1 /*
2 * Copyright (c) 2024 Huawei Device Co., Ltd.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include "ecmascript/base/dtoa_helper.h"
17 #include "ecmascript/base/number_helper.h"
18
19 #ifndef UINT64_C2
20 #define UINT64_C2(high32, low32) ((static_cast<uint64_t>(high32) << 32) | static_cast<uint64_t>(low32))
21 #endif
22 namespace panda::ecmascript::base {
GetCachedPowerByIndex(size_t index)23 DtoaHelper::DiyFp DtoaHelper::GetCachedPowerByIndex(size_t index)
24 {
25 // 10^-348, 10^-340, ..., 10^340
26 static const uint64_t kCachedPowers_F[] = {
27 UINT64_C2(0xfa8fd5a0, 0x081c0288), UINT64_C2(0xbaaee17f, 0xa23ebf76), UINT64_C2(0x8b16fb20, 0x3055ac76),
28 UINT64_C2(0xcf42894a, 0x5dce35ea), UINT64_C2(0x9a6bb0aa, 0x55653b2d), UINT64_C2(0xe61acf03, 0x3d1a45df),
29 UINT64_C2(0xab70fe17, 0xc79ac6ca), UINT64_C2(0xff77b1fc, 0xbebcdc4f), UINT64_C2(0xbe5691ef, 0x416bd60c),
30 UINT64_C2(0x8dd01fad, 0x907ffc3c), UINT64_C2(0xd3515c28, 0x31559a83), UINT64_C2(0x9d71ac8f, 0xada6c9b5),
31 UINT64_C2(0xea9c2277, 0x23ee8bcb), UINT64_C2(0xaecc4991, 0x4078536d), UINT64_C2(0x823c1279, 0x5db6ce57),
32 UINT64_C2(0xc2109436, 0x4dfb5637), UINT64_C2(0x9096ea6f, 0x3848984f), UINT64_C2(0xd77485cb, 0x25823ac7),
33 UINT64_C2(0xa086cfcd, 0x97bf97f4), UINT64_C2(0xef340a98, 0x172aace5), UINT64_C2(0xb23867fb, 0x2a35b28e),
34 UINT64_C2(0x84c8d4df, 0xd2c63f3b), UINT64_C2(0xc5dd4427, 0x1ad3cdba), UINT64_C2(0x936b9fce, 0xbb25c996),
35 UINT64_C2(0xdbac6c24, 0x7d62a584), UINT64_C2(0xa3ab6658, 0x0d5fdaf6), UINT64_C2(0xf3e2f893, 0xdec3f126),
36 UINT64_C2(0xb5b5ada8, 0xaaff80b8), UINT64_C2(0x87625f05, 0x6c7c4a8b), UINT64_C2(0xc9bcff60, 0x34c13053),
37 UINT64_C2(0x964e858c, 0x91ba2655), UINT64_C2(0xdff97724, 0x70297ebd), UINT64_C2(0xa6dfbd9f, 0xb8e5b88f),
38 UINT64_C2(0xf8a95fcf, 0x88747d94), UINT64_C2(0xb9447093, 0x8fa89bcf), UINT64_C2(0x8a08f0f8, 0xbf0f156b),
39 UINT64_C2(0xcdb02555, 0x653131b6), UINT64_C2(0x993fe2c6, 0xd07b7fac), UINT64_C2(0xe45c10c4, 0x2a2b3b06),
40 UINT64_C2(0xaa242499, 0x697392d3), UINT64_C2(0xfd87b5f2, 0x8300ca0e), UINT64_C2(0xbce50864, 0x92111aeb),
41 UINT64_C2(0x8cbccc09, 0x6f5088cc), UINT64_C2(0xd1b71758, 0xe219652c), UINT64_C2(0x9c400000, 0x00000000),
42 UINT64_C2(0xe8d4a510, 0x00000000), UINT64_C2(0xad78ebc5, 0xac620000), UINT64_C2(0x813f3978, 0xf8940984),
43 UINT64_C2(0xc097ce7b, 0xc90715b3), UINT64_C2(0x8f7e32ce, 0x7bea5c70), UINT64_C2(0xd5d238a4, 0xabe98068),
44 UINT64_C2(0x9f4f2726, 0x179a2245), UINT64_C2(0xed63a231, 0xd4c4fb27), UINT64_C2(0xb0de6538, 0x8cc8ada8),
45 UINT64_C2(0x83c7088e, 0x1aab65db), UINT64_C2(0xc45d1df9, 0x42711d9a), UINT64_C2(0x924d692c, 0xa61be758),
46 UINT64_C2(0xda01ee64, 0x1a708dea), UINT64_C2(0xa26da399, 0x9aef774a), UINT64_C2(0xf209787b, 0xb47d6b85),
47 UINT64_C2(0xb454e4a1, 0x79dd1877), UINT64_C2(0x865b8692, 0x5b9bc5c2), UINT64_C2(0xc83553c5, 0xc8965d3d),
48 UINT64_C2(0x952ab45c, 0xfa97a0b3), UINT64_C2(0xde469fbd, 0x99a05fe3), UINT64_C2(0xa59bc234, 0xdb398c25),
49 UINT64_C2(0xf6c69a72, 0xa3989f5c), UINT64_C2(0xb7dcbf53, 0x54e9bece), UINT64_C2(0x88fcf317, 0xf22241e2),
50 UINT64_C2(0xcc20ce9b, 0xd35c78a5), UINT64_C2(0x98165af3, 0x7b2153df), UINT64_C2(0xe2a0b5dc, 0x971f303a),
