• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Elliptic curves over GF(p): generic functions
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  * References:
22  *
23  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
24  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
25  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
26  * RFC 4492 for the related TLS structures and constants
27  * RFC 7748 for the Curve448 and Curve25519 curve definitions
28  *
29  * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
30  *
31  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
32  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
33  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
34  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
35  *
36  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
37  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
38  *     ePrint Archive, 2004, vol. 2004, p. 342.
39  *     <http://eprint.iacr.org/2004/342.pdf>
40  */
41 
42 #include "common.h"
43 
44 /**
45  * \brief Function level alternative implementation.
46  *
47  * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
48  * replace certain functions in this module. The alternative implementations are
49  * typically hardware accelerators and need to activate the hardware before the
50  * computation starts and deactivate it after it finishes. The
51  * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
52  * this purpose.
53  *
54  * To preserve the correct functionality the following conditions must hold:
55  *
56  * - The alternative implementation must be activated by
57  *   mbedtls_internal_ecp_init() before any of the replaceable functions is
58  *   called.
59  * - mbedtls_internal_ecp_free() must \b only be called when the alternative
60  *   implementation is activated.
61  * - mbedtls_internal_ecp_init() must \b not be called when the alternative
62  *   implementation is activated.
63  * - Public functions must not return while the alternative implementation is
64  *   activated.
65  * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
66  *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
67  *   \endcode ensures that the alternative implementation supports the current
68  *   group.
69  */
70 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
71 #endif
72 
73 #if defined(MBEDTLS_ECP_C)
74 
75 #include "mbedtls/ecp.h"
76 #include "mbedtls/threading.h"
77 #include "mbedtls/platform_util.h"
78 #include "mbedtls/error.h"
79 
80 #include "bn_mul.h"
81 #include "ecp_invasive.h"
82 
83 #include <string.h>
84 
85 #if !defined(MBEDTLS_ECP_ALT)
86 
87 /* Parameter validation macros based on platform_util.h */
88 #define ECP_VALIDATE_RET( cond )    \
89     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
90 #define ECP_VALIDATE( cond )        \
91     MBEDTLS_INTERNAL_VALIDATE( cond )
92 
93 #if defined(MBEDTLS_PLATFORM_C)
94 #include "mbedtls/platform.h"
95 #else
96 #include <stdlib.h>
97 #include <stdio.h>
98 #define mbedtls_printf     printf
99 #define mbedtls_calloc    calloc
100 #define mbedtls_free       free
101 #endif
102 
103 #include "ecp_internal_alt.h"
104 
105 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
106     !defined(inline) && !defined(__cplusplus)
107 #define inline __inline
108 #endif
109 
110 #if defined(MBEDTLS_SELF_TEST)
111 /*
112  * Counts of point addition and doubling, and field multiplications.
113  * Used to test resistance of point multiplication to simple timing attacks.
114  */
115 static unsigned long add_count, dbl_count, mul_count;
116 #endif
117 
118 #if defined(MBEDTLS_ECP_RESTARTABLE)
119 /*
120  * Maximum number of "basic operations" to be done in a row.
121  *
122  * Default value 0 means that ECC operations will not yield.
123  * Note that regardless of the value of ecp_max_ops, always at
124  * least one step is performed before yielding.
125  *
126  * Setting ecp_max_ops=1 can be suitable for testing purposes
127  * as it will interrupt computation at all possible points.
128  */
129 static unsigned ecp_max_ops = 0;
130 
131 /*
132  * Set ecp_max_ops
133  */
mbedtls_ecp_set_max_ops(unsigned max_ops)134 void mbedtls_ecp_set_max_ops( unsigned max_ops )
135 {
136     ecp_max_ops = max_ops;
137 }
138 
139 /*
140  * Check if restart is enabled
141  */
mbedtls_ecp_restart_is_enabled(void)142 int mbedtls_ecp_restart_is_enabled( void )
143 {
144     return( ecp_max_ops != 0 );
145 }
146 
147 /*
148  * Restart sub-context for ecp_mul_comb()
149  */
150 struct mbedtls_ecp_restart_mul
151 {
152     mbedtls_ecp_point R;    /* current intermediate result                  */
153     size_t i;               /* current index in various loops, 0 outside    */
154     mbedtls_ecp_point *T;   /* table for precomputed points                 */
155     unsigned char T_size;   /* number of points in table T                  */
156     enum {                  /* what were we doing last time we returned?    */
157         ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
158         ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
159         ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
160         ecp_rsm_pre_add,        /* precompute remaining points by adding    */
161         ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
162         ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
163         ecp_rsm_final_norm,     /* do the final normalization               */
164     } state;
165 };
166 
167 /*
168  * Init restart_mul sub-context
169  */
ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx * ctx)170 static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
171 {
172     mbedtls_ecp_point_init( &ctx->R );
173     ctx->i = 0;
174     ctx->T = NULL;
175     ctx->T_size = 0;
176     ctx->state = ecp_rsm_init;
177 }
178 
179 /*
180  * Free the components of a restart_mul sub-context
181  */
ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx * ctx)182 static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
183 {
184     unsigned char i;
185 
186     if( ctx == NULL )
187         return;
188 
189     mbedtls_ecp_point_free( &ctx->R );
190 
191     if( ctx->T != NULL )
192     {
193         for( i = 0; i < ctx->T_size; i++ )
194             mbedtls_ecp_point_free( ctx->T + i );
195         mbedtls_free( ctx->T );
196     }
197 
198     ecp_restart_rsm_init( ctx );
199 }
200 
201 /*
202  * Restart context for ecp_muladd()
203  */
204 struct mbedtls_ecp_restart_muladd
205 {
206     mbedtls_ecp_point mP;       /* mP value                             */
207     mbedtls_ecp_point R;        /* R intermediate result                */
208     enum {                      /* what should we do next?              */
209         ecp_rsma_mul1 = 0,      /* first multiplication                 */
210         ecp_rsma_mul2,          /* second multiplication                */
211         ecp_rsma_add,           /* addition                             */
212         ecp_rsma_norm,          /* normalization                        */
213     } state;
214 };
215 
216 /*
217  * Init restart_muladd sub-context
218  */
ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx * ctx)219 static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
220 {
221     mbedtls_ecp_point_init( &ctx->mP );
222     mbedtls_ecp_point_init( &ctx->R );
223     ctx->state = ecp_rsma_mul1;
224 }
225 
226 /*
227  * Free the components of a restart_muladd sub-context
228  */
ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx * ctx)229 static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
230 {
231     if( ctx == NULL )
232         return;
233 
234     mbedtls_ecp_point_free( &ctx->mP );
235     mbedtls_ecp_point_free( &ctx->R );
236 
237     ecp_restart_ma_init( ctx );
238 }
239 
240 /*
241  * Initialize a restart context
242  */
mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx * ctx)243 void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
244 {
245     ECP_VALIDATE( ctx != NULL );
246     ctx->ops_done = 0;
247     ctx->depth = 0;
248     ctx->rsm = NULL;
249     ctx->ma = NULL;
250 }
251 
252 /*
253  * Free the components of a restart context
254  */
mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx * ctx)255 void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
256 {
257     if( ctx == NULL )
258         return;
259 
260     ecp_restart_rsm_free( ctx->rsm );
261     mbedtls_free( ctx->rsm );
262 
263     ecp_restart_ma_free( ctx->ma );
264     mbedtls_free( ctx->ma );
265 
266     mbedtls_ecp_restart_init( ctx );
267 }
268 
269 /*
270  * Check if we can do the next step
271  */
mbedtls_ecp_check_budget(const mbedtls_ecp_group * grp,mbedtls_ecp_restart_ctx * rs_ctx,unsigned ops)272 int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
273                               mbedtls_ecp_restart_ctx *rs_ctx,
274                               unsigned ops )
275 {
276     ECP_VALIDATE_RET( grp != NULL );
277 
278     if( rs_ctx != NULL && ecp_max_ops != 0 )
279     {
280         /* scale depending on curve size: the chosen reference is 256-bit,
281          * and multiplication is quadratic. Round to the closest integer. */
282         if( grp->pbits >= 512 )
283             ops *= 4;
284         else if( grp->pbits >= 384 )
285             ops *= 2;
286 
287         /* Avoid infinite loops: always allow first step.
288          * Because of that, however, it's not generally true
289          * that ops_done <= ecp_max_ops, so the check
290          * ops_done > ecp_max_ops below is mandatory. */
291         if( ( rs_ctx->ops_done != 0 ) &&
292             ( rs_ctx->ops_done > ecp_max_ops ||
293               ops > ecp_max_ops - rs_ctx->ops_done ) )
294         {
295             return( MBEDTLS_ERR_ECP_IN_PROGRESS );
296         }
297 
298         /* update running count */
299         rs_ctx->ops_done += ops;
300     }
301 
302     return( 0 );
303 }
304 
305 /* Call this when entering a function that needs its own sub-context */
306 #define ECP_RS_ENTER( SUB )   do {                                      \
307     /* reset ops count for this call if top-level */                    \
308     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )                        \
309         rs_ctx->ops_done = 0;                                           \
310                                                                         \
311     /* set up our own sub-context if needed */                          \
312     if( mbedtls_ecp_restart_is_enabled() &&                             \
313         rs_ctx != NULL && rs_ctx->SUB == NULL )                         \
314     {                                                                   \
315         rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) );      \
316         if( rs_ctx->SUB == NULL )                                       \
317             return( MBEDTLS_ERR_ECP_ALLOC_FAILED );                     \
318                                                                         \
319         ecp_restart_## SUB ##_init( rs_ctx->SUB );                      \
320     }                                                                   \
321 } while( 0 )
322 
323 /* Call this when leaving a function that needs its own sub-context */
324 #define ECP_RS_LEAVE( SUB )   do {                                      \
325     /* clear our sub-context when not in progress (done or error) */    \
326     if( rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
327         ret != MBEDTLS_ERR_ECP_IN_PROGRESS )                            \
328     {                                                                   \
329         ecp_restart_## SUB ##_free( rs_ctx->SUB );                      \
330         mbedtls_free( rs_ctx->SUB );                                    \
331         rs_ctx->SUB = NULL;                                             \
332     }                                                                   \
333                                                                         \
334     if( rs_ctx != NULL )                                                \
335         rs_ctx->depth--;                                                \
336 } while( 0 )
337 
338 #else /* MBEDTLS_ECP_RESTARTABLE */
339 
340 #define ECP_RS_ENTER( sub )     (void) rs_ctx;
341 #define ECP_RS_LEAVE( sub )     (void) rs_ctx;
342 
343 #endif /* MBEDTLS_ECP_RESTARTABLE */
344 
345 /*
346  * List of supported curves:
347  *  - internal ID
348  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
349  *  - size in bits
350  *  - readable name
351  *
352  * Curves are listed in order: largest curves first, and for a given size,
353  * fastest curves first.
