_OF_ARRAY(precisionCandidates)]);
306 }
307
308 return VarType(type, flags);
309 }
310 }
311
312 } // ubo
313 } // vkt
314