51 UINT64_C2(0xa8d9d153, 0x5ce3b396), UINT64_C2(0xfb9b7cd9, 0xa4a7443c), UINT64_C2(0xbb764c4c, 0xa7a44410),
52 UINT64_C2(0x8bab8eef, 0xb6409c1a), UINT64_C2(0xd01fef10, 0xa657842c), UINT64_C2(0x9b10a4e5, 0xe9913129),
53 UINT64_C2(0xe7109bfb, 0xa19c0c9d), UINT64_C2(0xac2820d9, 0x623bf429), UINT64_C2(0x80444b5e, 0x7aa7cf85),
54 UINT64_C2(0xbf21e440, 0x03acdd2d), UINT64_C2(0x8e679c2f, 0x5e44ff8f), UINT64_C2(0xd433179d, 0x9c8cb841),
55 UINT64_C2(0x9e19db92, 0xb4e31ba9), UINT64_C2(0xeb96bf6e, 0xbadf77d9), UINT64_C2(0xaf87023b, 0x9bf0ee6b)};
56 static const int16_t kCachedPowers_E[] = {
57 -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847,
58 -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449,
59 -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50,
60 -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348,
61 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747,
62 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
63 ASSERT_PRINT(index < sizeof(kCachedPowers_F) / sizeof(kCachedPowers_F[0]) &&
64 index < sizeof(kCachedPowers_E) / sizeof(kCachedPowers_E[0]), "invalid index: " << index);
65 return DtoaHelper::DiyFp(kCachedPowers_F[index], kCachedPowers_E[index]);
66 }
67
GrisuRound(char * buffer,int len,uint64_t delta,uint64_t rest,uint64_t tenKappa,uint64_t distance)68 void DtoaHelper::GrisuRound(char *buffer, int len, uint64_t delta, uint64_t rest, uint64_t tenKappa, uint64_t distance)
69 {
70 while (rest < distance && delta - rest >= tenKappa &&
71 (rest + tenKappa < distance || distance - rest > rest + tenKappa - distance)) {
72 buffer[len - 1]--;
73 rest += tenKappa;
74 }
75 }
76
CountDecimalDigit32(uint32_t n)77 int DtoaHelper::CountDecimalDigit32(uint32_t n)
78 {
79 if (n < TEN) {
80 return 1; // 1: means the decimal digit
81 } else if (n < TEN2POW) {
82 return 2; // 2: means the decimal digit
83 } else if (n < TEN3POW) {
84 return 3; // 3: means the decimal digit
85 } else if (n < TEN4POW) {
86 return 4; // 4: means the decimal digit
87 } else if (n < TEN5POW) {
88 return 5; // 5: means the decimal digit
89 } else if (n < TEN6POW) {
90 return 6; // 6: means the decimal digit
91 } else if (n < TEN7POW) {
92 return 7; // 7: means the decimal digit
93 } else if (n < TEN8POW) {
94 return 8; // 8: means the decimal digit
95 } else {
96 return 9; // 9: means the decimal digit
97 }
98 }
99
DigitGen(const DiyFp & W,const DiyFp & Mp,uint64_t delta,char * buffer,int * len,int * K)100 void DtoaHelper::DigitGen(const DiyFp &W, const DiyFp &Mp, uint64_t delta, char *buffer, int *len, int *K)
101 {
102 const DiyFp one(uint64_t(1) << -Mp.e, Mp.e);
103 const DiyFp distance = Mp - W;
104 uint32_t p1 = static_cast<uint32_t>(Mp.f >> -one.e);
105 ASSERT(one.f > 0);
106 uint64_t p2 = Mp.f & (one.f - 1);
107 int kappa = CountDecimalDigit32(p1); // kappa in [0, 9]
108 int localLen = 0;
109 while (kappa > 0) {
110 uint32_t d = 0;
111 switch (kappa) {
112 case 9: // 9: means the decimal digit
113 d = p1 / TEN8POW;
114 p1 %= TEN8POW;
115 break;
116 case 8: // 8: means the decimal digit
117 d = p1 / TEN7POW;
118 p1 %= TEN7POW;
119 break;
120 case 7: // 7: means the decimal digit
121 d = p1 / TEN6POW;
122 p1 %= TEN6POW;
123 break;
124 case 6: // 6: means the decimal digit
125 d = p1 / TEN5POW;