354  *
355  * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
356  */
357 static const mbedtls_ecp_curve_info ecp_supported_curves[] =
358 {
359 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
360     { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
361 #endif
362 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
363     { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
364 #endif
365 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
366     { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
367 #endif
368 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
369     { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
370 #endif
371 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
372     { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
373 #endif
374 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
375     { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
376 #endif
377 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
378     { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
379 #endif
380 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
381     { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
382 #endif
383 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
384     { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
385 #endif
386 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
387     { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
388 #endif
389 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
390     { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
391 #endif
392 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
393     { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
394 #endif
395 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
396     { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
397 #endif
398     { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
399 };
400 
401 #define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \
402                         sizeof( ecp_supported_curves[0] )
403 
404 static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
405 
406 /*
407  * List of supported curves and associated info
408  */
mbedtls_ecp_curve_list(void)409 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
410 {
411     return( ecp_supported_curves );
412 }
413 
414 /*
415  * List of supported curves, group ID only
416  */
mbedtls_ecp_grp_id_list(void)417 const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
418 {
419     static int init_done = 0;
420 
421     if( ! init_done )
422     {
423         size_t i = 0;
424         const mbedtls_ecp_curve_info *curve_info;
425 
426         for( curve_info = mbedtls_ecp_curve_list();
427              curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
428              curve_info++ )
429         {
430             ecp_supported_grp_id[i++] = curve_info->grp_id;
431         }
432         ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
433 
434         init_done = 1;
435     }
436 
437     return( ecp_supported_grp_id );
438 }
439 
440 /*
441  * Get the curve info for the internal identifier
442  */
mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)443 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
444 {
445     const mbedtls_ecp_curve_info *curve_info;
446 
447     for( curve_info = mbedtls_ecp_curve_list();
448          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
449          curve_info++ )
450     {
451         if( curve_info->grp_id == grp_id )
452             return( curve_info );
453     }
454 
455     return( NULL );
456 }
457 
458 /*
459  * Get the curve info from the TLS identifier
460  */
mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)461 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
462 {
463     const mbedtls_ecp_curve_info *curve_info;
464 
465     for( curve_info = mbedtls_ecp_curve_list();
466          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
467          curve_info++ )
468     {
469         if( curve_info->tls_id == tls_id )
470             return( curve_info );
471     }
472 
473     return( NULL );
474 }
475 
476 /*
477  * Get the curve info from the name
478  */
mbedtls_ecp_curve_info_from_name(const char * name)479 const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
480 {
481     const mbedtls_ecp_curve_info *curve_info;
482 
483     if( name == NULL )
484         return( NULL );
485 
486     for( curve_info = mbedtls_ecp_curve_list();
487          curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
488          curve_info++ )
489     {
490         if( strcmp( curve_info->name, name ) == 0 )
491             return( curve_info );
492     }
493 
494     return( NULL );
495 }
496 
497 /*
498  * Get the type of a curve
499  */
mbedtls_ecp_get_type(const mbedtls_ecp_group * grp)500 mbedtls_ecp_curve_type mbedtls_ecp_get_type( const mbedtls_ecp_group *grp )
501 {
502     if( grp->G.X.p == NULL )
503         return( MBEDTLS_ECP_TYPE_NONE );
504 
505     if( grp->G.Y.p == NULL )
506         return( MBEDTLS_ECP_TYPE_MONTGOMERY );
507     else
508         return( MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS );
509 }
510 
511 /*
512  * Initialize (the components of) a point
513  */
mbedtls_ecp_point_init(mbedtls_ecp_point * pt)514 void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
515 {
516     ECP_VALIDATE( pt != NULL );
517 
518     mbedtls_mpi_init( &pt->X );
519     mbedtls_mpi_init( &pt->Y );
520     mbedtls_mpi_init( &pt->Z );
521 }
522 
523 /*
524  * Initialize (the components of) a group
525  */
mbedtls_ecp_group_init(mbedtls_ecp_group * grp)526 void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
527 {
528     ECP_VALIDATE( grp != NULL );
529 
530 
531     grp->id = MBEDTLS_ECP_DP_NONE;
532     mbedtls_mpi_init( &grp->P );
533     mbedtls_mpi_init( &grp->A );
534     mbedtls_mpi_init( &grp->B );
535     mbedtls_ecp_point_init( &grp->G );
536     mbedtls_mpi_init( &grp->N );
537     grp->pbits = 0;
538     grp->nbits = 0;
539     grp->h = 0;
540     grp->modp = NULL;
541     grp->t_pre = NULL;
542     grp->t_post = NULL;
543     grp->t_data = NULL;
544     grp->T = NULL;
545     grp->T_size = 0;
546 }
547 
548 /*
549  * Initialize (the components of) a key pair
550  */
mbedtls_ecp_keypair_init(mbedtls_ecp_keypair * key)551 void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
552 {
553     ECP_VALIDATE( key != NULL );
554 
555     mbedtls_ecp_group_init( &key->grp );
556     mbedtls_mpi_init( &key->d );
557     mbedtls_ecp_point_init( &key->Q );
558 }
559 
560 /*
561  * Unallocate (the components of) a point
562  */
mbedtls_ecp_point_free(mbedtls_ecp_point * pt)563 void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
564 {
565     if( pt == NULL )
566         return;
567 
568     mbedtls_mpi_free( &( pt->X ) );
569     mbedtls_mpi_free( &( pt->Y ) );
570     mbedtls_mpi_free( &( pt->Z ) );
571 }
572 
573 /*
574  * Check that the comb table (grp->T) is static initialized.
575  */
ecp_group_is_static_comb_table(const mbedtls_ecp_group * grp)576 static int ecp_group_is_static_comb_table( const mbedtls_ecp_group *grp ) {
577 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
578     return grp->T != NULL && grp->T_size == 0;
579 #else
580     (void) grp;
581     return 0;
582 #endif
583 }
584 
585 /*
586  * Unallocate (the components of) a group
587  */
mbedtls_ecp_group_free(mbedtls_ecp_group * grp)588 void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
589 {
590     size_t i;
591 
592     if( grp == NULL )
593         return;
594 
595     if( grp->h != 1 )
596     {
597         mbedtls_mpi_free( &grp->P );
598         mbedtls_mpi_free( &grp->A );
599         mbedtls_mpi_free( &grp->B );
600         mbedtls_ecp_point_free( &grp->G );
601         mbedtls_mpi_free( &grp->N );
602     }
603 
604     if( !ecp_group_is_static_comb_table(grp) && grp->T != NULL )
605     {
606         for( i = 0; i < grp->T_size; i++ )
607             mbedtls_ecp_point_free( &grp->T[i] );
608         mbedtls_free( grp->T );
609     }
610 
611     mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
612 }
613 
614 /*
615  * Unallocate (the components of) a key pair
616  */
mbedtls_ecp_keypair_free(mbedtls_ecp_keypair * key)617 void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
618 {
619     if( key == NULL )
620         return;
621 
622     mbedtls_ecp_group_free( &key->grp );
623     mbedtls_mpi_free( &key->d );
624     mbedtls_ecp_point_free( &key->Q );
625 }
626 
627 /*
628  * Copy the contents of a point
629  */
mbedtls_ecp_copy(mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)630 int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
631 {
632     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
633     ECP_VALIDATE_RET( P != NULL );
634     ECP_VALIDATE_RET( Q != NULL );
635 
636     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
637     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
638     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
639 
640 cleanup:
641     return( ret );
642 }
643 
644 /*
645  * Copy the contents of a group object
646  */
mbedtls_ecp_group_copy(mbedtls_ecp_group * dst,const mbedtls_ecp_group * src)647 int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
648 {
649     ECP_VALIDATE_RET( dst != NULL );
650     ECP_VALIDATE_RET( src != NULL );
651 
652     return( mbedtls_ecp_group_load( dst, src->id ) );
653 }
654 
655 /*
656  * Set point to zero
657  */
mbedtls_ecp_set_zero(mbedtls_ecp_point * pt)658 int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
659 {
660     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
661     ECP_VALIDATE_RET( pt != NULL );
662 
663     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
664     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
665     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
666 
667 cleanup:
668     return( ret );
669 }
670 
671 /*
672  * Tell if a point is zero
673  */
mbedtls_ecp_is_zero(mbedtls_ecp_point * pt)674 int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
675 {
676     ECP_VALIDATE_RET( pt != NULL );
677 
678     return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
679 }
680 
681 /*
682  * Compare two points lazily
683  */
mbedtls_ecp_point_cmp(const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)684 int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
685                            const mbedtls_ecp_point *Q )
686 {
687     ECP_VALIDATE_RET( P != NULL );
688     ECP_VALIDATE_RET( Q != NULL );
689 
690     if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
691         mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
692         mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
693     {
694         return( 0 );
695     }
696 
697     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
698 }
699 
700 /*
701  * Import a non-zero point from ASCII strings
702  */
mbedtls_ecp_point_read_string(mbedtls_ecp_point * P,int radix,const char * x,const char * y)703 int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
704                            const char *x, const char *y )
705 {
706     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
707     ECP_VALIDATE_RET( P != NULL );
708     ECP_VALIDATE_RET( x != NULL );
709     ECP_VALIDATE_RET( y != NULL );
710 
711     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
712     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
713     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
714 
715 cleanup:
716     return( ret );
717 }
718 
719 /*
720  * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
721  */
mbedtls_ecp_point_write_binary(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * P,int format,size_t * olen,unsigned char * buf,size_t buflen)722 int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
723                                     const mbedtls_ecp_point *P,
724                                     int format, size_t *olen,
725                                     unsigned char *buf, size_t buflen )
726 {
727     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
728     size_t plen;
729     ECP_VALIDATE_RET( grp  != NULL );
730     ECP_VALIDATE_RET( P    != NULL );
731     ECP_VALIDATE_RET( olen != NULL );
732     ECP_VALIDATE_RET( buf  != NULL );
733     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
734                       format == MBEDTLS_ECP_PF_COMPRESSED );
735 
736     plen = mbedtls_mpi_size( &grp->P );
737 
738 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
739     (void) format; /* Montgomery curves always use the same point format */
740     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
741     {
742         *olen = plen;
743         if( buflen < *olen )
744             return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
745 
746         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &P->X, buf, plen ) );
747     }
748 #endif
749 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
750     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
751     {
752         /*
753          * Common case: P == 0
754          */
755         if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
756         {
757             if( buflen < 1 )
758                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
759 
760             buf[0] = 0x00;
761             *olen = 1;
762 
763             return( 0 );
764         }
765 
766         if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
767         {
768             *olen = 2 * plen + 1;
769 
770             if( buflen < *olen )
771                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
772 
773             buf[0] = 0x04;
774             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
775             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
776         }
777         else if( format == MBEDTLS_ECP_PF_COMPRESSED )
778         {
779             *olen = plen + 1;
780 
781             if( buflen < *olen )
782                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
783 
784             buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
785             MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
786         }
787     }
788 #endif
789 
790 cleanup:
791     return( ret );
792 }
793 
794 /*
795  * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
796  */
mbedtls_ecp_point_read_binary(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char * buf,size_t ilen)797 int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
798                                    mbedtls_ecp_point *pt,
799                                    const unsigned char *buf, size_t ilen )
800 {
801     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
802     size_t plen;
803     ECP_VALIDATE_RET( grp != NULL );
804     ECP_VALIDATE_RET( pt  != NULL );
805     ECP_VALIDATE_RET( buf != NULL );
806 
807     if( ilen < 1 )
808         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
809 
810     plen = mbedtls_mpi_size( &grp->P );
811 
812 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
813     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
814     {
815         if( plen != ilen )
816             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
817 
818         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &pt->X, buf, plen ) );
819         mbedtls_mpi_free( &pt->Y );
820 
821         if( grp->id == MBEDTLS_ECP_DP_CURVE25519 )
822             /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
823             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &pt->X, plen * 8 - 1, 0 ) );
824 
825         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
826     }
827 #endif
828 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
829     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
830     {
831         if( buf[0] == 0x00 )
832         {
833             if( ilen == 1 )
834                 return( mbedtls_ecp_set_zero( pt ) );
835             else
836                 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
837         }
838 
839         if( buf[0] != 0x04 )
840             return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
841 
842         if( ilen != 2 * plen + 1 )
843             return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
844 
845         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
846         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y,
847                                                   buf + 1 + plen, plen ) );
848         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
849     }
850 #endif
851 
852 cleanup:
853     return( ret );
854 }
855 
856 /*
857  * Import a point from a TLS ECPoint record (RFC 4492)
858  *      struct {
859  *          opaque point <1..2^8-1>;
860  *      } ECPoint;
861  */
mbedtls_ecp_tls_read_point(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,const unsigned char ** buf,size_t buf_len)862 int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
863                                 mbedtls_ecp_point *pt,
864                                 const unsigned char **buf, size_t buf_len )
865 {
866     unsigned char data_len;
867     const unsigned char *buf_start;
868     ECP_VALIDATE_RET( grp != NULL );
869     ECP_VALIDATE_RET( pt  != NULL );
870     ECP_VALIDATE_RET( buf != NULL );
871     ECP_VALIDATE_RET( *buf != NULL );
872 
873     /*
874      * We must have at least two bytes (1 for length, at least one for data)
875      */
876     if( buf_len < 2 )
877         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
878 
879     data_len = *(*buf)++;
880     if( data_len < 1 || data_len > buf_len - 1 )
881         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
882 
883     /*
884      * Save buffer start for read_binary and update buf
885      */
886     buf_start = *buf;
887     *buf += data_len;
888 
889     return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
890 }
891 
892 /*
893  * Export a point as a TLS ECPoint record (RFC 4492)
894  *      struct {
895  *          opaque point <1..2^8-1>;
896  *      } ECPoint;
897  */
mbedtls_ecp_tls_write_point(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt,int format,size_t * olen,unsigned char * buf,size_t blen)898 int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
899                          int format, size_t *olen,
900                          unsigned char *buf, size_t blen )
901 {
902     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
903     ECP_VALIDATE_RET( grp  != NULL );
904     ECP_VALIDATE_RET( pt   != NULL );
905     ECP_VALIDATE_RET( olen != NULL );
906     ECP_VALIDATE_RET( buf  != NULL );
907     ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
908                       format == MBEDTLS_ECP_PF_COMPRESSED );
909 
910     /*
911      * buffer length must be at least one, for our length byte
912      */
913     if( blen < 1 )
914         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
915 
916     if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
917                     olen, buf + 1, blen - 1) ) != 0 )
918         return( ret );
919 
920     /*
921      * write length to the first byte and update total length
922      */
923     buf[0] = (unsigned char) *olen;
924     ++*olen;
925 
926     return( 0 );
927 }
928 
929 /*
930  * Set a group from an ECParameters record (RFC 4492)
931  */
mbedtls_ecp_tls_read_group(mbedtls_ecp_group * grp,const unsigned char ** buf,size_t len)932 int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
933                                 const unsigned char **buf, size_t len )
934 {
935     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
936     mbedtls_ecp_group_id grp_id;
937     ECP_VALIDATE_RET( grp  != NULL );
938     ECP_VALIDATE_RET( buf  != NULL );
939     ECP_VALIDATE_RET( *buf != NULL );
940 
941     if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
942         return( ret );
943 
944     return( mbedtls_ecp_group_load( grp, grp_id ) );
945 }
946 
947 /*
948  * Read a group id from an ECParameters record (RFC 4492) and convert it to
949  * mbedtls_ecp_group_id.
