• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  *  The following sources were referenced in the design of this implementation
22  *  of the RSA algorithm:
23  *
24  *  [1] A method for obtaining digital signatures and public-key cryptosystems
25  *      R Rivest, A Shamir, and L Adleman
26  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
27  *
28  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
29  *      Menezes, van Oorschot and Vanstone
30  *
31  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33  *      Stefan Mangard
34  *      https://arxiv.org/abs/1702.08719v2
35  *
36  */
37 
38 #include "common.h"
39 
40 #if defined(MBEDTLS_RSA_C)
41 
42 #include "mbedtls/rsa.h"
43 #include "rsa_alt_helpers.h"
44 #include "mbedtls/oid.h"
45 #include "mbedtls/platform_util.h"
46 #include "mbedtls/error.h"
47 #include "constant_time_internal.h"
48 #include "mbedtls/constant_time.h"
49 #include "bignum_internal.h"
50 #include <string.h>
51 
52 #if defined(VENDOR_REDEFINE_TEE_API_C)
53 #include "mbedtls/hw_redefine_tee_api.h"
54 #endif
55 #if defined(MBEDTLS_PKCS1_V21)
56 #include "mbedtls/md.h"
57 #endif
58 
59 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
60 #if !defined(VENDOR_ONT_RSA_C)
61 #include <stdlib.h>
62 #endif
63 #endif
64 
65 #if defined(MBEDTLS_PLATFORM_C)
66 #include "mbedtls/platform.h"
67 #else
68 #include <stdio.h>
69 #define mbedtls_printf printf
70 #define mbedtls_calloc calloc
71 #define mbedtls_free   free
72 #endif
73 
74 #if !defined(MBEDTLS_RSA_ALT)
75 
76 /* Parameter validation macros */
77 #define RSA_VALIDATE_RET( cond )                                       \
78     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
79 #define RSA_VALIDATE( cond )                                           \
80     MBEDTLS_INTERNAL_VALIDATE( cond )
81 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)82 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
83                         const mbedtls_mpi *N,
84                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
85                         const mbedtls_mpi *D, const mbedtls_mpi *E )
86 {
87     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
88     RSA_VALIDATE_RET( ctx != NULL );
89 
90     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
91         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
92         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
93         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
94         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
95     {
96         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
97     }
98 
99     if( N != NULL )
100         ctx->len = mbedtls_mpi_size( &ctx->N );
101 
102     return( 0 );
103 }
104 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)105 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
106                             unsigned char const *N, size_t N_len,
107                             unsigned char const *P, size_t P_len,
108                             unsigned char const *Q, size_t Q_len,
109                             unsigned char const *D, size_t D_len,
110                             unsigned char const *E, size_t E_len )
111 {
112     int ret = 0;
113     RSA_VALIDATE_RET( ctx != NULL );
114 
115     if( N != NULL )
116     {
117         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
118         ctx->len = mbedtls_mpi_size( &ctx->N );
119     }
120 
121     if( P != NULL )
122         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
123 
124     if( Q != NULL )
125         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
126 
127     if( D != NULL )
128         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
129 
130     if( E != NULL )
131         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
132 
133 cleanup:
134 
135     if( ret != 0 )
136         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
137 
138     return( 0 );
139 }
140 
141 /*
142  * Checks whether the context fields are set in such a way
143  * that the RSA primitives will be able to execute without error.
144  * It does *not* make guarantees for consistency of the parameters.
145  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)146 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
147                               int blinding_needed )
148 {
149 #if !defined(MBEDTLS_RSA_NO_CRT)
150     /* blinding_needed is only used for NO_CRT to decide whether
151      * P,Q need to be present or not. */
152     ((void) blinding_needed);
153 #endif
154 
155     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
156         ctx->len > MBEDTLS_MPI_MAX_SIZE )
157     {
158         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
159     }
160 
161     /*
162      * 1. Modular exponentiation needs positive, odd moduli.
163      */
164 
165     /* Modular exponentiation wrt. N is always used for
166      * RSA public key operations. */
167     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
168         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
169     {
170         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
171     }
172 
173 #if !defined(MBEDTLS_RSA_NO_CRT)
174     /* Modular exponentiation for P and Q is only
175      * used for private key operations and if CRT
176      * is used. */
177     if( is_priv &&
178         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
179           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
180           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
181           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
182     {
183         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
184     }
185 #endif /* !MBEDTLS_RSA_NO_CRT */
186 
187     /*
188      * 2. Exponents must be positive
189      */
190 
191     /* Always need E for public key operations */
192     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
193         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
194 
195 #if defined(MBEDTLS_RSA_NO_CRT)
196     /* For private key operations, use D or DP & DQ
197      * as (unblinded) exponents. */
198     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
199         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
200 #else
201     if( is_priv &&
202         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
203           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
204     {
205         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
206     }
207 #endif /* MBEDTLS_RSA_NO_CRT */
208 
209     /* Blinding shouldn't make exponents negative either,
210      * so check that P, Q >= 1 if that hasn't yet been
211      * done as part of 1. */
212 #if defined(MBEDTLS_RSA_NO_CRT)
213     if( is_priv && blinding_needed &&
214         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
215           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
216     {
217         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
218     }
219 #endif
220 
221     /* It wouldn't lead to an error if it wasn't satisfied,
222      * but check for QP >= 1 nonetheless. */
223 #if !defined(MBEDTLS_RSA_NO_CRT)
224     if( is_priv &&
225         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
226     {
227         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
228     }
229 #endif
230 
231     return( 0 );
232 }
233 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)234 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
235 {
236     int ret = 0;
237     int have_N, have_P, have_Q, have_D, have_E;
238 #if !defined(MBEDTLS_RSA_NO_CRT)
239     int have_DP, have_DQ, have_QP;
240 #endif
241     int n_missing, pq_missing, d_missing, is_pub, is_priv;
242 
243     RSA_VALIDATE_RET( ctx != NULL );
244 
245     have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
246     have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
247     have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
248     have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
249     have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
250 
251 #if !defined(MBEDTLS_RSA_NO_CRT)
252     have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
253     have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
254     have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
255 #endif
256 
257     /*
258      * Check whether provided parameters are enough
259      * to deduce all others. The following incomplete
260      * parameter sets for private keys are supported:
261      *
262      * (1) P, Q missing.
263      * (2) D and potentially N missing.
264      *
265      */
266 
267     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
268     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
269     d_missing  =              have_P &&  have_Q && !have_D && have_E;
270     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
271 
272     /* These three alternatives are mutually exclusive */
273     is_priv = n_missing || pq_missing || d_missing;
274 
275     if( !is_priv && !is_pub )
276         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
277 
278     /*
279      * Step 1: Deduce N if P, Q are provided.