126 p1 %= TEN5POW;
127 break;
128 case 5: // 5: means the decimal digit
129 d = p1 / TEN4POW;
130 p1 %= TEN4POW;
131 break;
132 case 4: // 4: means the decimal digit
133 d = p1 / TEN3POW;
134 p1 %= TEN3POW;
135 break;
136 case 3: // 3: means the decimal digit
137 d = p1 / TEN2POW;
138 p1 %= TEN2POW;
139 break;
140 case 2: // 2: means the decimal digit
141 d = p1 / TEN;
142 p1 %= TEN;
143 break;
144 case 1: // 1: means the decimal digit
145 d = p1;
146 p1 = 0;
147 break;
148 default:;
149 }
150 if (d || localLen) {
151 buffer[localLen++] = static_cast<char>('0' + static_cast<char>(d));
152 }
153 kappa--;
154 uint64_t tmp = (static_cast<uint64_t>(p1) << -one.e) + p2;
155 if (tmp <= delta) {
156 *K += kappa;
157 GrisuRound(buffer, localLen, delta, tmp, POW10[kappa] << -one.e, distance.f);
158 *len = localLen;
159 return;
160 }
161 }
162
163 // kappa = 0
164 for (;;) {
165 p2 *= TEN;
166 delta *= TEN;
167 char d = static_cast<char>(p2 >> -one.e);
168 if (d || localLen) {
169 buffer[localLen++] = static_cast<char>('0' + d);
170 }
171 ASSERT(one.f > 0);
172 p2 &= one.f - 1;
173 kappa--;
174 if (p2 < delta) {
175 *K += kappa;
176 int index = -kappa;
177 if (index < kIndex) {
178 GrisuRound(buffer, localLen, delta, p2, one.f, distance.f * POW10[index]);
179 }
180 *len = localLen;
181 return;
182 }
183 }
184 }
185
186 // Grisu2 algorithm use the extra capacity of the used integer type to shorten the produced output
Grisu(double value,char * buffer,int * length,int * K)187 void DtoaHelper::Grisu(double value, char *buffer, int *length, int *K)
188 {
189 const DiyFp v(value);
190 DiyFp mMinus;
191 DiyFp mPlus;
192 v.NormalizedBoundaries(&mMinus, &mPlus);
193
194 const DiyFp cached = GetCachedPower(mPlus.e, K);
195 const DiyFp W = v.Normalize() * cached;
196 DiyFp wPlus = mPlus * cached;
197 DiyFp wMinus = mMinus * cached;
198 wMinus.f++;
199 wPlus.f--;
200 DigitGen(W, wPlus, wPlus.f - wMinus.f, buffer, length, K);
201 }
202
Dtoa(double value,char * buffer,int * point,int * length)203 void DtoaHelper::Dtoa(double value, char *buffer, int *point, int *length)
204 {
205 // Exceptional case such as NAN, 0.0, negative... are processed in DoubleToEcmaString
206 // So use Dtoa should avoid Exceptional case.
207 ASSERT(value > 0);
208 int k;
209 Grisu(value, buffer, length, &k);
210 *point = *length + k;
211 }
212
FillDigits32FixedLength(uint32_t number,int requested_length,BufferVector<char> buffer,int * length)213 void DtoaHelper::FillDigits32FixedLength(uint32_t number, int requested_length,
214 BufferVector<char> buffer, int* length)
215 {
216 for (int i = requested_length - 1; i >= 0; --i) {
217 buffer[(*length) + i] = '0' + number % TEN;
218 number /= TEN;
219 }
220 *length += requested_length;
221 }
222
FillDigits32(uint32_t number,BufferVector<char> buffer,int * length)223 void DtoaHelper::FillDigits32(uint32_t number, BufferVector<char> buffer, int* length)
224 {
225 int number_length = 0;
226 // We fill the digits in reverse order and exchange them afterwards.
227 while (number != 0) {
228 int digit = static_cast<int>(number % TEN);
229 number /= TEN;
230 buffer[(*length) + number_length] = '0' + digit;
231 number_length++;
232 }
233 // Exchange the digits.