950  */
mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id * grp,const unsigned char ** buf,size_t len)951 int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
952                                    const unsigned char **buf, size_t len )
953 {
954     uint16_t tls_id;
955     const mbedtls_ecp_curve_info *curve_info;
956     ECP_VALIDATE_RET( grp  != NULL );
957     ECP_VALIDATE_RET( buf  != NULL );
958     ECP_VALIDATE_RET( *buf != NULL );
959 
960     /*
961      * We expect at least three bytes (see below)
962      */
963     if( len < 3 )
964         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
965 
966     /*
967      * First byte is curve_type; only named_curve is handled
968      */
969     if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
970         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
971 
972     /*
973      * Next two bytes are the namedcurve value
974      */
975     tls_id = *(*buf)++;
976     tls_id <<= 8;
977     tls_id |= *(*buf)++;
978 
979     if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
980         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
981 
982     *grp = curve_info->grp_id;
983 
984     return( 0 );
985 }
986 
987 /*
988  * Write the ECParameters record corresponding to a group (RFC 4492)
989  */
mbedtls_ecp_tls_write_group(const mbedtls_ecp_group * grp,size_t * olen,unsigned char * buf,size_t blen)990 int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
991                          unsigned char *buf, size_t blen )
992 {
993     const mbedtls_ecp_curve_info *curve_info;
994     ECP_VALIDATE_RET( grp  != NULL );
995     ECP_VALIDATE_RET( buf  != NULL );
996     ECP_VALIDATE_RET( olen != NULL );
997 
998     if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
999         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1000 
1001     /*
1002      * We are going to write 3 bytes (see below)
1003      */
1004     *olen = 3;
1005     if( blen < *olen )
1006         return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
1007 
1008     /*
1009      * First byte is curve_type, always named_curve
1010      */
1011     *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
1012 
1013     /*
1014      * Next two bytes are the namedcurve value
1015      */
1016     MBEDTLS_PUT_UINT16_BE( curve_info->tls_id, buf, 0 );
1017 
1018     return( 0 );
1019 }
1020 
1021 /*
1022  * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
1023  * See the documentation of struct mbedtls_ecp_group.
1024  *
1025  * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
1026  */
ecp_modp(mbedtls_mpi * N,const mbedtls_ecp_group * grp)1027 static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
1028 {
1029     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1030 
1031     if( grp->modp == NULL )
1032         return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
1033 
1034     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1035     if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
1036         mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
1037     {
1038         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1039     }
1040 
1041     MBEDTLS_MPI_CHK( grp->modp( N ) );
1042 
1043     /* N->s < 0 is a much faster test, which fails only if N is 0 */
1044     while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
1045         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
1046 
1047     while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
1048         /* we known P, N and the result are positive */
1049         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
1050 
1051 cleanup:
1052     return( ret );
1053 }
1054 
1055 /*
1056  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1057  *
1058  * In order to guarantee that, we need to ensure that operands of
1059  * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1060  * bring the result back to this range.
1061  *
1062  * The following macros are shortcuts for doing that.
1063  */
1064 
1065 /*
1066  * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1067  */
1068 #if defined(MBEDTLS_SELF_TEST)
1069 #define INC_MUL_COUNT   mul_count++;
1070 #else
1071 #define INC_MUL_COUNT
1072 #endif
1073 
1074 #define MOD_MUL( N )                                                    \
1075     do                                                                  \
1076     {                                                                   \
1077         MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) );                       \
1078         INC_MUL_COUNT                                                   \
1079     } while( 0 )
1080 
mbedtls_mpi_mul_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1081 static inline int mbedtls_mpi_mul_mod( const mbedtls_ecp_group *grp,
1082                                        mbedtls_mpi *X,
1083                                        const mbedtls_mpi *A,
1084                                        const mbedtls_mpi *B )
1085 {
1086     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1087     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( X, A, B ) );
1088     MOD_MUL( *X );
1089 cleanup:
1090     return( ret );
1091 }
1092 
1093 /*
1094  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1095  * N->s < 0 is a very fast test, which fails only if N is 0
1096  */
1097 #define MOD_SUB( N )                                                    \
1098     while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 )           \
1099         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
1100 
1101 #if ( defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1102       !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1103          defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1104          defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) ) || \
1105     ( defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \
1106       !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1107          defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) ) )
mbedtls_mpi_sub_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1108 static inline int mbedtls_mpi_sub_mod( const mbedtls_ecp_group *grp,
1109                                        mbedtls_mpi *X,
1110                                        const mbedtls_mpi *A,
1111                                        const mbedtls_mpi *B )
1112 {
1113     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1114     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( X, A, B ) );
1115     MOD_SUB( *X );
1116 cleanup:
1117     return( ret );
1118 }
1119 #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */
1120 
1121 /*
1122  * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1123  * We known P, N and the result are positive, so sub_abs is correct, and
1124  * a bit faster.
1125  */
1126 #define MOD_ADD( N )                                                    \
1127     while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 )                  \
1128         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
1129 
mbedtls_mpi_add_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,const mbedtls_mpi * A,const mbedtls_mpi * B)1130 static inline int mbedtls_mpi_add_mod( const mbedtls_ecp_group *grp,
1131                                        mbedtls_mpi *X,
1132                                        const mbedtls_mpi *A,
1133                                        const mbedtls_mpi *B )
1134 {
1135     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1136     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, A, B ) );
1137     MOD_ADD( *X );
1138 cleanup:
1139     return( ret );
1140 }
1141 
1142 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \
1143     !( defined(MBEDTLS_ECP_NO_FALLBACK) && \
1144        defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \
1145        defined(MBEDTLS_ECP_ADD_MIXED_ALT) )
mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group * grp,mbedtls_mpi * X,size_t count)1146 static inline int mbedtls_mpi_shift_l_mod( const mbedtls_ecp_group *grp,
1147                                            mbedtls_mpi *X,
1148                                            size_t count )
1149 {
1150     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1151     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( X, count ) );
1152     MOD_ADD( *X );
1153 cleanup:
1154     return( ret );
1155 }
1156 #endif /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */
1157 
1158 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1159 /*
1160  * For curves in short Weierstrass form, we do all the internal operations in
1161  * Jacobian coordinates.
1162  *
1163  * For multiplication, we'll use a comb method with coutermeasueres against
1164  * SPA, hence timing attacks.
1165  */
1166 
1167 /*
1168  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1169  * Cost: 1N := 1I + 3M + 1S
1170  */
ecp_normalize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt)1171 static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
1172 {
1173     if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
1174         return( 0 );
1175 
1176 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1177     if( mbedtls_internal_ecp_grp_capable( grp ) )
1178         return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
1179 #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1180 
1181 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1182     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1183 #else
1184     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1185     mbedtls_mpi Zi, ZZi;
1186     mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1187 
1188     /*
1189      * X = X / Z^2  mod p
1190      */
1191     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
1192     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi,     &Zi,        &Zi     ) );
1193     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X,   &pt->X,     &ZZi    ) );
1194 
1195     /*
1196      * Y = Y / Z^3  mod p
1197      */
1198     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &ZZi    ) );
1199     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &Zi     ) );
1200 
1201     /*
1202      * Z = 1
1203      */
1204     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
1205 
1206 cleanup:
1207 
1208     mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1209 
1210     return( ret );
1211 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1212 }
1213 
1214 /*
1215  * Normalize jacobian coordinates of an array of (pointers to) points,
1216  * using Montgomery's trick to perform only one inversion mod P.
1217  * (See for example Cohen's "A Course in Computational Algebraic Number
1218  * Theory", Algorithm 10.3.4.)
1219  *
1220  * Warning: fails (returning an error) if one of the points is zero!
1221  * This should never happen, see choice of w in ecp_mul_comb().
1222  *
1223  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1224  */
ecp_normalize_jac_many(const mbedtls_ecp_group * grp,mbedtls_ecp_point * T[],size_t T_size)1225 static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
1226                                    mbedtls_ecp_point *T[], size_t T_size )
1227 {
1228     if( T_size < 2 )
1229         return( ecp_normalize_jac( grp, *T ) );
1230 
1231 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1232     if( mbedtls_internal_ecp_grp_capable( grp ) )
1233         return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
1234 #endif
1235 
1236 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1237     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1238 #else
1239     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1240     size_t i;
1241     mbedtls_mpi *c, u, Zi, ZZi;
1242 
1243     if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
1244         return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
1245 
1246     for( i = 0; i < T_size; i++ )
1247         mbedtls_mpi_init( &c[i] );
1248 
1249     mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
1250 
1251     /*
1252      * c[i] = Z_0 * ... * Z_i
1253      */
1254     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
1255     for( i = 1; i < T_size; i++ )
1256     {
1257         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &c[i], &c[i-1], &T[i]->Z ) );
1258     }
1259 
1260     /*
1261      * u = 1 / (Z_0 * ... * Z_n) mod P
1262      */
1263     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
1264 
1265     for( i = T_size - 1; ; i-- )
1266     {
1267         /*
1268          * Zi = 1 / Z_i mod p
1269          * u = 1 / (Z_0 * ... * Z_i) mod P
1270          */
1271         if( i == 0 ) {
1272             MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
1273         }
1274         else
1275         {
1276             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Zi, &u, &c[i-1]  ) );
1277             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &u,  &u, &T[i]->Z ) );
1278         }
1279 
1280         /*
1281          * proceed as in normalize()
1282          */
1283         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ZZi,     &Zi,      &Zi  ) );
1284         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->X, &T[i]->X, &ZZi ) );
1285         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &ZZi ) );
1286         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T[i]->Y, &T[i]->Y, &Zi  ) );
1287 
1288         /*
1289          * Post-precessing: reclaim some memory by shrinking coordinates
1290          * - not storing Z (always 1)
1291          * - shrinking other coordinates, but still keeping the same number of
1292          *   limbs as P, as otherwise it will too likely be regrown too fast.
1293          */
1294         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
1295         MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
1296         mbedtls_mpi_free( &T[i]->Z );
1297 
1298         if( i == 0 )
1299             break;
1300     }
1301 
1302 cleanup:
1303 
1304     mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
1305     for( i = 0; i < T_size; i++ )
1306         mbedtls_mpi_free( &c[i] );
1307     mbedtls_free( c );
1308 
1309     return( ret );
1310 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1311 }
1312 
1313 /*
1314  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1315  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1316  */
ecp_safe_invert_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * Q,unsigned char inv)1317 static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
1318                             mbedtls_ecp_point *Q,
1319                             unsigned char inv )
1320 {
1321     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1322     unsigned char nonzero;
1323     mbedtls_mpi mQY;
1324 
1325     mbedtls_mpi_init( &mQY );
1326 
1327     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
1328     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
1329     nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
1330     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
1331 
1332 cleanup:
1333     mbedtls_mpi_free( &mQY );
1334 
1335     return( ret );
1336 }
1337 
1338 /*
1339  * Point doubling R = 2 P, Jacobian coordinates
1340  *
1341  * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1342  *
1343  * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1344  * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1345  *
1346  * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1347  *
1348  * Cost: 1D := 3M + 4S          (A ==  0)
1349  *             4M + 4S          (A == -3)
1350  *             3M + 6S + 1a     otherwise
1351  */
ecp_double_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P)1352 static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1353                            const mbedtls_ecp_point *P )
1354 {
1355 #if defined(MBEDTLS_SELF_TEST)
1356     dbl_count++;
1357 #endif
1358 
1359 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1360     if( mbedtls_internal_ecp_grp_capable( grp ) )
1361         return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
1362 #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1363 
1364 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1365     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1366 #else
1367     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1368     mbedtls_mpi M, S, T, U;
1369 
1370     mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
1371 
1372     /* Special case for A = -3 */
1373     if( grp->A.p == NULL )
1374     {
1375         /* M = 3(X + Z^2)(X - Z^2) */
1376         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->Z,  &P->Z   ) );
1377         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &T,  &P->X,  &S      ) );
1378         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &U,  &P->X,  &S      ) );
1379         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &T,     &U      ) );
1380         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1381     }
1382     else
1383     {
1384         /* M = 3.X^2 */
1385         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->X,  &P->X   ) );
1386         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );
1387 
1388         /* Optimize away for "koblitz" curves with A = 0 */
1389         if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
1390         {
1391             /* M += A.Z^4 */
1392             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->Z,  &P->Z   ) );
1393             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &S,     &S      ) );
1394             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &T,     &grp->A ) );
1395             MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &M,  &M,     &S      ) );
1396         }
1397     }
1398 
1399     /* S = 4.X.Y^2 */
1400     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &P->Y,  &P->Y   ) );
1401     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T,  1               ) );
1402     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &P->X,  &T      ) );
1403     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &S,  1               ) );
1404 
1405     /* U = 8.Y^4 */
1406     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U,  &T,     &T      ) );
1407     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U,  1               ) );
1408 
1409     /* T = M^2 - 2.S */
1410     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T,  &M,     &M      ) );
1411     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T,  &T,     &S      ) );
1412     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T,  &T,     &S      ) );
1413 
1414     /* S = M(S - T) - U */
1415     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S,  &S,     &T      ) );
1416     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S,  &S,     &M      ) );
1417     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S,  &S,     &U      ) );
1418 
1419     /* U = 2.Y.Z */
1420     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &U,  &P->Y,  &P->Z   ) );
1421     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &U,  1               ) );
1422 
1423     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
1424     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
1425     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
1426 
1427 cleanup:
1428     mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
1429 
1430     return( ret );
1431 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1432 }
1433 
1434 /*
1435  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1436  *
1437  * The coordinates of Q must be normalized (= affine),
1438  * but those of P don't need to. R is not normalized.