280      */
281 
282     if( !have_N && have_P && have_Q )
283     {
284         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
285                                          &ctx->Q ) ) != 0 )
286         {
287             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
288         }
289 
290         ctx->len = mbedtls_mpi_size( &ctx->N );
291     }
292 
293     /*
294      * Step 2: Deduce and verify all remaining core parameters.
295      */
296 
297     if( pq_missing )
298     {
299         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
300                                          &ctx->P, &ctx->Q );
301         if( ret != 0 )
302             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
303 
304     }
305     else if( d_missing )
306     {
307         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
308                                                          &ctx->Q,
309                                                          &ctx->E,
310                                                          &ctx->D ) ) != 0 )
311         {
312             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
313         }
314     }
315 
316     /*
317      * Step 3: Deduce all additional parameters specific
318      *         to our current RSA implementation.
319      */
320 
321 #if !defined(MBEDTLS_RSA_NO_CRT)
322     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
323     {
324         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
325                                       &ctx->DP, &ctx->DQ, &ctx->QP );
326         if( ret != 0 )
327             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
328     }
329 #endif /* MBEDTLS_RSA_NO_CRT */
330 
331     /*
332      * Step 3: Basic sanity checks
333      */
334 
335     return( rsa_check_context( ctx, is_priv, 1 ) );
336 }
337 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)338 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
339                             unsigned char *N, size_t N_len,
340                             unsigned char *P, size_t P_len,
341                             unsigned char *Q, size_t Q_len,
342                             unsigned char *D, size_t D_len,
343                             unsigned char *E, size_t E_len )
344 {
345     int ret = 0;
346     int is_priv;
347     RSA_VALIDATE_RET( ctx != NULL );
348 
349     /* Check if key is private or public */
350     is_priv =
351         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
352         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
353         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
354         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
355         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
356 
357     if( !is_priv )
358     {
359         /* If we're trying to export private parameters for a public key,
360          * something must be wrong. */
361         if( P != NULL || Q != NULL || D != NULL )
362             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
363 
364     }
365 
366     if( N != NULL )
367         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
368 
369     if( P != NULL )
370         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
371 
372     if( Q != NULL )
373         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
374 
375     if( D != NULL )
376         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
377 
378     if( E != NULL )
379         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
380 
381 cleanup:
382 
383     return( ret );
384 }
385 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)386 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
387                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
388                         mbedtls_mpi *D, mbedtls_mpi *E )
389 {
390     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
391     int is_priv;
392     RSA_VALIDATE_RET( ctx != NULL );
393 
394     /* Check if key is private or public */
395     is_priv =
396         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
397         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
398         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
399         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
400         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
401 
402     if( !is_priv )
403     {
404         /* If we're trying to export private parameters for a public key,
405          * something must be wrong. */
406         if( P != NULL || Q != NULL || D != NULL )
407             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
408 
409     }
410 
411     /* Export all requested core parameters. */
412 
413     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
414         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
415         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
416         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
417         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
418     {
419         return( ret );
420     }
421 
422     return( 0 );
423 }
424 
425 /*
426  * Export CRT parameters
427  * This must also be implemented if CRT is not used, for being able to
428  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
429  * can be used in this case.
430  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)431 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
432                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
433 {
434     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
435     int is_priv;
436     RSA_VALIDATE_RET( ctx != NULL );
437 
438     /* Check if key is private or public */
439     is_priv =
440         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
441         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
442         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
443         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
444         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
445 
446     if( !is_priv )
447         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
448 
449 #if !defined(MBEDTLS_RSA_NO_CRT)
450     /* Export all requested blinding parameters. */
451     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
452         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
453         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
454     {
455         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
456     }
457 #else
458     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
459                                         DP, DQ, QP ) ) != 0 )
460     {
461         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
462     }
463 #endif
464 
465     return( 0 );
466 }
467 
468 /*
469  * Initialize an RSA context
470  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx)471 void mbedtls_rsa_init( mbedtls_rsa_context *ctx )
472 {
473     RSA_VALIDATE( ctx != NULL );
474 
475     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
476 
477     ctx->padding = MBEDTLS_RSA_PKCS_V15;
478     ctx->hash_id = MBEDTLS_MD_NONE;
479 
480 #if defined(MBEDTLS_THREADING_C)
481     /* Set ctx->ver to nonzero to indicate that the mutex has been
482      * initialized and will need to be freed. */
483     ctx->ver = 1;
484     mbedtls_mutex_init( &ctx->mutex );
485 #endif
486 }
487 
488 /*
489  * Set padding for an existing RSA context
490  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,mbedtls_md_type_t hash_id)491 int mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
492                              mbedtls_md_type_t hash_id )
493 {
494     switch( padding )
495     {
496 #if defined(MBEDTLS_PKCS1_V15)
497         case MBEDTLS_RSA_PKCS_V15:
498             break;
499 #endif
500 
501 #if defined(MBEDTLS_PKCS1_V21)
502         case MBEDTLS_RSA_PKCS_V21:
503             break;
504 #endif
505         default:
506             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
507     }
508 
509     if( ( padding == MBEDTLS_RSA_PKCS_V21 ) &&
510         ( hash_id != MBEDTLS_MD_NONE ) )
511     {
512         const mbedtls_md_info_t *md_info;
513 
514         md_info = mbedtls_md_info_from_type( hash_id );
515         if( md_info == NULL )
516             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
517     }
518 
519     ctx->padding = padding;
520     ctx->hash_id = hash_id;
521 
522     return( 0 );
523 }
524 
525 /*
526  * Get length in bytes of RSA modulus
527  */
528 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)529 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
530 {
531     return( ctx->len );
532 }
533 
534 
535 #if defined(MBEDTLS_GENPRIME)
536 
537 /*
538  * Generate an RSA keypair
539  *
540  * This generation method follows the RSA key pair generation procedure of
541  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
542  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)543 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
544                  int (*f_rng)(void *, unsigned char *, size_t),
545                  void *p_rng,
546                  unsigned int nbits, int exponent )
547 {
548     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
549     mbedtls_mpi H, G, L;
550     int prime_quality = 0;
551     RSA_VALIDATE_RET( ctx != NULL );
552     RSA_VALIDATE_RET( f_rng != NULL );
553 
554     /*
555      * If the modulus is 1024 bit long or shorter, then the security strength of
556      * the RSA algorithm is less than or equal to 80 bits and therefore an error
557      * rate of 2^-80 is sufficient.