234 int i = *length;
235 int j = *length + number_length - 1;
236 while (i < j) {
237 char tmp = buffer[i];
238 buffer[i] = buffer[j];
239 buffer[j] = tmp;
240 i++;
241 j--;
242 }
243 *length += number_length;
244 }
245
FillDigits64FixedLength(uint64_t number,int requested_length,BufferVector<char> buffer,int * length)246 void DtoaHelper::FillDigits64FixedLength(uint64_t number, [[maybe_unused]] int requested_length,
247 BufferVector<char> buffer, int* length)
248 {
249 // For efficiency cut the number into 3 uint32_t parts, and print those.
250 uint32_t part2 = static_cast<uint32_t>(number % TEN7POW);
251 number /= TEN7POW;
252 uint32_t part1 = static_cast<uint32_t>(number % TEN7POW);
253 uint32_t part0 = static_cast<uint32_t>(number / TEN7POW);
254 FillDigits32FixedLength(part0, 3, buffer, length); // 3: parameter
255 FillDigits32FixedLength(part1, 7, buffer, length); // 7: parameter
256 FillDigits32FixedLength(part2, 7, buffer, length); // 7: parameter
257 }
258
FillDigits64(uint64_t number,BufferVector<char> buffer,int * length)259 void DtoaHelper::FillDigits64(uint64_t number, BufferVector<char> buffer, int* length)
260 {
261 // For efficiency cut the number into 3 uint32_t parts, and print those.
262 uint32_t part2 = static_cast<uint32_t>(number % TEN7POW);
263 number /= TEN7POW;
264 uint32_t part1 = static_cast<uint32_t>(number % TEN7POW);
265 uint32_t part0 = static_cast<uint32_t>(number / TEN7POW);
266 if (part0 != 0) {
267 FillDigits32(part0, buffer, length);
268 FillDigits32FixedLength(part1, 7, buffer, length); // 7: means the decimal digit
269 FillDigits32FixedLength(part2, 7, buffer, length); // 7: means the decimal digit
270 } else if (part1 != 0) {
271 FillDigits32(part1, buffer, length);
272 FillDigits32FixedLength(part2, 7, buffer, length); // 7: means the decimal digit
273 } else {
274 FillDigits32(part2, buffer, length);
275 }
276 }
277
RoundUp(BufferVector<char> buffer,int * length,int * decimal_point)278 void DtoaHelper::RoundUp(BufferVector<char> buffer, int* length, int* decimal_point)
279 {
280 // An empty buffer represents 0.
281 if (*length == 0) {
282 buffer[0] = '1';
283 *decimal_point = 1;
284 *length = 1;
285 return;
286 }
287 buffer[(*length) - 1]++;
288 for (int i = (*length) - 1; i > 0; --i) {
289 if (buffer[i] != '0' + 10) { // 10: means the decimal digit
290 return;
291 }
292 buffer[i] = '0';
293 buffer[i - 1]++;
294 }
295 if (buffer[0] == '0' + 10) { // 10: means the decimal digit
296 buffer[0] = '1';
297 (*decimal_point)++;
298 }
299 }
300
FillFractionals(uint64_t fractionals,int exponent,int fractional_count,BufferVector<char> buffer,int * length,int * decimal_point)301 void DtoaHelper::FillFractionals(uint64_t fractionals, int exponent, int fractional_count,
302 BufferVector<char> buffer, int* length, int* decimal_point)
303 {
304 ASSERT(NEGATIVE_128BIT <= exponent && exponent <= 0);
305 // 'fractionals' is a fixed-point number, with binary point at bit
306 // (-exponent). Inside the function the non-converted remainder of fractionals
307 // is a fixed-point number, with binary point at bit 'point'.
308 if (-exponent <= EXPONENT_64) {
309 // One 64 bit number is sufficient.
310 ASSERT((fractionals >> 56) == 0); // 56: parameter
311 int point = -exponent;
312 for (int i = 0; i < fractional_count; ++i) {
313 if (fractionals == 0) break;
314 fractionals *= 5; // 5: parameter
315 point--;
316 int digit = static_cast<int>(fractionals >> point);
317 buffer[*length] = '0' + digit;
318 (*length)++;
319 fractionals -= static_cast<uint64_t>(digit) << point;
320 }
321 // If the first bit after the point is set we have to round up.
322 if (point > 0 && ((fractionals >> (point - 1)) & 1) == 1) {
323 RoundUp(buffer, length, decimal_point);
324 }
325 } else { // We need 128 bits.