1439  *
1440  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1441  * None of these cases can happen as intermediate step in ecp_mul_comb():
1442  * - at each step, P, Q and R are multiples of the base point, the factor
1443  *   being less than its order, so none of them is zero;
1444  * - Q is an odd multiple of the base point, P an even multiple,
1445  *   due to the choice of precomputed points in the modified comb method.
1446  * So branches for these cases do not leak secret information.
1447  *
1448  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
1449  *
1450  * Cost: 1A := 8M + 3S
1451  */
ecp_add_mixed(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q)1452 static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1453                           const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
1454 {
1455 #if defined(MBEDTLS_SELF_TEST)
1456     add_count++;
1457 #endif
1458 
1459 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1460     if( mbedtls_internal_ecp_grp_capable( grp ) )
1461         return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
1462 #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1463 
1464 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1465     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1466 #else
1467     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1468     mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
1469 
1470     /*
1471      * Trivial cases: P == 0 or Q == 0 (case 1)
1472      */
1473     if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
1474         return( mbedtls_ecp_copy( R, Q ) );
1475 
1476     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
1477         return( mbedtls_ecp_copy( R, P ) );
1478 
1479     /*
1480      * Make sure Q coordinates are normalized
1481      */
1482     if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
1483         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1484 
1485     mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
1486     mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
1487 
1488     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1,  &P->Z,  &P->Z ) );
1489     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2,  &T1,    &P->Z ) );
1490     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T1,  &T1,    &Q->X ) );
1491     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T2,  &T2,    &Q->Y ) );
1492     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T1,  &T1,    &P->X ) );
1493     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T2,  &T2,    &P->Y ) );
1494 
1495     /* Special cases (2) and (3) */
1496     if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
1497     {
1498         if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
1499         {
1500             ret = ecp_double_jac( grp, R, P );
1501             goto cleanup;
1502         }
1503         else
1504         {
1505             ret = mbedtls_ecp_set_zero( R );
1506             goto cleanup;
1507         }
1508     }
1509 
1510     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &Z,   &P->Z,  &T1   ) );
1511     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T1,    &T1   ) );
1512     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4,  &T3,    &T1   ) );
1513     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T3,    &P->X ) );
1514     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &T3 ) );
1515     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l_mod( grp, &T1,  1     ) );
1516     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &X,   &T2,    &T2   ) );
1517     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X,   &X,     &T1   ) );
1518     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &X,   &X,     &T4   ) );
1519     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &T3,  &T3,    &X    ) );
1520     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T3,  &T3,    &T2   ) );
1521     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &T4,  &T4,    &P->Y ) );
1522     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &Y,   &T3,    &T4   ) );
1523 
1524     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
1525     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
1526     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
1527 
1528 cleanup:
1529 
1530     mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
1531     mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
1532 
1533     return( ret );
1534 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1535 }
1536 
1537 /*
1538  * Randomize jacobian coordinates:
1539  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1540  * This is sort of the reverse operation of ecp_normalize_jac().
1541  *
1542  * This countermeasure was first suggested in [2].
1543  */
ecp_randomize_jac(const mbedtls_ecp_group * grp,mbedtls_ecp_point * pt,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1544 static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1545                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
1546 {
1547 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1548     if( mbedtls_internal_ecp_grp_capable( grp ) )
1549         return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
1550 #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1551 
1552 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1553     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
1554 #else
1555     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1556     mbedtls_mpi l, ll;
1557 
1558     mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
1559 
1560     /* Generate l such that 1 < l < p */
1561     MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
1562 
1563     /* Z = l * Z */
1564     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Z,   &pt->Z,     &l  ) );
1565 
1566     /* X = l^2 * X */
1567     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll,      &l,         &l  ) );
1568     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->X,   &pt->X,     &ll ) );
1569 
1570     /* Y = l^3 * Y */
1571     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &ll,      &ll,        &l  ) );
1572     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &pt->Y,   &pt->Y,     &ll ) );
1573 
1574 cleanup:
1575     mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
1576 
1577     if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
1578         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1579     return( ret );
1580 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1581 }
1582 
1583 /*
1584  * Check and define parameters used by the comb method (see below for details)
1585  */
1586 #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1587 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1588 #endif
1589 
1590 /* d = ceil( n / w ) */
1591 #define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
1592 
1593 /* number of precomputed points */
1594 #define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
1595 
1596 /*
1597  * Compute the representation of m that will be used with our comb method.
1598  *
1599  * The basic comb method is described in GECC 3.44 for example. We use a
1600  * modified version that provides resistance to SPA by avoiding zero
1601  * digits in the representation as in [3]. We modify the method further by
1602  * requiring that all K_i be odd, which has the small cost that our
1603  * representation uses one more K_i, due to carries, but saves on the size of
1604  * the precomputed table.
1605  *
1606  * Summary of the comb method and its modifications:
1607  *
1608  * - The goal is to compute m*P for some w*d-bit integer m.
1609  *
1610  * - The basic comb method splits m into the w-bit integers
1611  *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1612  *   index has residue i modulo d, and computes m * P as
1613  *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1614  *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1615  *
1616  * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1617  *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1618  *   thereby successively converting it into a form where all summands
1619  *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1620  *
1621  * - More generally, even if x[i+1] != 0, we can first transform the sum as
1622  *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1623  *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1624  *   Performing and iterating this procedure for those x[i] that are even
1625  *   (keeping track of carry), we can transform the original sum into one of the form
1626  *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1627  *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1628  *   which is why we are only computing half of it in the first place in
1629  *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1630  *
1631  * - For the sake of compactness, only the seven low-order bits of x[i]
1632  *   are used to represent its absolute value (K_i in the paper), and the msb
1633  *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1634  *   if s_i == -1;
1635  *
1636  * Calling conventions:
1637  * - x is an array of size d + 1
1638  * - w is the size, ie number of teeth, of the comb, and must be between
1639  *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1640  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1641  *   (the result will be incorrect if these assumptions are not satisfied)
1642  */
ecp_comb_recode_core(unsigned char x[],size_t d,unsigned char w,const mbedtls_mpi * m)1643 static void ecp_comb_recode_core( unsigned char x[], size_t d,
1644                                   unsigned char w, const mbedtls_mpi *m )
1645 {
1646     size_t i, j;
1647     unsigned char c, cc, adjust;
1648 
1649     memset( x, 0, d+1 );
1650 
1651     /* First get the classical comb values (except for x_d = 0) */
1652     for( i = 0; i < d; i++ )
1653         for( j = 0; j < w; j++ )
1654             x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
1655 
1656     /* Now make sure x_1 .. x_d are odd */
1657     c = 0;
1658     for( i = 1; i <= d; i++ )
1659     {
1660         /* Add carry and update it */
1661         cc   = x[i] & c;
1662         x[i] = x[i] ^ c;
1663         c = cc;
1664 
1665         /* Adjust if needed, avoiding branches */
1666         adjust = 1 - ( x[i] & 0x01 );
1667         c   |= x[i] & ( x[i-1] * adjust );
1668         x[i] = x[i] ^ ( x[i-1] * adjust );
1669         x[i-1] |= adjust << 7;
1670     }
1671 }
1672 
1673 /*
1674  * Precompute points for the adapted comb method
1675  *
1676  * Assumption: T must be able to hold 2^{w - 1} elements.
1677  *
1678  * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1679  *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1680  *
1681  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1682  *
1683  * Note: Even comb values (those where P would be omitted from the
1684  *       sum defining T[i] above) are not needed in our adaption
1685  *       the comb method. See ecp_comb_recode_core().
1686  *
1687  * This function currently works in four steps:
1688  * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1689  * (2) [norm_dbl] Normalization of coordinates of these T[i]
1690  * (3) [add]      Computation of all T[i]
1691  * (4) [norm_add] Normalization of all T[i]
1692  *
1693  * Step 1 can be interrupted but not the others; together with the final
1694  * coordinate normalization they are the largest steps done at once, depending
1695  * on the window size. Here are operation counts for P-256:
1696  *
1697  * step     (2)     (3)     (4)
1698  * w = 5    142     165     208
1699  * w = 4    136      77     160
1700  * w = 3    130      33     136
1701  * w = 2    124      11     124
1702  *
1703  * So if ECC operations are blocking for too long even with a low max_ops
1704  * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1705  * to minimize maximum blocking time.
1706  */
ecp_precompute_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point T[],const mbedtls_ecp_point * P,unsigned char w,size_t d,mbedtls_ecp_restart_ctx * rs_ctx)1707 static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
1708                                 mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1709                                 unsigned char w, size_t d,
1710                                 mbedtls_ecp_restart_ctx *rs_ctx )
1711 {
1712     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1713     unsigned char i;
1714     size_t j = 0;
1715     const unsigned char T_size = 1U << ( w - 1 );
1716     mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
1717 
1718 #if defined(MBEDTLS_ECP_RESTARTABLE)
1719     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1720     {
1721         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1722             goto dbl;
1723         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
1724             goto norm_dbl;
1725         if( rs_ctx->rsm->state == ecp_rsm_pre_add )
1726             goto add;
1727         if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
1728             goto norm_add;
1729     }
1730 #else
1731     (void) rs_ctx;
1732 #endif
1733 
1734 #if defined(MBEDTLS_ECP_RESTARTABLE)
1735     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1736     {
1737         rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1738 
1739         /* initial state for the loop */
1740         rs_ctx->rsm->i = 0;
1741     }
1742 
1743 dbl:
1744 #endif
1745     /*
1746      * Set T[0] = P and
1747      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1748      */
1749     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
1750 
1751 #if defined(MBEDTLS_ECP_RESTARTABLE)
1752     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1753         j = rs_ctx->rsm->i;
1754     else
1755 #endif
1756         j = 0;
1757 
1758     for( ; j < d * ( w - 1 ); j++ )
1759     {
1760         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
1761 
1762         i = 1U << ( j / d );
1763         cur = T + i;
1764 
1765         if( j % d == 0 )
1766             MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
1767 
1768         MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
1769     }
1770 
1771 #if defined(MBEDTLS_ECP_RESTARTABLE)
1772     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1773         rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1774 
1775 norm_dbl:
1776 #endif
1777     /*
1778      * Normalize current elements in T. As T has holes,
1779      * use an auxiliary array of pointers to elements in T.
1780      */
1781     j = 0;
1782     for( i = 1; i < T_size; i <<= 1 )
1783         TT[j++] = T + i;
1784 
1785     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1786 
1787     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1788 
1789 #if defined(MBEDTLS_ECP_RESTARTABLE)
1790     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1791         rs_ctx->rsm->state = ecp_rsm_pre_add;
1792 
1793 add:
1794 #endif
1795     /*
1796      * Compute the remaining ones using the minimal number of additions
1797      * Be careful to update T[2^l] only after using it!
1798      */
1799     MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
1800 
1801     for( i = 1; i < T_size; i <<= 1 )
1802     {
1803         j = i;
1804         while( j-- )
1805             MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
1806     }
1807 
1808 #if defined(MBEDTLS_ECP_RESTARTABLE)
1809     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
1810         rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1811 
1812 norm_add:
1813 #endif
1814     /*
1815      * Normalize final elements in T. Even though there are no holes now, we
1816      * still need the auxiliary array for homogeneity with the previous
1817      * call. Also, skip T[0] which is already normalised, being a copy of P.