558      */
559     if( nbits > 1024 )
560         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
561 
562     mbedtls_mpi_init( &H );
563     mbedtls_mpi_init( &G );
564     mbedtls_mpi_init( &L );
565 
566     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
567     {
568         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
569         goto cleanup;
570     }
571 
572     /*
573      * find primes P and Q with Q < P so that:
574      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
575      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
576      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
577      */
578     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
579 
580     do
581     {
582         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
583                                                 prime_quality, f_rng, p_rng ) );
584 
585         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
586                                                 prime_quality, f_rng, p_rng ) );
587 
588         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
589         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
590         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
591             continue;
592 
593         /* not required by any standards, but some users rely on the fact that P > Q */
594         if( H.s < 0 )
595             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
596 
597         /* Temporarily replace P,Q by P-1, Q-1 */
598         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
599         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
600         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
601 
602         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
603         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
604         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
605             continue;
606 
607         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
608         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
609         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
610         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
611 
612         if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
613             continue;
614 
615         break;
616     }
617     while( 1 );
618 
619     /* Restore P,Q */
620     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
621     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
622 
623     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
624 
625     ctx->len = mbedtls_mpi_size( &ctx->N );
626 
627 #if !defined(MBEDTLS_RSA_NO_CRT)
628     /*
629      * DP = D mod (P - 1)
630      * DQ = D mod (Q - 1)
631      * QP = Q^-1 mod P
632      */
633     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
634                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
635 #endif /* MBEDTLS_RSA_NO_CRT */
636 
637     /* Double-check */
638     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
639 
640 cleanup:
641 
642     mbedtls_mpi_free( &H );
643     mbedtls_mpi_free( &G );
644     mbedtls_mpi_free( &L );
645 
646     if( ret != 0 )
647     {
648         mbedtls_rsa_free( ctx );
649 
650         if( ( -ret & ~0x7f ) == 0 )
651             ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
652         return( ret );
653     }
654 
655     return( 0 );
656 }
657 
658 #endif /* MBEDTLS_GENPRIME */
659 
660 /*
661  * Check a public RSA key
662  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)663 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
664 {
665     RSA_VALIDATE_RET( ctx != NULL );
666 
667     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
668         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
669 
670     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
671     {
672         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
673     }
674 
675     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
676         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
677         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
678     {
679         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
680     }
681 
682     return( 0 );
683 }
684 
685 /*
686  * Check for the consistency of all fields in an RSA private key context
687  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)688 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
689 {
690     RSA_VALIDATE_RET( ctx != NULL );
691 
692     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
693         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
694     {
695         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
696     }
697 
698     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
699                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
700     {
701         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
702     }
703 
704 #if !defined(MBEDTLS_RSA_NO_CRT)
705     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
706                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
707     {
708         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
709     }
710 #endif
711 
712     return( 0 );
713 }
714 
715 /*
716  * Check if contexts holding a public and private key match
717  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)718 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
719                                 const mbedtls_rsa_context *prv )
720 {
721     RSA_VALIDATE_RET( pub != NULL );
722     RSA_VALIDATE_RET( prv != NULL );
723 
724     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
725         mbedtls_rsa_check_privkey( prv ) != 0 )
726     {
727         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
728     }
729 
730     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
731         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
732     {
733         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
734     }
735 
736     return( 0 );
737 }
738 
739 /*
740  * Do an RSA public key operation
741  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)742 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
743                 const unsigned char *input,
744                 unsigned char *output )
745 {
746     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
747     size_t olen;
748     mbedtls_mpi T;
749     RSA_VALIDATE_RET( ctx != NULL );
750     RSA_VALIDATE_RET( input != NULL );
751     RSA_VALIDATE_RET( output != NULL );
752 
753     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
754         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
755 
756     mbedtls_mpi_init( &T );
757 
758 #if defined(MBEDTLS_THREADING_C)
759     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
760         return( ret );
761 #endif
762 
763     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
764 
765     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
766     {
767         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
768         goto cleanup;
769     }
770 
771     olen = ctx->len;
772     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
773     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
774 
775 cleanup:
776 #if defined(MBEDTLS_THREADING_C)
777     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
778         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
779 #endif
780 
781     mbedtls_mpi_free( &T );
782 
783     if( ret != 0 )
784         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
785 
786     return( 0 );
787 }
788 
789 /*
790  * Generate or update blinding values, see section 10 of:
791  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
792  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
793  *  Berlin Heidelberg, 1996. p. 104-113.
794  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)795 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
796                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
797 {
798     int ret, count = 0;
799     mbedtls_mpi R;
800 
801     mbedtls_mpi_init( &R );
802 
803     if( ctx->Vf.p != NULL )
804     {
805         /* We already have blinding values, just update them by squaring */
806         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
807         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
808         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
809         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
810 
811         goto cleanup;
812     }
813 
814     /* Unblinding value: Vf = random number, invertible mod N */
815     do {
816         if( count++ > 10 )
817         {
818             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
819             goto cleanup;
820         }
821 
822         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
823 
824         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
825         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
826         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
827         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
828 
829         /* At this point, Vi is invertible mod N if and only if both Vf and R
830          * are invertible mod N. If one of them isn't, we don't need to know
831          * which one, we just loop and choose new values for both of them.
832          * (Each iteration succeeds with overwhelming probability.) */
833         ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
834         if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
835             goto cleanup;
836 
837     } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
838 
839     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
840     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
841     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
842 
843     /* Blinding value: Vi = Vf^(-e) mod N
844      * (Vi already contains Vf^-1 at this point) */
845     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
846 
847 
848 cleanup:
849     mbedtls_mpi_free( &R );
850 
851     return( ret );
852 }
853 
854 /*
855  * Exponent blinding supposed to prevent side-channel attacks using multiple
856  * traces of measurements to recover the RSA key. The more collisions are there,
857  * the more bits of the key can be recovered. See [3].
858  *
859  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
860  * observations on avarage.
861  *
862  * For example with 28 byte blinding to achieve 2 collisions the adversary has
863  * to make 2^112 observations on avarage.
864  *
865  * (With the currently (as of 2017 April) known best algorithms breaking 2048
866  * bit RSA requires approximately as much time as trying out 2^112 random keys.
867  * Thus in this sense with 28 byte blinding the security is not reduced by
868  * side-channel attacks like the one in [3])
869  *
870  * This countermeasure does not help if the key recovery is possible with a
871  * single trace.