326 ASSERT(EXPONENT_64 < -exponent && -exponent <= EXPONENT_128);
327 UInt128 fractionals128 = UInt128(fractionals, 0);
328 fractionals128.Shift(-exponent - EXPONENT_64);
329 int point = 128;
330 for (int i = 0; i < fractional_count; ++i) {
331 if (fractionals128.IsZero()) break;
332 // As before: instead of multiplying by 10 we multiply by 5 and adjust the
333 // point location.
334 // This multiplication will not overflow for the same reasons as before.
335 fractionals128.Multiply(5); // 5: parameter
336 point--;
337 int digit = fractionals128.DivModPowerOf2(point);
338 buffer[*length] = '0' + digit;
339 (*length)++;
340 }
341 if (fractionals128.BitAt(point - 1) == 1) {
342 RoundUp(buffer, length, decimal_point);
343 }
344 }
345 }
346
347 // Removes leading and trailing zeros.
348 // If leading zeros are removed then the decimal point position is adjusted.
TrimZeros(BufferVector<char> buffer,int * length,int * decimal_point)349 void DtoaHelper::TrimZeros(BufferVector<char> buffer, int* length, int* decimal_point)
350 {
351 while (*length > 0 && buffer[(*length) - 1] == '0') {
352 (*length)--;
353 }
354 int first_non_zero = 0;
355 while (first_non_zero < *length && buffer[first_non_zero] == '0') {
356 first_non_zero++;
357 }
358 if (first_non_zero != 0) {
359 for (int i = first_non_zero; i < *length; ++i) {
360 buffer[i - first_non_zero] = buffer[i];
361 }
362 *length -= first_non_zero;
363 *decimal_point -= first_non_zero;
364 }
365 }
366
FixedDtoa(double v,int fractional_count,BufferVector<char> buffer,int * length,int * decimal_point)367 bool DtoaHelper::FixedDtoa(double v, int fractional_count, BufferVector<char> buffer,
368 int* length, int* decimal_point)
369 {
370 if (v == 0) {
371 buffer[0] = '0';
372 buffer[1] = '\0';
373 *length = 1;
374 *decimal_point = 1;
375 return true;
376 }
377 uint64_t significand = NumberHelper::Significand(v);
378 int exponent = NumberHelper::Exponent(v);
379 if (exponent > 20) return false; // 20: max parameter
380 if (fractional_count > 20) return false; // 20: max parameter
381 *length = 0;
382 if (exponent + kDoubleSignificandSize > EXPONENT_64) {
383 const uint64_t kFive17 = 0xB1'A2BC'2EC5; // 5^17
384 uint64_t divisor = kFive17;
385 int divisor_power = 17;
386 uint64_t dividend = significand;
387 uint32_t quotient;
388 uint64_t remainder;
389 if (exponent > divisor_power) {
390 // We only allow exponents of up to 20 and therefore (17 - e) <= 3
391 dividend <<= exponent - divisor_power;
392 quotient = static_cast<uint32_t>(dividend / divisor);
393 remainder = (dividend % divisor) << divisor_power;
394 } else {
395 divisor <<= divisor_power - exponent;
396 quotient = static_cast<uint32_t>(dividend / divisor);
397 remainder = (dividend % divisor) << exponent;
398 }
399 FillDigits32(quotient, buffer, length);
400 FillDigits64FixedLength(remainder, divisor_power, buffer, length);
401 *decimal_point = *length;
402 } else if (exponent >= 0) {
403 // 0 <= exponent <= 11
404 significand <<= exponent;
405 FillDigits64(significand, buffer, length);
406 *decimal_point = *length;
407 } else if (exponent > -kDoubleSignificandSize) {
408 // We have to cut the number.
409 uint64_t integrals = significand >> -exponent;
410 uint64_t fractionals = significand - (integrals << -exponent);
411 if (integrals > kMaxUInt32) {
412 FillDigits64(integrals, buffer, length);
413 } else {
414 FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
415 }
416 *decimal_point = *length;
417 FillFractionals(fractionals, exponent, fractional_count,
418 buffer, length, decimal_point);
419 } else if (exponent < NEGATIVE_128BIT) {
420 ASSERT(fractional_count <= 20); // 20: parameter
421 buffer[0] = '\0';
422 *length = 0;
423 *decimal_point = -fractional_count;
424 } else {
425 *decimal_point = 0;
426 FillFractionals(significand, exponent, fractional_count,
427 buffer, length, decimal_point);
428 }
429 TrimZeros(buffer, length, decimal_point);
430 buffer[*length] = '\0';
431 if ((*length) == 0) {
432 *decimal_point = -fractional_count;
433 }
434 return true;
435 }
436 }
437