1818      */
1819     for( j = 0; j + 1 < T_size; j++ )
1820         TT[j] = T + j + 1;
1821 
1822     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
1823 
1824     MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
1825 
1826 cleanup:
1827 #if defined(MBEDTLS_ECP_RESTARTABLE)
1828     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1829         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1830     {
1831         if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
1832             rs_ctx->rsm->i = j;
1833     }
1834 #endif
1835 
1836     return( ret );
1837 }
1838 
1839 /*
1840  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
1841  *
1842  * See ecp_comb_recode_core() for background
1843  */
ecp_select_comb(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,unsigned char i)1844 static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1845                             const mbedtls_ecp_point T[], unsigned char T_size,
1846                             unsigned char i )
1847 {
1848     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1849     unsigned char ii, j;
1850 
1851     /* Ignore the "sign" bit and scale down */
1852     ii =  ( i & 0x7Fu ) >> 1;
1853 
1854     /* Read the whole table to thwart cache-based timing attacks */
1855     for( j = 0; j < T_size; j++ )
1856     {
1857         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
1858         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
1859     }
1860 
1861     /* Safely invert result if i is "negative" */
1862     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
1863 
1864 cleanup:
1865     return( ret );
1866 }
1867 
1868 /*
1869  * Core multiplication algorithm for the (modified) comb method.
1870  * This part is actually common with the basic comb method (GECC 3.44)
1871  *
1872  * Cost: d A + d D + 1 R
1873  */
ecp_mul_comb_core(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_ecp_point T[],unsigned char T_size,const unsigned char x[],size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1874 static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1875                               const mbedtls_ecp_point T[], unsigned char T_size,
1876                               const unsigned char x[], size_t d,
1877                               int (*f_rng)(void *, unsigned char *, size_t),
1878                               void *p_rng,
1879                               mbedtls_ecp_restart_ctx *rs_ctx )
1880 {
1881     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1882     mbedtls_ecp_point Txi;
1883     size_t i;
1884 
1885     mbedtls_ecp_point_init( &Txi );
1886 
1887 #if !defined(MBEDTLS_ECP_RESTARTABLE)
1888     (void) rs_ctx;
1889 #endif
1890 
1891 #if defined(MBEDTLS_ECP_RESTARTABLE)
1892     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1893         rs_ctx->rsm->state != ecp_rsm_comb_core )
1894     {
1895         rs_ctx->rsm->i = 0;
1896         rs_ctx->rsm->state = ecp_rsm_comb_core;
1897     }
1898 
1899     /* new 'if' instead of nested for the sake of the 'else' branch */
1900     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
1901     {
1902         /* restore current index (R already pointing to rs_ctx->rsm->R) */
1903         i = rs_ctx->rsm->i;
1904     }
1905     else
1906 #endif
1907     {
1908         /* Start with a non-zero point and randomize its coordinates */
1909         i = d;
1910         MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
1911         MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
1912         if( f_rng != 0 )
1913             MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
1914     }
1915 
1916     while( i != 0 )
1917     {
1918         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
1919         --i;
1920 
1921         MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
1922         MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
1923         MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
1924     }
1925 
1926 cleanup:
1927 
1928     mbedtls_ecp_point_free( &Txi );
1929 
1930 #if defined(MBEDTLS_ECP_RESTARTABLE)
1931     if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
1932         ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
1933     {
1934         rs_ctx->rsm->i = i;
1935         /* no need to save R, already pointing to rs_ctx->rsm->R */
1936     }
1937 #endif
1938 
1939     return( ret );
1940 }
1941 
1942 /*
1943  * Recode the scalar to get constant-time comb multiplication
1944  *
1945  * As the actual scalar recoding needs an odd scalar as a starting point,
1946  * this wrapper ensures that by replacing m by N - m if necessary, and
1947  * informs the caller that the result of multiplication will be negated.
1948  *
1949  * This works because we only support large prime order for Short Weierstrass
1950  * curves, so N is always odd hence either m or N - m is.
1951  *
1952  * See ecp_comb_recode_core() for background.
1953  */
ecp_comb_recode_scalar(const mbedtls_ecp_group * grp,const mbedtls_mpi * m,unsigned char k[COMB_MAX_D+1],size_t d,unsigned char w,unsigned char * parity_trick)1954 static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
1955                                    const mbedtls_mpi *m,
1956                                    unsigned char k[COMB_MAX_D + 1],
1957                                    size_t d,
1958                                    unsigned char w,
1959                                    unsigned char *parity_trick )
1960 {
1961     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1962     mbedtls_mpi M, mm;
1963 
1964     mbedtls_mpi_init( &M );
1965     mbedtls_mpi_init( &mm );
1966 
1967     /* N is always odd (see above), just make extra sure */
1968     if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
1969         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
1970 
1971     /* do we need the parity trick? */
1972     *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
1973 
1974     /* execute parity fix in constant time */
1975     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
1976     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
1977     MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
1978 
1979     /* actual scalar recoding */
1980     ecp_comb_recode_core( k, d, w, &M );
1981 
1982 cleanup:
1983     mbedtls_mpi_free( &mm );
1984     mbedtls_mpi_free( &M );
1985 
1986     return( ret );
1987 }
1988 
1989 /*
1990  * Perform comb multiplication (for short Weierstrass curves)
1991  * once the auxiliary table has been pre-computed.
1992  *
1993  * Scalar recoding may use a parity trick that makes us compute -m * P,
1994  * if that is the case we'll need to recover m * P at the end.
1995  */
ecp_mul_comb_after_precomp(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * T,unsigned char T_size,unsigned char w,size_t d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)1996 static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
1997                                 mbedtls_ecp_point *R,
1998                                 const mbedtls_mpi *m,
1999                                 const mbedtls_ecp_point *T,
2000                                 unsigned char T_size,
2001                                 unsigned char w,
2002                                 size_t d,
2003                                 int (*f_rng)(void *, unsigned char *, size_t),
2004                                 void *p_rng,
2005                                 mbedtls_ecp_restart_ctx *rs_ctx )
2006 {
2007     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2008     unsigned char parity_trick;
2009     unsigned char k[COMB_MAX_D + 1];
2010     mbedtls_ecp_point *RR = R;
2011 
2012 #if defined(MBEDTLS_ECP_RESTARTABLE)
2013     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2014     {
2015         RR = &rs_ctx->rsm->R;
2016 
2017         if( rs_ctx->rsm->state == ecp_rsm_final_norm )
2018             goto final_norm;
2019     }
2020 #endif
2021 
2022     MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
2023                                             &parity_trick ) );
2024     MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
2025                                         f_rng, p_rng, rs_ctx ) );
2026     MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
2027 
2028 #if defined(MBEDTLS_ECP_RESTARTABLE)
2029     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2030         rs_ctx->rsm->state = ecp_rsm_final_norm;
2031 
2032 final_norm:
2033     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2034 #endif
2035     /*
2036      * Knowledge of the jacobian coordinates may leak the last few bits of the
2037      * scalar [1], and since our MPI implementation isn't constant-flow,
2038      * inversion (used for coordinate normalization) may leak the full value
2039      * of its input via side-channels [2].
2040      *
2041      * [1] https://eprint.iacr.org/2003/191
2042      * [2] https://eprint.iacr.org/2020/055
2043      *
2044      * Avoid the leak by randomizing coordinates before we normalize them.
2045      */
2046     if( f_rng != 0 )
2047         MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, RR, f_rng, p_rng ) );
2048 
2049     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
2050 
2051 #if defined(MBEDTLS_ECP_RESTARTABLE)
2052     if( rs_ctx != NULL && rs_ctx->rsm != NULL )
2053         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
2054 #endif
2055 
2056 cleanup:
2057     return( ret );
2058 }
2059 
2060 /*
2061  * Pick window size based on curve size and whether we optimize for base point
2062  */
ecp_pick_window_size(const mbedtls_ecp_group * grp,unsigned char p_eq_g)2063 static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
2064                                            unsigned char p_eq_g )
2065 {
2066     unsigned char w;
2067 
2068     /*
2069      * Minimize the number of multiplications, that is minimize
2070      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2071      * (see costs of the various parts, with 1S = 1M)
2072      */
2073     w = grp->nbits >= 384 ? 5 : 4;
2074 
2075     /*
2076      * If P == G, pre-compute a bit more, since this may be re-used later.
2077      * Just adding one avoids upping the cost of the first mul too much,
2078      * and the memory cost too.
2079      */
2080     if( p_eq_g )
2081         w++;
2082 
2083     /*
2084      * If static comb table may not be used (!p_eq_g) or static comb table does
2085      * not exists, make sure w is within bounds.
2086      * (The last test is useful only for very small curves in the test suite.)
2087      *
2088      * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2089      * static comb table, because the size of static comb table is fixed when
2090      * it is generated.
2091      */
2092 #if( MBEDTLS_ECP_WINDOW_SIZE < 6 )
2093     if( (!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE )
2094         w = MBEDTLS_ECP_WINDOW_SIZE;
2095 #endif
2096     if( w >= grp->nbits )
2097         w = 2;
2098 
2099     return( w );
2100 }
2101 
2102 /*
2103  * Multiplication using the comb method - for curves in short Weierstrass form
2104  *
2105  * This function is mainly responsible for administrative work:
2106  * - managing the restart context if enabled
2107  * - managing the table of precomputed points (passed between the below two
2108  *   functions): allocation, computation, ownership tranfer, freeing.
2109  *
2110  * It delegates the actual arithmetic work to:
2111  *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2112  *
2113  * See comments on ecp_comb_recode_core() regarding the computation strategy.
2114  */
ecp_mul_comb(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2115 static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2116                          const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2117                          int (*f_rng)(void *, unsigned char *, size_t),
2118                          void *p_rng,
2119                          mbedtls_ecp_restart_ctx *rs_ctx )
2120 {
2121     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2122     unsigned char w, p_eq_g, i;
2123     size_t d;
2124     unsigned char T_size = 0, T_ok = 0;
2125     mbedtls_ecp_point *T = NULL;
2126 
2127     ECP_RS_ENTER( rsm );
2128 
2129     /* Is P the base point ? */
2130 #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2131     p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
2132                mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
2133 #else
2134     p_eq_g = 0;
2135 #endif
2136 
2137     /* Pick window size and deduce related sizes */
2138     w = ecp_pick_window_size( grp, p_eq_g );
2139     T_size = 1U << ( w - 1 );
2140     d = ( grp->nbits + w - 1 ) / w;
2141 
2142     /* Pre-computed table: do we have it already for the base point? */
2143     if( p_eq_g && grp->T != NULL )
2144     {
2145         /* second pointer to the same table, will be deleted on exit */
2146         T = grp->T;
2147         T_ok = 1;
2148     }
2149     else
2150 #if defined(MBEDTLS_ECP_RESTARTABLE)
2151     /* Pre-computed table: do we have one in progress? complete? */
2152     if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
2153     {
2154         /* transfer ownership of T from rsm to local function */
2155         T = rs_ctx->rsm->T;
2156         rs_ctx->rsm->T = NULL;
2157         rs_ctx->rsm->T_size = 0;
2158 
2159         /* This effectively jumps to the call to mul_comb_after_precomp() */
2160         T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2161     }
2162     else
2163 #endif
2164     /* Allocate table if we didn't have any */
2165     {
2166         T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
2167         if( T == NULL )
2168         {
2169             ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2170             goto cleanup;
2171         }
2172 
2173         for( i = 0; i < T_size; i++ )
2174             mbedtls_ecp_point_init( &T[i] );
2175 
2176         T_ok = 0;
2177     }
2178 
2179     /* Compute table (or finish computing it) if not done already */
2180     if( !T_ok )
2181     {
2182         MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
2183 
2184         if( p_eq_g )
2185         {
2186             /* almost transfer ownership of T to the group, but keep a copy of
2187              * the pointer to use for calling the next function more easily */
2188             grp->T = T;
2189             grp->T_size = T_size;
2190         }
2191     }
2192 
2193     /* Actual comb multiplication using precomputed points */
2194     MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
2195                                                  T, T_size, w, d,
2196                                                  f_rng, p_rng, rs_ctx ) );
2197 
2198 cleanup:
2199 
2200     /* does T belong to the group? */
2201     if( T == grp->T )
2202         T = NULL;
2203 
2204     /* does T belong to the restart context? */
2205 #if defined(MBEDTLS_ECP_RESTARTABLE)
2206     if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
2207     {
2208         /* transfer ownership of T from local function to rsm */
2209         rs_ctx->rsm->T_size = T_size;
2210         rs_ctx->rsm->T = T;
2211         T = NULL;
2212     }
2213 #endif
2214 
2215     /* did T belong to us? then let's destroy it! */
2216     if( T != NULL )
2217     {
2218         for( i = 0; i < T_size; i++ )
2219             mbedtls_ecp_point_free( &T[i] );
2220         mbedtls_free( T );
2221     }
2222 
2223     /* don't free R while in progress in case R == P */
2224 #if defined(MBEDTLS_ECP_RESTARTABLE)
2225     if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
2226 #endif
2227     /* prevent caller from using invalid value */
2228     if( ret != 0 )
2229         mbedtls_ecp_point_free( R );
2230 
2231     ECP_RS_LEAVE( rsm );
2232 
2233     return( ret );
2234 }
2235 
2236 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2237 
2238 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2239 /*
2240  * For Montgomery curves, we do all the internal arithmetic in projective
2241  * coordinates. Import/export of points uses only the x coordinates, which is
2242  * internaly represented as X / Z.
2243  *
2244  * For scalar multiplication, we'll use a Montgomery ladder.