872  */
873 #define RSA_EXPONENT_BLINDING 28
874 
875 /*
876  * Unblind
877  * T = T * Vf mod N
878  */
rsa_unblind(mbedtls_mpi * T,mbedtls_mpi * Vf,const mbedtls_mpi * N)879 static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N)
880 {
881     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882     const size_t nlimbs = N->n;
883     const size_t tlimbs = 2 * (nlimbs + 1);
884 
885     mbedtls_mpi_uint mm = mbedtls_mpi_montmul_init(N->p);
886 
887     mbedtls_mpi RR, M_T;
888 
889     mbedtls_mpi_init(&RR);
890     mbedtls_mpi_init(&M_T);
891 
892     MBEDTLS_MPI_CHK(mbedtls_mpi_get_mont_r2_unsafe(&RR, N));
893     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs));
894 
895     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs));
896     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs));
897 
898     /* T = T * Vf mod N
899      * Reminder: montmul(A, B, N) = A * B * R^-1 mod N
900      * Usually both operands are multiplied by R mod N beforehand, yielding a
901      * result that's also * R mod N (aka "in the Montgomery domain"). Here we
902      * only multiply one operand by R mod N, so the result is directly what we
903      * want - no need to call `mpi_montred()` on it. */
904     mbedtls_mpi_montmul(T, &RR, N, mm, &M_T);
905     mbedtls_mpi_montmul(T, Vf, N, mm, &M_T);
906 
907 cleanup:
908 
909     mbedtls_mpi_free(&RR);
910     mbedtls_mpi_free(&M_T);
911 
912     return ret;
913 }
914 
915 
916 /*
917  * Do an RSA private key operation
918  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)919 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
920                  int (*f_rng)(void *, unsigned char *, size_t),
921                  void *p_rng,
922                  const unsigned char *input,
923                  unsigned char *output )
924 {
925     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
926     size_t olen;
927 
928     /* Temporary holding the result */
929     mbedtls_mpi T;
930 
931     /* Temporaries holding P-1, Q-1 and the
932      * exponent blinding factor, respectively. */
933     mbedtls_mpi P1, Q1, R;
934 
935 #if !defined(MBEDTLS_RSA_NO_CRT)
936     /* Temporaries holding the results mod p resp. mod q. */
937     mbedtls_mpi TP, TQ;
938 
939     /* Temporaries holding the blinded exponents for
940      * the mod p resp. mod q computation (if used). */
941     mbedtls_mpi DP_blind, DQ_blind;
942 
943     /* Pointers to actual exponents to be used - either the unblinded
944      * or the blinded ones, depending on the presence of a PRNG. */
945     mbedtls_mpi *DP = &ctx->DP;
946     mbedtls_mpi *DQ = &ctx->DQ;
947 #else
948     /* Temporary holding the blinded exponent (if used). */
949     mbedtls_mpi D_blind;
950 
951     /* Pointer to actual exponent to be used - either the unblinded
952      * or the blinded one, depending on the presence of a PRNG. */
953     mbedtls_mpi *D = &ctx->D;
954 #endif /* MBEDTLS_RSA_NO_CRT */
955 
956     /* Temporaries holding the initial input and the double
957      * checked result; should be the same in the end. */
958     mbedtls_mpi input_blinded, check_result_blinded;
959 
960     RSA_VALIDATE_RET( ctx != NULL );
961     RSA_VALIDATE_RET( input  != NULL );
962     RSA_VALIDATE_RET( output != NULL );
963 
964     if( f_rng == NULL )
965         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
966 
967     if( rsa_check_context( ctx, 1 /* private key checks */,
968                                 1 /* blinding on        */ ) != 0 )
969     {
970         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
971     }
972 
973 #if defined(MBEDTLS_THREADING_C)
974     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
975         return( ret );
976 #endif
977 
978     /* MPI Initialization */
979     mbedtls_mpi_init( &T );
980 
981     mbedtls_mpi_init( &P1 );
982     mbedtls_mpi_init( &Q1 );
983     mbedtls_mpi_init( &R );
984 
985 #if defined(MBEDTLS_RSA_NO_CRT)
986     mbedtls_mpi_init( &D_blind );
987 #else
988     mbedtls_mpi_init( &DP_blind );
989     mbedtls_mpi_init( &DQ_blind );
990 #endif
991 
992 #if !defined(MBEDTLS_RSA_NO_CRT)
993     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
994 #endif
995 
996     mbedtls_mpi_init(&input_blinded);
997     mbedtls_mpi_init(&check_result_blinded);
998 
999     /* End of MPI initialization */
1000 
1001     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
1002     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
1003     {
1004         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1005         goto cleanup;
1006     }
1007 
1008     /*
1009      * Blinding
1010      * T = T * Vi mod N
1011      */
1012     MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
1013     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
1014     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1015 
1016     /*
1017      * Exponent blinding
1018      */
1019     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
1020     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
1021 
1022 #if defined(MBEDTLS_RSA_NO_CRT)
1023     /*
1024      * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
1025      */
1026     MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1027                      f_rng, p_rng ) );
1028     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
1029     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
1030     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
1031 
1032     D = &D_blind;
1033 #else
1034     /*
1035      * DP_blind = ( P - 1 ) * R + DP
1036      */
1037     MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1038                      f_rng, p_rng ) );
1039     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
1040     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
1041                 &ctx->DP ) );
1042 
1043     DP = &DP_blind;
1044 
1045     /*
1046      * DQ_blind = ( Q - 1 ) * R + DQ
1047      */
1048     MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1049                      f_rng, p_rng ) );
1050     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
1051     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
1052                 &ctx->DQ ) );
1053 
1054     DQ = &DQ_blind;
1055 #endif /* MBEDTLS_RSA_NO_CRT */
1056 
1057     /* Make a copy of the input (after blinding if there was any) */
1058     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T));
1059 #if defined(MBEDTLS_RSA_NO_CRT)
1060     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1061 #else
1062     /*
1063      * Faster decryption using the CRT
1064      *
1065      * TP = input ^ dP mod P
1066      * TQ = input ^ dQ mod Q
1067      */
1068 
1069     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1070     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1071 
1072     /*
1073      * T = (TP - TQ) * (Q^-1 mod P) mod P
1074      */
1075     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1076     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1077     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1078 
1079     /*
1080      * T = TQ + T * Q
1081      */
1082     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1083     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1084 #endif /* MBEDTLS_RSA_NO_CRT */
1085 
1086 
1087     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E,
1088                                         &ctx->N, &ctx->RN));
1089     if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) {
1090         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1091         goto cleanup;
1092     }
1093 
1094     MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N));
1095 
1096     olen = ctx->len;
1097     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1098 
1099 cleanup:
1100 #if defined(MBEDTLS_THREADING_C)
1101     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1102         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1103 #endif
1104 
1105     mbedtls_mpi_free( &P1 );
1106     mbedtls_mpi_free( &Q1 );
1107     mbedtls_mpi_free( &R );
1108 
1109 #if defined(MBEDTLS_RSA_NO_CRT)
1110     mbedtls_mpi_free( &D_blind );
1111 #else
1112     mbedtls_mpi_free( &DP_blind );
1113     mbedtls_mpi_free( &DQ_blind );
1114 #endif
1115 
1116     mbedtls_mpi_free( &T );
1117 
1118 #if !defined(MBEDTLS_RSA_NO_CRT)
1119     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1120 #endif
1121 
1122     mbedtls_mpi_free(&check_result_blinded);
1123     mbedtls_mpi_free(&input_blinded);
1124 
1125     if( ret != 0 && ret >= -0x007f )
1126         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1127 
1128     return( ret );
1129 }
1130 
1131 #if defined(MBEDTLS_PKCS1_V21)
1132 /**
1133  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1134  *
1135  * \param dst       buffer to mask