2245  */
2246 
2247 /*
2248  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2249  * Cost: 1M + 1I
2250  */
ecp_normalize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P)2251 static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
2252 {
2253 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2254     if( mbedtls_internal_ecp_grp_capable( grp ) )
2255         return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
2256 #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2257 
2258 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2259     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2260 #else
2261     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2262     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
2263     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &P->Z ) );
2264     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
2265 
2266 cleanup:
2267     return( ret );
2268 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2269 }
2270 
2271 /*
2272  * Randomize projective x/z coordinates:
2273  * (X, Z) -> (l X, l Z) for random l
2274  * This is sort of the reverse operation of ecp_normalize_mxz().
2275  *
2276  * This countermeasure was first suggested in [2].
2277  * Cost: 2M
2278  */
ecp_randomize_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2279 static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2280                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2281 {
2282 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2283     if( mbedtls_internal_ecp_grp_capable( grp ) )
2284         return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng ) );
2285 #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2286 
2287 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2288     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2289 #else
2290     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2291     mbedtls_mpi l;
2292     mbedtls_mpi_init( &l );
2293 
2294     /* Generate l such that 1 < l < p */
2295     MBEDTLS_MPI_CHK( mbedtls_mpi_random( &l, 2, &grp->P, f_rng, p_rng ) );
2296 
2297     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->X, &P->X, &l ) );
2298     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &P->Z, &P->Z, &l ) );
2299 
2300 cleanup:
2301     mbedtls_mpi_free( &l );
2302 
2303     if( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
2304         ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2305     return( ret );
2306 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2307 }
2308 
2309 /*
2310  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2311  * for Montgomery curves in x/z coordinates.
2312  *
2313  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2314  * with
2315  * d =  X1
2316  * P = (X2, Z2)
2317  * Q = (X3, Z3)
2318  * R = (X4, Z4)
2319  * S = (X5, Z5)
2320  * and eliminating temporary variables tO, ..., t4.
2321  *
2322  * Cost: 5M + 4S
2323  */
ecp_double_add_mxz(const mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_ecp_point * S,const mbedtls_ecp_point * P,const mbedtls_ecp_point * Q,const mbedtls_mpi * d)2324 static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
2325                                mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2326                                const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2327                                const mbedtls_mpi *d )
2328 {
2329 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2330     if( mbedtls_internal_ecp_grp_capable( grp ) )
2331         return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
2332 #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2333 
2334 #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2335     return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2336 #else
2337     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2338     mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
2339 
2340     mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
2341     mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
2342     mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
2343 
2344     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &A,    &P->X,   &P->Z ) );
2345     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &AA,   &A,      &A    ) );
2346     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &B,    &P->X,   &P->Z ) );
2347     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &BB,   &B,      &B    ) );
2348     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &E,    &AA,     &BB   ) );
2349     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &C,    &Q->X,   &Q->Z ) );
2350     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &D,    &Q->X,   &Q->Z ) );
2351     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &DA,   &D,      &A    ) );
2352     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &CB,   &C,      &B    ) );
2353     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &S->X, &DA,     &CB   ) );
2354     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->X, &S->X,   &S->X ) );
2355     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mod( grp, &S->Z, &DA,     &CB   ) );
2356     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, &S->Z,   &S->Z ) );
2357     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &S->Z, d,       &S->Z ) );
2358     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->X, &AA,     &BB   ) );
2359     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &grp->A, &E    ) );
2360     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &R->Z, &BB,     &R->Z ) );
2361     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &R->Z, &E,      &R->Z ) );
2362 
2363 cleanup:
2364     mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
2365     mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
2366     mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
2367 
2368     return( ret );
2369 #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2370 }
2371 
2372 /*
2373  * Multiplication with Montgomery ladder in x/z coordinates,
2374  * for curves in Montgomery form
2375  */
ecp_mul_mxz(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2376 static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2377                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2378                         int (*f_rng)(void *, unsigned char *, size_t),
2379                         void *p_rng )
2380 {
2381     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2382     size_t i;
2383     unsigned char b;
2384     mbedtls_ecp_point RP;
2385     mbedtls_mpi PX;
2386     mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
2387 
2388     if( f_rng == NULL )
2389         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2390 
2391     /* Save PX and read from P before writing to R, in case P == R */
2392     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
2393     MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
2394 
2395     /* Set R to zero in modified x/z coordinates */
2396     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
2397     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
2398     mbedtls_mpi_free( &R->Y );
2399 
2400     /* RP.X might be sligtly larger than P, so reduce it */
2401     MOD_ADD( RP.X );
2402 
2403     /* Randomize coordinates of the starting point */
2404     MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
2405 
2406     /* Loop invariant: R = result so far, RP = R + P */
2407     i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
2408     while( i-- > 0 )
2409     {
2410         b = mbedtls_mpi_get_bit( m, i );
2411         /*
2412          *  if (b) R = 2R + P else R = 2R,
2413          * which is:
2414          *  if (b) double_add( RP, R, RP, R )
2415          *  else   double_add( R, RP, R, RP )
2416          * but using safe conditional swaps to avoid leaks
2417          */
2418         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2419         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2420         MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
2421         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
2422         MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
2423     }
2424 
2425     /*
2426      * Knowledge of the projective coordinates may leak the last few bits of the
2427      * scalar [1], and since our MPI implementation isn't constant-flow,
2428      * inversion (used for coordinate normalization) may leak the full value
2429      * of its input via side-channels [2].
2430      *
2431      * [1] https://eprint.iacr.org/2003/191
2432      * [2] https://eprint.iacr.org/2020/055
2433      *
2434      * Avoid the leak by randomizing coordinates before we normalize them.
2435      */
2436     MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, R, f_rng, p_rng ) );
2437     MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
2438 
2439 cleanup:
2440     mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
2441 
2442     return( ret );
2443 }
2444 
2445 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2446 
2447 /*
2448  * Restartable multiplication R = m * P
2449  *
2450  * This internal function can be called without an RNG in case where we know
2451  * the inputs are not sensitive.
2452  */
ecp_mul_restartable_internal(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2453 static int ecp_mul_restartable_internal( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2454              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2455              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2456              mbedtls_ecp_restart_ctx *rs_ctx )
2457 {
2458     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2459 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2460     char is_grp_capable = 0;
2461 #endif
2462 
2463 #if defined(MBEDTLS_ECP_RESTARTABLE)
2464     /* reset ops count for this call if top-level */
2465     if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
2466         rs_ctx->ops_done = 0;
2467 #else
2468     (void) rs_ctx;
2469 #endif
2470 
2471 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2472     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2473         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2474 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2475 
2476 #if defined(MBEDTLS_ECP_RESTARTABLE)
2477     /* skip argument check when restarting */
2478     if( rs_ctx == NULL || rs_ctx->rsm == NULL )
2479 #endif
2480     {
2481         /* check_privkey is free */
2482         MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
2483 
2484         /* Common sanity checks */
2485         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
2486         MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
2487     }
2488 
2489     ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2490 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2491     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2492         MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
2493 #endif
2494 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2495     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2496         MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2497 #endif
2498 
2499 cleanup:
2500 
2501 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2502     if( is_grp_capable )
2503         mbedtls_internal_ecp_free( grp );
2504 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2505 
2506 #if defined(MBEDTLS_ECP_RESTARTABLE)
2507     if( rs_ctx != NULL )
2508         rs_ctx->depth--;
2509 #endif
2510 
2511     return( ret );
2512 }
2513 
2514 /*
2515  * Restartable multiplication R = m * P
2516  */
2517 #if !defined(MBEDTLS_ECP_MUL_ALT)
mbedtls_ecp_mul_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_ecp_restart_ctx * rs_ctx)2518 int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2519              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2520              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2521              mbedtls_ecp_restart_ctx *rs_ctx )
2522 {
2523     ECP_VALIDATE_RET( grp != NULL );
2524     ECP_VALIDATE_RET( R   != NULL );
2525     ECP_VALIDATE_RET( m   != NULL );
2526     ECP_VALIDATE_RET( P   != NULL );
2527 
2528     if( f_rng == NULL )
2529         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2530 
2531     return( ecp_mul_restartable_internal( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
2532 }
2533 #endif  /* MBEDTLS_ECP_MUL_ALT */
2534 
2535 /*
2536  * Multiplication R = m * P
2537  */
mbedtls_ecp_mul(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2538 int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2539              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2540              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2541 {
2542     ECP_VALIDATE_RET( grp != NULL );
2543     ECP_VALIDATE_RET( R   != NULL );
2544     ECP_VALIDATE_RET( m   != NULL );
2545     ECP_VALIDATE_RET( P   != NULL );
2546     return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
2547 }
2548 
2549 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2550 /*
2551  * Check that an affine point is valid as a public key,
2552  * short weierstrass curves (SEC1 3.2.3.1)
2553  */
ecp_check_pubkey_sw(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2554 static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2555 {
2556     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2557     mbedtls_mpi YY, RHS;
2558 
2559     /* pt coordinates must be normalized for our checks */
2560     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
2561         mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
2562         mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
2563         mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
2564         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2565 
2566     mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
2567 
2568     /*
2569      * YY = Y^2
2570      * RHS = X (X^2 + A) + B = X^3 + A X + B
2571      */
2572     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &YY,  &pt->Y,   &pt->Y  ) );
2573     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &pt->X,   &pt->X  ) );
2574 
2575     /* Special case for A = -3 */
2576     if( grp->A.p == NULL )
2577     {
2578         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
2579     }
2580     else
2581     {
2582         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS, &grp->A ) );
2583     }
2584 
2585     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mod( grp, &RHS, &RHS,     &pt->X  ) );
2586     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mod( grp, &RHS, &RHS,     &grp->B ) );
2587 
2588     if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
2589         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2590 
2591 cleanup:
2592 
2593     mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
2594 
2595     return( ret );
2596 }
2597 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2598 
2599 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2600 /*
2601  * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2602  * NOT constant-time - ONLY for short Weierstrass!
2603  */
mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,mbedtls_ecp_restart_ctx * rs_ctx)2604 static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
2605                                       mbedtls_ecp_point *R,
2606                                       const mbedtls_mpi *m,
2607                                       const mbedtls_ecp_point *P,
2608                                       mbedtls_ecp_restart_ctx *rs_ctx )
2609 {
2610     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2611 
2612     if( mbedtls_mpi_cmp_int( m, 0 ) == 0 )
2613     {
2614         MBEDTLS_MPI_CHK( mbedtls_ecp_set_zero( R ) );
2615     }
2616     else if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
2617     {
2618         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2619     }
2620     else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
2621     {
2622         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
2623         if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
2624             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
2625     }
2626     else
2627     {
2628         MBEDTLS_MPI_CHK( ecp_mul_restartable_internal( grp, R, m, P,
2629                                                        NULL, NULL, rs_ctx ) );
2630     }
2631 
2632 cleanup:
2633     return( ret );
2634 }
2635 
2636 /*
2637  * Restartable linear combination
2638  * NOT constant-time
2639  */
mbedtls_ecp_muladd_restartable(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q,mbedtls_ecp_restart_ctx * rs_ctx)2640 int mbedtls_ecp_muladd_restartable(
2641              mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2642              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2643              const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2644              mbedtls_ecp_restart_ctx *rs_ctx )
2645 {
2646     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2647     mbedtls_ecp_point mP;
2648     mbedtls_ecp_point *pmP = &mP;
2649     mbedtls_ecp_point *pR = R;
2650 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2651     char is_grp_capable = 0;
2652 #endif
2653     ECP_VALIDATE_RET( grp != NULL );
2654     ECP_VALIDATE_RET( R   != NULL );
2655     ECP_VALIDATE_RET( m   != NULL );
2656     ECP_VALIDATE_RET( P   != NULL );
2657     ECP_VALIDATE_RET( n   != NULL );
2658     ECP_VALIDATE_RET( Q   != NULL );
2659 
2660     if( mbedtls_ecp_get_type( grp ) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2661         return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
2662 
2663     mbedtls_ecp_point_init( &mP );
2664 
2665     ECP_RS_ENTER( ma );
2666 
2667 #if defined(MBEDTLS_ECP_RESTARTABLE)
2668     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2669     {
2670         /* redirect intermediate results to restart context */
2671         pmP = &rs_ctx->ma->mP;
2672         pR  = &rs_ctx->ma->R;
2673 
2674         /* jump to next operation */
2675         if( rs_ctx->ma->state == ecp_rsma_mul2 )
2676             goto mul2;
2677         if( rs_ctx->ma->state == ecp_rsma_add )
2678             goto add;
2679         if( rs_ctx->ma->state == ecp_rsma_norm )
2680             goto norm;
2681     }
2682 #endif /* MBEDTLS_ECP_RESTARTABLE */
2683 
2684     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
2685 #if defined(MBEDTLS_ECP_RESTARTABLE)
2686     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2687         rs_ctx->ma->state = ecp_rsma_mul2;
2688 
2689 mul2:
2690 #endif
2691     MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR,  n, Q, rs_ctx ) );
2692 
2693 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2694     if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
2695         MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
2696 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2697 
2698 #if defined(MBEDTLS_ECP_RESTARTABLE)
2699     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2700         rs_ctx->ma->state = ecp_rsma_add;
2701 
2702 add:
2703 #endif
2704     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
2705     MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
2706 #if defined(MBEDTLS_ECP_RESTARTABLE)
2707     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2708         rs_ctx->ma->state = ecp_rsma_norm;
2709 
2710 norm:
2711 #endif
2712     MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
2713     MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
2714 
2715 #if defined(MBEDTLS_ECP_RESTARTABLE)
2716     if( rs_ctx != NULL && rs_ctx->ma != NULL )
2717         MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
2718 #endif
2719 
2720 cleanup:
2721 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
2722     if( is_grp_capable )
2723         mbedtls_internal_ecp_free( grp );
2724 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
2725 
2726     mbedtls_ecp_point_free( &mP );
2727 
2728     ECP_RS_LEAVE( ma );
2729 
2730     return( ret );
2731 }
2732 
2733 /*
2734  * Linear combination
2735  * NOT constant-time
2736  */
mbedtls_ecp_muladd(mbedtls_ecp_group * grp,mbedtls_ecp_point * R,const mbedtls_mpi * m,const mbedtls_ecp_point * P,const mbedtls_mpi * n,const mbedtls_ecp_point * Q)2737 int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2738              const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2739              const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
2740 {
2741     ECP_VALIDATE_RET( grp != NULL );
2742     ECP_VALIDATE_RET( R   != NULL );
2743     ECP_VALIDATE_RET( m   != NULL );
2744     ECP_VALIDATE_RET( P   != NULL );
2745     ECP_VALIDATE_RET( n   != NULL );
2746     ECP_VALIDATE_RET( Q   != NULL );
2747     return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
2748 }
2749 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2750 
2751 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2752 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2753 #define ECP_MPI_INIT(s, n, p) {s, (n), (mbedtls_mpi_uint *)(p)}
2754 #define ECP_MPI_INIT_ARRAY(x)   \
2755     ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x)
2756 /*
2757  * Constants for the two points other than 0, 1, -1 (mod p) in
2758  * https://cr.yp.to/ecdh.html#validate
2759  * See ecp_check_pubkey_x25519().