1136  * \param dlen      length of destination buffer
1137  * \param src       source of the mask generation
1138  * \param slen      length of the source buffer
1139  * \param md_ctx    message digest context to use
1140  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1141 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1142                       size_t slen, mbedtls_md_context_t *md_ctx )
1143 {
1144     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1145     unsigned char counter[4];
1146     unsigned char *p;
1147     unsigned int hlen;
1148     size_t i, use_len;
1149     int ret = 0;
1150 
1151     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1152     memset( counter, 0, 4 );
1153 
1154     hlen = mbedtls_md_get_size( md_ctx->md_info );
1155 
1156     /* Generate and apply dbMask */
1157     p = dst;
1158 
1159     while( dlen > 0 )
1160     {
1161         use_len = hlen;
1162         if( dlen < hlen )
1163             use_len = dlen;
1164 
1165         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1166             goto exit;
1167         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1168             goto exit;
1169         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1170             goto exit;
1171         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1172             goto exit;
1173 
1174         for( i = 0; i < use_len; ++i )
1175             *p++ ^= mask[i];
1176 
1177         counter[3]++;
1178 
1179         dlen -= use_len;
1180     }
1181 
1182 exit:
1183     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1184 
1185     return( ret );
1186 }
1187 #endif /* MBEDTLS_PKCS1_V21 */
1188 
1189 #if defined(MBEDTLS_PKCS1_V21)
1190 /*
1191  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1192  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1193 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1194                             int (*f_rng)(void *, unsigned char *, size_t),
1195                             void *p_rng,
1196                             const unsigned char *label, size_t label_len,
1197                             size_t ilen,
1198                             const unsigned char *input,
1199                             unsigned char *output )
1200 {
1201     size_t olen;
1202     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1203     unsigned char *p = output;
1204     unsigned int hlen;
1205     const mbedtls_md_info_t *md_info;
1206     mbedtls_md_context_t md_ctx;
1207 
1208     RSA_VALIDATE_RET( ctx != NULL );
1209     RSA_VALIDATE_RET( output != NULL );
1210     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1211     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1212 
1213     if( f_rng == NULL )
1214         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1215 
1216     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1217     if( md_info == NULL )
1218         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1219 
1220     olen = ctx->len;
1221     hlen = mbedtls_md_get_size( md_info );
1222 
1223     /* first comparison checks for overflow */
1224     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1225         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1226 
1227     memset( output, 0, olen );
1228 
1229     *p++ = 0;
1230 
1231     /* Generate a random octet string seed */
1232     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1233         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1234 
1235     p += hlen;
1236 
1237     /* Construct DB */
1238     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1239         return( ret );
1240     p += hlen;
1241     p += olen - 2 * hlen - 2 - ilen;
1242     *p++ = 1;
1243     if( ilen != 0 )
1244         memcpy( p, input, ilen );
1245 
1246     mbedtls_md_init( &md_ctx );
1247     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1248         goto exit;
1249 
1250     /* maskedDB: Apply dbMask to DB */
1251     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1252                           &md_ctx ) ) != 0 )
1253         goto exit;
1254 
1255     /* maskedSeed: Apply seedMask to seed */
1256     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1257                           &md_ctx ) ) != 0 )
1258         goto exit;
1259 
1260 exit:
1261     mbedtls_md_free( &md_ctx );
1262 
1263     if( ret != 0 )
1264         return( ret );
1265 
1266     return( mbedtls_rsa_public(  ctx, output, output ) );
1267 }
1268 #endif /* MBEDTLS_PKCS1_V21 */
1269 
1270 #if defined(MBEDTLS_PKCS1_V15)
1271 /*
1272  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1273  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1274 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1275                                  int (*f_rng)(void *, unsigned char *, size_t),
1276                                  void *p_rng, size_t ilen,
1277                                  const unsigned char *input,
1278                                  unsigned char *output )
1279 {
1280     size_t nb_pad, olen;
1281     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1282     unsigned char *p = output;
1283 
1284     RSA_VALIDATE_RET( ctx != NULL );
1285     RSA_VALIDATE_RET( output != NULL );
1286     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1287 
1288     olen = ctx->len;
1289 
1290     /* first comparison checks for overflow */
1291     if( ilen + 11 < ilen || olen < ilen + 11 )
1292         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1293 
1294     nb_pad = olen - 3 - ilen;
1295 
1296     *p++ = 0;
1297 
1298     if( f_rng == NULL )
1299         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1300 
1301     *p++ = MBEDTLS_RSA_CRYPT;
1302 
1303     while( nb_pad-- > 0 )
1304     {
1305         int rng_dl = 100;
1306 
1307         do {
1308             ret = f_rng( p_rng, p, 1 );
1309         } while( *p == 0 && --rng_dl && ret == 0 );
1310 
1311         /* Check if RNG failed to generate data */
1312         if( rng_dl == 0 || ret != 0 )
1313             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1314 
1315         p++;
1316     }
1317 
1318     *p++ = 0;
1319     if( ilen != 0 )
1320         memcpy( p, input, ilen );
1321 
1322     return( mbedtls_rsa_public(  ctx, output, output ) );
1323 }
1324 #endif /* MBEDTLS_PKCS1_V15 */
1325 
1326 /*
1327  * Add the message padding, then do an RSA operation
1328  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1329 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1330                        int (*f_rng)(void *, unsigned char *, size_t),
1331                        void *p_rng,
1332                        size_t ilen,
1333                        const unsigned char *input,
1334                        unsigned char *output )
1335 {
1336     RSA_VALIDATE_RET( ctx != NULL );
1337     RSA_VALIDATE_RET( output != NULL );
1338     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1339 
1340     switch( ctx->padding )
1341     {
1342 #if defined(MBEDTLS_PKCS1_V15)
1343         case MBEDTLS_RSA_PKCS_V15:
1344             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng,
1345                                                         ilen, input, output );
1346 #endif
1347 
1348 #if defined(MBEDTLS_PKCS1_V21)
1349         case MBEDTLS_RSA_PKCS_V21:
1350             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, NULL, 0,
1351                                                    ilen, input, output );
1352 #endif
1353 
1354         default:
1355             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1356     }
1357 }
1358 
1359 #if defined(MBEDTLS_PKCS1_V21)
1360 /*
1361  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1362  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1363 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1364                             int (*f_rng)(void *, unsigned char *, size_t),
1365                             void *p_rng,
1366                             const unsigned char *label, size_t label_len,
1367                             size_t *olen,
1368                             const unsigned char *input,
1369                             unsigned char *output,
1370                             size_t output_max_len )
1371 {
1372     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1373     size_t ilen, i, pad_len;
1374     unsigned char *p, bad, pad_done;
1375     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1376     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1377     unsigned int hlen;
1378     const mbedtls_md_info_t *md_info;
1379     mbedtls_md_context_t md_ctx;
1380 
1381     RSA_VALIDATE_RET( ctx != NULL );
1382     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1383     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1384     RSA_VALIDATE_RET( input != NULL );
1385     RSA_VALIDATE_RET( olen != NULL );
1386 
1387     /*
1388      * Parameters sanity checks
1389      */
1390     if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1391         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1392 
1393     ilen = ctx->len;
1394 
1395     if( ilen < 16 || ilen > sizeof( buf ) )
1396         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1397 
1398     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1399     if( md_info == NULL )
1400         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1401 
1402     hlen = mbedtls_md_get_size( md_info );
1403 
1404     // checking for integer underflow
1405     if( 2 * hlen + 2 > ilen )
1406         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1407 
1408     /*
1409      * RSA operation
1410      */
1411     ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1412 
1413     if( ret != 0 )
1414         goto cleanup;
1415 
1416     /*
1417      * Unmask data and generate lHash
1418      */
1419     mbedtls_md_init( &md_ctx );
1420     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1421     {
1422         mbedtls_md_free( &md_ctx );
1423         goto cleanup;
1424     }
1425 
1426     /* seed: Apply seedMask to maskedSeed */
1427     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1428                           &md_ctx ) ) != 0 ||
1429     /* DB: Apply dbMask to maskedDB */
1430         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1431                           &md_ctx ) ) != 0 )
1432     {
1433         mbedtls_md_free( &md_ctx );
1434         goto cleanup;
1435     }
1436 
1437     mbedtls_md_free( &md_ctx );
1438 
1439     /* Generate lHash */
1440     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1441         goto cleanup;
1442 
1443     /*
1444      * Check contents, in "constant-time"
1445      */
1446     p = buf;
1447     bad = 0;
1448 
1449     bad |= *p++; /* First byte must be 0 */
1450 
1451     p += hlen; /* Skip seed */
1452 
1453     /* Check lHash */
1454     for( i = 0; i < hlen; i++ )
1455         bad |= lhash[i] ^ *p++;
1456 
1457     /* Get zero-padding len, but always read till end of buffer
1458      * (minus one, for the 01 byte) */
1459     pad_len = 0;
1460     pad_done = 0;
1461     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1462     {
1463         pad_done |= p[i];
1464         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1465     }
1466 
1467     p += pad_len;
1468     bad |= *p++ ^ 0x01;
1469 
1470     /*
1471      * The only information "leaked" is whether the padding was correct or not
1472      * (eg, no data is copied if it was not correct). This meets the
1473      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1474      * the different error conditions.
1475      */
1476     if( bad != 0 )
1477     {
1478         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1479         goto cleanup;
1480     }
1481 
1482     if( ilen - ( p - buf ) > output_max_len )
1483     {
1484         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1485         goto cleanup;
1486     }
1487 
1488     *olen = ilen - (p - buf);
1489     if( *olen != 0 )
1490         memcpy( output, p, *olen );
1491     ret = 0;
1492 
1493 cleanup:
1494     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1495     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1496 
1497     return( ret );
1498 }
1499 #endif /* MBEDTLS_PKCS1_V21 */
1500 
1501 #if defined(MBEDTLS_PKCS1_V15)
1502 /*
1503  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1504  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1505 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1506                                  int (*f_rng)(void *, unsigned char *, size_t),
1507                                  void *p_rng,
1508                                  size_t *olen,
1509                                  const unsigned char *input,
1510                                  unsigned char *output,
1511                                  size_t output_max_len )
1512 {
1513     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1514     size_t ilen;
1515     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1516 
1517     RSA_VALIDATE_RET( ctx != NULL );
1518     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1519     RSA_VALIDATE_RET( input != NULL );
1520     RSA_VALIDATE_RET( olen != NULL );
1521 
1522     ilen = ctx->len;
1523 
1524     if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1525         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1526 
1527     if( ilen < 16 || ilen > sizeof( buf ) )
1528         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1529 
1530     ret = mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1531 
1532     if( ret != 0 )
1533         goto cleanup;
1534 
1535     ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( buf, ilen,
1536                                                 output, output_max_len, olen );
1537 
1538 cleanup:
1539     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1540 
1541     return( ret );
1542 }
1543 #endif /* MBEDTLS_PKCS1_V15 */
1544 
1545 /*
1546  * Do an RSA operation, then remove the message padding
1547  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1548 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1549                        int (*f_rng)(void *, unsigned char *, size_t),
1550                        void *p_rng,
1551                        size_t *olen,
1552                        const unsigned char *input,
1553                        unsigned char *output,
1554                        size_t output_max_len)
1555 {
1556     RSA_VALIDATE_RET( ctx != NULL );
1557     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1558     RSA_VALIDATE_RET( input != NULL );
1559     RSA_VALIDATE_RET( olen != NULL );
1560 
1561     switch( ctx->padding )
1562     {
1563 #if defined(MBEDTLS_PKCS1_V15)
1564         case MBEDTLS_RSA_PKCS_V15:
1565             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, olen,
1566                                                 input, output, output_max_len );
1567 #endif
1568 
1569 #if defined(MBEDTLS_PKCS1_V21)
1570         case MBEDTLS_RSA_PKCS_V21:
1571             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, NULL, 0,
1572                                            olen, input, output,
1573                                            output_max_len );
1574 #endif
1575 
1576         default:
1577             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1578     }
1579 }
1580 
1581 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1582 static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1583                          int (*f_rng)(void *, unsigned char *, size_t),
1584                          void *p_rng,
1585                          mbedtls_md_type_t md_alg,
1586                          unsigned int hashlen,
1587                          const unsigned char *hash,
1588                          int saltlen,
1589                          unsigned char *sig )
1590 {
1591     size_t olen;
1592     unsigned char *p = sig;
1593     unsigned char *salt = NULL;
1594     size_t slen, min_slen, hlen, offset = 0;
1595     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1596     size_t msb;
1597     const mbedtls_md_info_t *md_info;
1598     mbedtls_md_context_t md_ctx;
1599     RSA_VALIDATE_RET( ctx != NULL );
1600     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1601                         hashlen == 0 ) ||
1602                       hash != NULL );
1603     RSA_VALIDATE_RET( sig != NULL );
1604 
1605     if( ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1606         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1607 
1608     if( f_rng == NULL )
1609         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1610 
1611     olen = ctx->len;
1612 
1613     if( md_alg != MBEDTLS_MD_NONE )
1614     {
1615         /* Gather length of hash to sign */
1616         md_info = mbedtls_md_info_from_type( md_alg );
1617         if( md_info == NULL )
1618             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1619         #if defined(VENDOR_ONT_RSA_C)
1620         hashlen = mbedtls_md_get_size( md_info );
1621         #else
1622         if( hashlen != mbedtls_md_get_size( md_info ) )
1623             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1624         #endif
1625     }
1626 
1627     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1628     if( md_info == NULL )
1629         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1630 
1631     hlen = mbedtls_md_get_size( md_info );
1632 
1633     if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1634     {
1635        /* Calculate the largest possible salt length, up to the hash size.