2760  */
2761 static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2762     MBEDTLS_BYTES_TO_T_UINT_8( 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae ),
2763     MBEDTLS_BYTES_TO_T_UINT_8( 0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a ),
2764     MBEDTLS_BYTES_TO_T_UINT_8( 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd ),
2765     MBEDTLS_BYTES_TO_T_UINT_8( 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00 ),
2766 };
2767 static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2768     MBEDTLS_BYTES_TO_T_UINT_8( 0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24 ),
2769     MBEDTLS_BYTES_TO_T_UINT_8( 0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b ),
2770     MBEDTLS_BYTES_TO_T_UINT_8( 0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86 ),
2771     MBEDTLS_BYTES_TO_T_UINT_8( 0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57 ),
2772 };
2773 static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2774         x25519_bad_point_1 );
2775 static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2776         x25519_bad_point_2 );
2777 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2778 
2779 /*
2780  * Check that the input point is not one of the low-order points.
2781  * This is recommended by the "May the Fourth" paper:
2782  * https://eprint.iacr.org/2017/806.pdf
2783  * Those points are never sent by an honest peer.
2784  */
ecp_check_bad_points_mx(const mbedtls_mpi * X,const mbedtls_mpi * P,const mbedtls_ecp_group_id grp_id)2785 static int ecp_check_bad_points_mx( const mbedtls_mpi *X, const mbedtls_mpi *P,
2786                                     const mbedtls_ecp_group_id grp_id )
2787 {
2788     int ret;
2789     mbedtls_mpi XmP;
2790 
2791     mbedtls_mpi_init( &XmP );
2792 
2793     /* Reduce X mod P so that we only need to check values less than P.
2794      * We know X < 2^256 so we can proceed by subtraction. */
2795     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &XmP, X ) );
2796     while( mbedtls_mpi_cmp_mpi( &XmP, P ) >= 0 )
2797         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &XmP, &XmP, P ) );
2798 
2799     /* Check against the known bad values that are less than P. For Curve448
2800      * these are 0, 1 and -1. For Curve25519 we check the values less than P
2801      * from the following list: https://cr.yp.to/ecdh.html#validate */
2802     if( mbedtls_mpi_cmp_int( &XmP, 1 ) <= 0 ) /* takes care of 0 and 1 */
2803     {
2804         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2805         goto cleanup;
2806     }
2807 
2808 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2809     if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
2810     {
2811         if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_1 ) == 0 )
2812         {
2813             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2814             goto cleanup;
2815         }
2816 
2817         if( mbedtls_mpi_cmp_mpi( &XmP, &ecp_x25519_bad_point_2 ) == 0 )
2818         {
2819             ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2820             goto cleanup;
2821         }
2822     }
2823 #else
2824     (void) grp_id;
2825 #endif
2826 
2827     /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2828     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &XmP, &XmP, 1 ) );
2829     if( mbedtls_mpi_cmp_mpi( &XmP, P ) == 0 )
2830     {
2831         ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2832         goto cleanup;
2833     }
2834 
2835     ret = 0;
2836 
2837 cleanup:
2838     mbedtls_mpi_free( &XmP );
2839 
2840     return( ret );
2841 }
2842 
2843 /*
2844  * Check validity of a public key for Montgomery curves with x-only schemes
2845  */
ecp_check_pubkey_mx(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2846 static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
2847 {
2848     /* [Curve25519 p. 5] Just check X is the correct number of bytes */
2849     /* Allow any public value, if it's too big then we'll just reduce it mod p
2850      * (RFC 7748 sec. 5 para. 3). */
2851     if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
2852         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2853 
2854     /* Implicit in all standards (as they don't consider negative numbers):
2855      * X must be non-negative. This is normally ensured by the way it's
2856      * encoded for transmission, but let's be extra sure. */
2857     if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 )
2858         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2859 
2860     return( ecp_check_bad_points_mx( &pt->X, &grp->P, grp->id ) );
2861 }
2862 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2863 
2864 /*
2865  * Check that a point is valid as a public key
2866  */
mbedtls_ecp_check_pubkey(const mbedtls_ecp_group * grp,const mbedtls_ecp_point * pt)2867 int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
2868                               const mbedtls_ecp_point *pt )
2869 {
2870     ECP_VALIDATE_RET( grp != NULL );
2871     ECP_VALIDATE_RET( pt  != NULL );
2872 
2873     /* Must use affine coordinates */
2874     if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
2875         return( MBEDTLS_ERR_ECP_INVALID_KEY );
2876 
2877 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2878     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2879         return( ecp_check_pubkey_mx( grp, pt ) );
2880 #endif
2881 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2882     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2883         return( ecp_check_pubkey_sw( grp, pt ) );
2884 #endif
2885     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2886 }
2887 
2888 /*
2889  * Check that an mbedtls_mpi is valid as a private key
2890  */
mbedtls_ecp_check_privkey(const mbedtls_ecp_group * grp,const mbedtls_mpi * d)2891 int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
2892                                const mbedtls_mpi *d )
2893 {
2894     ECP_VALIDATE_RET( grp != NULL );
2895     ECP_VALIDATE_RET( d   != NULL );
2896 
2897 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2898     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2899     {
2900         /* see RFC 7748 sec. 5 para. 5 */
2901         if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
2902             mbedtls_mpi_get_bit( d, 1 ) != 0 ||
2903             mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
2904             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2905 
2906         /* see [Curve25519] page 5 */
2907         if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
2908             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2909 
2910         return( 0 );
2911     }
2912 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2913 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2914     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2915     {
2916         /* see SEC1 3.2 */
2917         if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
2918             mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
2919             return( MBEDTLS_ERR_ECP_INVALID_KEY );
2920         else
2921             return( 0 );
2922     }
2923 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2924 
2925     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
2926 }
2927 
2928 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2929 MBEDTLS_STATIC_TESTABLE
mbedtls_ecp_gen_privkey_mx(size_t high_bit,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2930 int mbedtls_ecp_gen_privkey_mx( size_t high_bit,
2931                                 mbedtls_mpi *d,
2932                                 int (*f_rng)(void *, unsigned char *, size_t),
2933                                 void *p_rng )
2934 {
2935     int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2936     size_t n_random_bytes = high_bit / 8 + 1;
2937 
2938     /* [Curve25519] page 5 */
2939     /* Generate a (high_bit+1)-bit random number by generating just enough
2940      * random bytes, then shifting out extra bits from the top (necessary
2941      * when (high_bit+1) is not a multiple of 8). */
2942     MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_random_bytes,
2943                                               f_rng, p_rng ) );
2944     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_random_bytes - high_bit - 1 ) );
2945 
2946     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, high_bit, 1 ) );
2947 
2948     /* Make sure the last two bits are unset for Curve448, three bits for
2949        Curve25519 */
2950     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
2951     MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
2952     if( high_bit == 254 )
2953     {
2954         MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
2955     }
2956 
2957 cleanup:
2958     return( ret );
2959 }
2960 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2961 
2962 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
mbedtls_ecp_gen_privkey_sw(const mbedtls_mpi * N,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2963 static int mbedtls_ecp_gen_privkey_sw(
2964     const mbedtls_mpi *N, mbedtls_mpi *d,
2965     int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
2966 {
2967     int ret = mbedtls_mpi_random( d, 1, N, f_rng, p_rng );
2968     switch( ret )
2969     {
2970         case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
2971             return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
2972         default:
2973             return( ret );
2974     }
2975 }
2976 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2977 
2978 /*
2979  * Generate a private key
2980  */
mbedtls_ecp_gen_privkey(const mbedtls_ecp_group * grp,mbedtls_mpi * d,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)2981 int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
2982                      mbedtls_mpi *d,
2983                      int (*f_rng)(void *, unsigned char *, size_t),
2984                      void *p_rng )
2985 {
2986     ECP_VALIDATE_RET( grp   != NULL );
2987     ECP_VALIDATE_RET( d     != NULL );
2988     ECP_VALIDATE_RET( f_rng != NULL );
2989 
2990 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2991     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
2992         return( mbedtls_ecp_gen_privkey_mx( grp->nbits, d, f_rng, p_rng ) );
2993 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2994 
2995 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2996     if( mbedtls_ecp_get_type( grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
2997         return( mbedtls_ecp_gen_privkey_sw( &grp->N, d, f_rng, p_rng ) );
2998 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2999 
3000     return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3001 }
3002 
3003 /*
3004  * Generate a keypair with configurable base point
3005  */
3006 #if !defined(MBEDTLS_ECC_GEN_KEY_ALT)
mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group * grp,const mbedtls_ecp_point * G,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3007 int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
3008                      const mbedtls_ecp_point *G,
3009                      mbedtls_mpi *d, mbedtls_ecp_point *Q,
3010                      int (*f_rng)(void *, unsigned char *, size_t),
3011                      void *p_rng )
3012 {
3013     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3014     ECP_VALIDATE_RET( grp   != NULL );
3015     ECP_VALIDATE_RET( d     != NULL );
3016     ECP_VALIDATE_RET( G     != NULL );
3017     ECP_VALIDATE_RET( Q     != NULL );
3018     ECP_VALIDATE_RET( f_rng != NULL );
3019 
3020     MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
3021     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
3022 
3023 cleanup:
3024     return( ret );
3025 }
3026 
3027 /*
3028  * Generate key pair, wrapper for conventional base point
3029  */
mbedtls_ecp_gen_keypair(mbedtls_ecp_group * grp,mbedtls_mpi * d,mbedtls_ecp_point * Q,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3030 int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
3031                              mbedtls_mpi *d, mbedtls_ecp_point *Q,
3032                              int (*f_rng)(void *, unsigned char *, size_t),
3033                              void *p_rng )
3034 {
3035     ECP_VALIDATE_RET( grp   != NULL );
3036     ECP_VALIDATE_RET( d     != NULL );
3037     ECP_VALIDATE_RET( Q     != NULL );
3038     ECP_VALIDATE_RET( f_rng != NULL );
3039 
3040     return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
3041 }
3042 #endif /* !MBEDTLS_ECC_GEN_KEY_ALT */
3043 /*
3044  * Generate a keypair, prettier wrapper
3045  */
mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3046 int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3047                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3048 {
3049     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3050     ECP_VALIDATE_RET( key   != NULL );
3051     ECP_VALIDATE_RET( f_rng != NULL );
3052 
3053     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3054         return( ret );
3055 
3056     return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
3057 }
3058 
3059 #define ECP_CURVE25519_KEY_SIZE 32
3060 #define ECP_CURVE448_KEY_SIZE   56
3061 /*
3062  * Read a private key.