1636         * Normally this is the hash length, which is the maximum salt length
1637         * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1638         * enough room, use the maximum salt length that fits. The constraint is
1639         * that the hash length plus the salt length plus 2 bytes must be at most
1640         * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1641         * (PKCS#1 v2.2) §9.1.1 step 3. */
1642         min_slen = hlen - 2;
1643         if( olen < hlen + min_slen + 2 )
1644             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1645         else if( olen >= hlen + hlen + 2 )
1646             slen = hlen;
1647         else
1648             slen = olen - hlen - 2;
1649     }
1650     else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1651     {
1652         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1653     }
1654     else
1655     {
1656         slen = (size_t) saltlen;
1657     }
1658 
1659     memset( sig, 0, olen );
1660 
1661     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1662     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1663     p += olen - hlen - slen - 2;
1664     *p++ = 0x01;
1665 
1666     /* Generate salt of length slen in place in the encoded message */
1667     salt = p;
1668     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1669         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1670 
1671     p += slen;
1672 
1673     mbedtls_md_init( &md_ctx );
1674     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1675         goto exit;
1676 
1677     /* Generate H = Hash( M' ) */
1678     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1679         goto exit;
1680     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1681         goto exit;
1682     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1683         goto exit;
1684     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1685         goto exit;
1686     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1687         goto exit;
1688 
1689     /* Compensate for boundary condition when applying mask */
1690     if( msb % 8 == 0 )
1691         offset = 1;
1692 
1693     /* maskedDB: Apply dbMask to DB */
1694     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1695                           &md_ctx ) ) != 0 )
1696         goto exit;
1697 
1698     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1699     sig[0] &= 0xFF >> ( olen * 8 - msb );
1700 
1701     p += hlen;
1702     *p++ = 0xBC;
1703 
1704 exit:
1705     mbedtls_md_free( &md_ctx );
1706 
1707     if( ret != 0 )
1708         return( ret );
1709 
1710     return mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig );
1711 }
1712 
1713 /*
1714  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1715  * the option to pass in the salt length.
1716  */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1717 int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1718                          int (*f_rng)(void *, unsigned char *, size_t),
1719                          void *p_rng,
1720                          mbedtls_md_type_t md_alg,
1721                          unsigned int hashlen,
1722                          const unsigned char *hash,
1723                          int saltlen,
1724                          unsigned char *sig )
1725 {
1726     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1727                                 hashlen, hash, saltlen, sig );
1728 }
1729 
1730 
1731 /*
1732  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1733  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1734 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1735                          int (*f_rng)(void *, unsigned char *, size_t),
1736                          void *p_rng,
1737                          mbedtls_md_type_t md_alg,
1738                          unsigned int hashlen,
1739                          const unsigned char *hash,
1740                          unsigned char *sig )
1741 {
1742     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1743                                 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1744 }
1745 #endif /* MBEDTLS_PKCS1_V21 */
1746 
1747 #if defined(MBEDTLS_PKCS1_V15)
1748 /*
1749  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1750  */
1751 
1752 /* Construct a PKCS v1.5 encoding of a hashed message
1753  *
1754  * This is used both for signature generation and verification.
1755  *
1756  * Parameters:
1757  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1758  *            MBEDTLS_MD_NONE if raw data is signed.
1759  * - hashlen: Length of hash. Must match md_alg if that's not NONE.
1760  * - hash:    Buffer containing the hashed message or the raw data.
1761  * - dst_len: Length of the encoded message.
1762  * - dst:     Buffer to hold the encoded message.
1763  *
1764  * Assumptions:
1765  * - hash has size hashlen.
1766  * - dst points to a buffer of size at least dst_len.
1767  *
1768  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1769 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1770                                         unsigned int hashlen,
1771                                         const unsigned char *hash,
1772                                         size_t dst_len,
1773                                         unsigned char *dst )
1774 {
1775     size_t oid_size  = 0;
1776     size_t nb_pad    = dst_len;
1777     unsigned char *p = dst;
1778     const char *oid  = NULL;
1779 
1780     /* Are we signing hashed or raw data? */
1781     if( md_alg != MBEDTLS_MD_NONE )
1782     {
1783         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1784         if( md_info == NULL )
1785             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1786 
1787         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1788             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1789         #if defined(VENDOR_ONT_RSA_C)
1790         hashlen = mbedtls_md_get_size( md_info );
1791         #else
1792         if( hashlen != mbedtls_md_get_size( md_info ) )
1793             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1794         #endif
1795 
1796         /* Double-check that 8 + hashlen + oid_size can be used as a
1797          * 1-byte ASN.1 length encoding and that there's no overflow. */
1798         if( 8 + hashlen + oid_size  >= 0x80         ||
1799             10 + hashlen            <  hashlen      ||
1800             10 + hashlen + oid_size <  10 + hashlen )
1801             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1802 
1803         /*
1804          * Static bounds check:
1805          * - Need 10 bytes for five tag-length pairs.
1806          *   (Insist on 1-byte length encodings to protect against variants of
1807          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1808          * - Need hashlen bytes for hash
1809          * - Need oid_size bytes for hash alg OID.