3063  */
mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id,mbedtls_ecp_keypair * key,const unsigned char * buf,size_t buflen)3064 int mbedtls_ecp_read_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3065                           const unsigned char *buf, size_t buflen )
3066 {
3067     int ret = 0;
3068 
3069     ECP_VALIDATE_RET( key  != NULL );
3070     ECP_VALIDATE_RET( buf  != NULL );
3071 
3072     if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
3073         return( ret );
3074 
3075     ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3076 
3077 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3078     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3079     {
3080         /*
3081          * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3082          */
3083         if( grp_id == MBEDTLS_ECP_DP_CURVE25519 )
3084         {
3085             if( buflen != ECP_CURVE25519_KEY_SIZE )
3086                 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3087 
3088             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3089 
3090             /* Set the three least significant bits to 0 */
3091             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3092             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3093             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 2, 0 ) );
3094 
3095             /* Set the most significant bit to 0 */
3096             MBEDTLS_MPI_CHK(
3097                     mbedtls_mpi_set_bit( &key->d,
3098                                          ECP_CURVE25519_KEY_SIZE * 8 - 1, 0 )
3099                     );
3100 
3101             /* Set the second most significant bit to 1 */
3102             MBEDTLS_MPI_CHK(
3103                     mbedtls_mpi_set_bit( &key->d,
3104                                          ECP_CURVE25519_KEY_SIZE * 8 - 2, 1 )
3105                     );
3106         }
3107         else if( grp_id == MBEDTLS_ECP_DP_CURVE448 )
3108         {
3109             if( buflen != ECP_CURVE448_KEY_SIZE )
3110                 return( MBEDTLS_ERR_ECP_INVALID_KEY );
3111 
3112             MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary_le( &key->d, buf, buflen ) );
3113 
3114             /* Set the two least significant bits to 0 */
3115             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 0, 0 ) );
3116             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &key->d, 1, 0 ) );
3117 
3118             /* Set the most significant bit to 1 */
3119             MBEDTLS_MPI_CHK(
3120                     mbedtls_mpi_set_bit( &key->d,
3121                                          ECP_CURVE448_KEY_SIZE * 8 - 1, 1 )
3122                     );
3123         }
3124     }
3125 
3126 #endif
3127 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3128     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3129     {
3130         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &key->d, buf, buflen ) );
3131 
3132         MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( &key->grp, &key->d ) );
3133     }
3134 
3135 #endif
3136 cleanup:
3137 
3138     if( ret != 0 )
3139         mbedtls_mpi_free( &key->d );
3140 
3141     return( ret );
3142 }
3143 
3144 /*
3145  * Write a private key.
3146  */
mbedtls_ecp_write_key(mbedtls_ecp_keypair * key,unsigned char * buf,size_t buflen)3147 int mbedtls_ecp_write_key( mbedtls_ecp_keypair *key,
3148                            unsigned char *buf, size_t buflen )
3149 {
3150     int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3151 
3152     ECP_VALIDATE_RET( key != NULL );
3153     ECP_VALIDATE_RET( buf != NULL );
3154 
3155 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3156     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_MONTGOMERY )
3157     {
3158         if( key->grp.id == MBEDTLS_ECP_DP_CURVE25519 )
3159         {
3160             if( buflen < ECP_CURVE25519_KEY_SIZE )
3161                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3162 
3163         }
3164         else if( key->grp.id == MBEDTLS_ECP_DP_CURVE448 )
3165         {
3166             if( buflen < ECP_CURVE448_KEY_SIZE )
3167                 return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
3168         }
3169         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary_le( &key->d, buf, buflen ) );
3170     }
3171 #endif
3172 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3173     if( mbedtls_ecp_get_type( &key->grp ) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS )
3174     {
3175         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &key->d, buf, buflen ) );
3176     }
3177 
3178 #endif
3179 cleanup:
3180 
3181     return( ret );
3182 }
3183 
3184 
3185 /*
3186  * Check a public-private key pair
3187  */
mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair * pub,const mbedtls_ecp_keypair * prv,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)3188 int mbedtls_ecp_check_pub_priv(
3189         const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3190         int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
3191 {
3192     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193     mbedtls_ecp_point Q;
3194     mbedtls_ecp_group grp;
3195     ECP_VALIDATE_RET( pub != NULL );
3196     ECP_VALIDATE_RET( prv != NULL );
3197 
3198     if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3199         pub->grp.id != prv->grp.id ||
3200         mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
3201         mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
3202         mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
3203     {
3204         return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
3205     }
3206 
3207     mbedtls_ecp_point_init( &Q );
3208     mbedtls_ecp_group_init( &grp );
3209 
3210     /* mbedtls_ecp_mul() needs a non-const group... */
3211     mbedtls_ecp_group_copy( &grp, &prv->grp );
3212 
3213     /* Also checks d is valid */
3214     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng ) );
3215 
3216     if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
3217         mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
3218         mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
3219     {
3220         ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3221         goto cleanup;
3222     }
3223 
3224 cleanup:
3225     mbedtls_ecp_point_free( &Q );
3226     mbedtls_ecp_group_free( &grp );
3227 
3228     return( ret );
3229 }
3230 
3231 #if defined(MBEDTLS_SELF_TEST)
3232 
3233 /*
3234  * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3235  *
3236  * This is the linear congruential generator from numerical recipes,
3237  * except we only use the low byte as the output. See
3238  * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3239  */
self_test_rng(void * ctx,unsigned char * out,size_t len)3240 static int self_test_rng( void *ctx, unsigned char *out, size_t len )
3241 {
3242     static uint32_t state = 42;
3243     size_t i;
3244 
3245     (void) ctx;
3246 
3247     for( i = 0; i < len; i++ )
3248     {
3249         state = state * 1664525u + 1013904223u;
3250         out[i] = (unsigned char) state;
3251     }
3252 
3253     return( 0 );
3254 }
3255 
3256 /* Adjust the exponent to be a valid private point for the specified curve.
3257  * This is sometimes necessary because we use a single set of exponents
3258  * for all curves but the validity of values depends on the curve. */
self_test_adjust_exponent(const mbedtls_ecp_group * grp,mbedtls_mpi * m)3259 static int self_test_adjust_exponent( const mbedtls_ecp_group *grp,
3260                                       mbedtls_mpi *m )
3261 {
3262     int ret = 0;
3263     switch( grp->id )
3264     {
3265         /* If Curve25519 is available, then that's what we use for the
3266          * Montgomery test, so we don't need the adjustment code. */
3267 #if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3268 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3269         case MBEDTLS_ECP_DP_CURVE448:
3270             /* Move highest bit from 254 to N-1. Setting bit N-1 is
3271              * necessary to enforce the highest-bit-set constraint. */
3272             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, 254, 0 ) );
3273             MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( m, grp->nbits, 1 ) );
3274             /* Copy second-highest bit from 253 to N-2. This is not
3275              * necessary but improves the test variety a bit. */
3276             MBEDTLS_MPI_CHK(
3277                 mbedtls_mpi_set_bit( m, grp->nbits - 1,
3278                                      mbedtls_mpi_get_bit( m, 253 ) ) );
3279             break;
3280 #endif
3281 #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3282         default:
3283             /* Non-Montgomery curves and Curve25519 need no adjustment. */
3284             (void) grp;
3285             (void) m;
3286             goto cleanup;
3287     }
3288 cleanup:
3289     return( ret );
3290 }
3291 
3292 /* Calculate R = m.P for each m in exponents. Check that the number of
3293  * basic operations doesn't depend on the value of m. */
self_test_point(int verbose,mbedtls_ecp_group * grp,mbedtls_ecp_point * R,mbedtls_mpi * m,const mbedtls_ecp_point * P,const char * const * exponents,size_t n_exponents)3294 static int self_test_point( int verbose,
3295                             mbedtls_ecp_group *grp,
3296                             mbedtls_ecp_point *R,
3297                             mbedtls_mpi *m,
3298                             const mbedtls_ecp_point *P,
3299                             const char *const *exponents,
3300                             size_t n_exponents )
3301 {
3302     int ret = 0;
3303     size_t i = 0;
3304     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3305     add_count = 0;
3306     dbl_count = 0;
3307     mul_count = 0;
3308 
3309     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[0] ) );
3310     MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3311     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3312 
3313     for( i = 1; i < n_exponents; i++ )
3314     {
3315         add_c_prev = add_count;
3316         dbl_c_prev = dbl_count;
3317         mul_c_prev = mul_count;
3318         add_count = 0;
3319         dbl_count = 0;
3320         mul_count = 0;
3321 
3322         MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( m, 16, exponents[i] ) );
3323         MBEDTLS_MPI_CHK( self_test_adjust_exponent( grp, m ) );
3324         MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, self_test_rng, NULL ) );
3325 
3326         if( add_count != add_c_prev ||
3327             dbl_count != dbl_c_prev ||
3328             mul_count != mul_c_prev )
3329         {
3330             ret = 1;
3331             break;
3332         }
3333     }
3334 
3335 cleanup:
3336     if( verbose != 0 )
3337     {
3338         if( ret != 0 )
3339             mbedtls_printf( "failed (%u)\n", (unsigned int) i );
3340         else
3341             mbedtls_printf( "passed\n" );
3342     }
3343     return( ret );
3344 }
3345 
3346 /*
3347  * Checkup routine
3348  */
mbedtls_ecp_self_test(int verbose)3349 int mbedtls_ecp_self_test( int verbose )
3350 {
3351     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3352     mbedtls_ecp_group grp;
3353     mbedtls_ecp_point R, P;
3354     mbedtls_mpi m;
3355 
3356 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3357     /* Exponents especially adapted for secp192k1, which has the lowest
3358      * order n of all supported curves (secp192r1 is in a slightly larger
3359      * field but the order of its base point is slightly smaller). */
3360     const char *sw_exponents[] =
3361     {
3362         "000000000000000000000000000000000000000000000001", /* one */
3363         "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3364         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3365         "400000000000000000000000000000000000000000000000", /* one and zeros */
3366         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3367         "555555555555555555555555555555555555555555555555", /* 101010... */
3368     };
3369 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3370 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3371     const char *m_exponents[] =
3372     {
3373         /* Valid private values for Curve25519. In a build with Curve448
3374          * but not Curve25519, they will be adjusted in
3375          * self_test_adjust_exponent(). */
3376         "4000000000000000000000000000000000000000000000000000000000000000",
3377         "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3378         "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3379         "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3380         "5555555555555555555555555555555555555555555555555555555555555550",
3381         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3382     };
3383 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3384 
3385     mbedtls_ecp_group_init( &grp );
3386     mbedtls_ecp_point_init( &R );
3387     mbedtls_ecp_point_init( &P );
3388     mbedtls_mpi_init( &m );
3389 
3390 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3391     /* Use secp192r1 if available, or any available curve */
3392 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3393     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
3394 #else
3395     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
3396 #endif
3397 
3398     if( verbose != 0 )
3399         mbedtls_printf( "  ECP SW test #1 (constant op_count, base point G): " );
3400     /* Do a dummy multiplication first to trigger precomputation */
3401     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
3402     MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, self_test_rng, NULL ) );
3403     ret = self_test_point( verbose,
3404                            &grp, &R, &m, &grp.G,
3405                            sw_exponents,
3406                            sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3407     if( ret != 0 )
3408         goto cleanup;
3409 
3410     if( verbose != 0 )
3411         mbedtls_printf( "  ECP SW test #2 (constant op_count, other point): " );
3412     /* We computed P = 2G last time, use it */
3413     ret = self_test_point( verbose,
3414                            &grp, &R, &m, &P,
3415                            sw_exponents,
3416                            sizeof( sw_exponents ) / sizeof( sw_exponents[0] ));
3417     if( ret != 0 )
3418         goto cleanup;
3419 
3420     mbedtls_ecp_group_free( &grp );
3421     mbedtls_ecp_point_free( &R );
3422 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3423 
3424 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3425     if( verbose != 0 )
3426         mbedtls_printf( "  ECP Montgomery test (constant op_count): " );
3427 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3428     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE25519 ) );
3429 #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3430     MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_CURVE448 ) );
3431 #else
3432 #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3433 #endif
3434     ret = self_test_point( verbose,
3435                            &grp, &R, &m, &grp.G,
3436                            m_exponents,
3437                            sizeof( m_exponents ) / sizeof( m_exponents[0] ));
3438     if( ret != 0 )
3439         goto cleanup;
3440 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3441 
3442 cleanup:
3443 
3444     if( ret < 0 && verbose != 0 )
3445         mbedtls_printf( "Unexpected error, return code = %08X\n", (unsigned int) ret );
3446 
3447     mbedtls_ecp_group_free( &grp );
3448     mbedtls_ecp_point_free( &R );
3449     mbedtls_ecp_point_free( &P );
3450     mbedtls_mpi_free( &m );
3451 
3452     if( verbose != 0 )
3453         mbedtls_printf( "\n" );
3454 
3455     return( ret );
3456 }
3457 
3458 #endif /* MBEDTLS_SELF_TEST */
3459 
3460 #endif /* !MBEDTLS_ECP_ALT */
3461 
3462 #endif /* MBEDTLS_ECP_C */
3463