1810          */
1811         if( nb_pad < 10 + hashlen + oid_size )
1812             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1813         nb_pad -= 10 + hashlen + oid_size;
1814     }
1815     else
1816     {
1817         if( nb_pad < hashlen )
1818             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1819 
1820         nb_pad -= hashlen;
1821     }
1822 
1823     /* Need space for signature header and padding delimiter (3 bytes),
1824      * and 8 bytes for the minimal padding */
1825     if( nb_pad < 3 + 8 )
1826         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1827     nb_pad -= 3;
1828 
1829     /* Now nb_pad is the amount of memory to be filled
1830      * with padding, and at least 8 bytes long. */
1831 
1832     /* Write signature header and padding */
1833     *p++ = 0;
1834     *p++ = MBEDTLS_RSA_SIGN;
1835     memset( p, 0xFF, nb_pad );
1836     p += nb_pad;
1837     *p++ = 0;
1838 
1839     /* Are we signing raw data? */
1840     if( md_alg == MBEDTLS_MD_NONE )
1841     {
1842         memcpy( p, hash, hashlen );
1843         return( 0 );
1844     }
1845 
1846     /* Signing hashed data, add corresponding ASN.1 structure
1847      *
1848      * DigestInfo ::= SEQUENCE {
1849      *   digestAlgorithm DigestAlgorithmIdentifier,
1850      *   digest Digest }
1851      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1852      * Digest ::= OCTET STRING
1853      *
1854      * Schematic:
1855      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
1856      *                                 TAG-NULL + LEN [ NULL ] ]
1857      *                 TAG-OCTET + LEN [ HASH ] ]
1858      */
1859     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1860     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1861     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1862     *p++ = (unsigned char)( 0x04 + oid_size );
1863     *p++ = MBEDTLS_ASN1_OID;
1864     *p++ = (unsigned char) oid_size;
1865     memcpy( p, oid, oid_size );
1866     p += oid_size;
1867     *p++ = MBEDTLS_ASN1_NULL;
1868     *p++ = 0x00;
1869     *p++ = MBEDTLS_ASN1_OCTET_STRING;
1870     *p++ = (unsigned char) hashlen;
1871     memcpy( p, hash, hashlen );
1872     p += hashlen;
1873 
1874     /* Just a sanity-check, should be automatic
1875      * after the initial bounds check. */
1876     if( p != dst + dst_len )
1877     {
1878         mbedtls_platform_zeroize( dst, dst_len );
1879         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1880     }
1881 
1882     return( 0 );
1883 }
1884 
1885 /*
1886  * Do an RSA operation to sign the message digest
1887  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1888 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1889                                int (*f_rng)(void *, unsigned char *, size_t),
1890                                void *p_rng,
1891                                mbedtls_md_type_t md_alg,
1892                                unsigned int hashlen,
1893                                const unsigned char *hash,
1894                                unsigned char *sig )
1895 {
1896     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1897     unsigned char *sig_try = NULL, *verif = NULL;
1898 
1899     RSA_VALIDATE_RET( ctx != NULL );
1900     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1901                         hashlen == 0 ) ||
1902                       hash != NULL );
1903     RSA_VALIDATE_RET( sig != NULL );
1904 
1905     if( ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1906         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1907 
1908     /*
1909      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1910      */
1911 
1912     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1913                                              ctx->len, sig ) ) != 0 )
1914         return( ret );
1915 
1916     /* Private key operation
1917      *
1918      * In order to prevent Lenstra's attack, make the signature in a
1919      * temporary buffer and check it before returning it.
1920      */
1921 
1922     sig_try = mbedtls_calloc( 1, ctx->len );
1923     if( sig_try == NULL )
1924         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1925 
1926     verif = mbedtls_calloc( 1, ctx->len );
1927     if( verif == NULL )
1928     {
1929         mbedtls_free( sig_try );
1930         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1931     }
1932 
1933     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
1934     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
1935 
1936     if( mbedtls_ct_memcmp( verif, sig, ctx->len ) != 0 )
1937     {
1938         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
1939         goto cleanup;
1940     }
1941 
1942     memcpy( sig, sig_try, ctx->len );
1943 
1944 cleanup:
1945     mbedtls_platform_zeroize( sig_try, ctx->len );
1946     mbedtls_platform_zeroize( verif, ctx->len );
1947     mbedtls_free( sig_try );
1948     mbedtls_free( verif );
1949 
1950     if( ret != 0 )
1951         memset( sig, '!', ctx->len );
1952     return( ret );
1953 }
1954 #endif /* MBEDTLS_PKCS1_V15 */
1955 
1956 /*
1957  * Do an RSA operation to sign the message digest
1958  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1959 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
1960                     int (*f_rng)(void *, unsigned char *, size_t),
1961                     void *p_rng,
1962                     mbedtls_md_type_t md_alg,
1963                     unsigned int hashlen,
1964                     const unsigned char *hash,
1965                     unsigned char *sig )
1966 {
1967     RSA_VALIDATE_RET( ctx != NULL );
1968     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1969                         hashlen == 0 ) ||
1970                       hash != NULL );
1971     RSA_VALIDATE_RET( sig != NULL );
1972 
1973     switch( ctx->padding )
1974     {
1975 #if defined(MBEDTLS_PKCS1_V15)
1976         case MBEDTLS_RSA_PKCS_V15:
1977             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng,
1978                                                       md_alg, hashlen, hash, sig );
1979 #endif
1980 
1981 #if defined(MBEDTLS_PKCS1_V21)
1982         case MBEDTLS_RSA_PKCS_V21:
1983             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, md_alg,
1984                                                 hashlen, hash, sig );
1985 #endif
1986 
1987         default:
1988             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1989     }
1990 }
1991 
1992 #if defined(MBEDTLS_PKCS1_V21)
1993 /*
1994  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
1995  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)1996 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
1997                                mbedtls_md_type_t md_alg,
1998                                unsigned int hashlen,
1999                                const unsigned char *hash,
2000                                mbedtls_md_type_t mgf1_hash_id,
2001                                int expected_salt_len,
2002                                const unsigned char *sig )
2003 {
2004     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2005     size_t siglen;
2006     unsigned char *p;
2007     unsigned char *hash_start;
2008     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2009     unsigned char zeros[8];
2010     unsigned int hlen;
2011     size_t observed_salt_len, msb;
2012     const mbedtls_md_info_t *md_info;
2013     mbedtls_md_context_t md_ctx;
2014     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2015 
2016     RSA_VALIDATE_RET( ctx != NULL );
2017     RSA_VALIDATE_RET( sig != NULL );
2018     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2019                         hashlen == 0 ) ||
2020                       hash != NULL );
2021 
2022     siglen = ctx->len;
2023 
2024     if( siglen < 16 || siglen > sizeof( buf ) )
2025         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2026 
2027     ret = mbedtls_rsa_public(  ctx, sig, buf );
2028 
2029     if( ret != 0 )
2030         return( ret );
2031 
2032     p = buf;
2033 
2034     if( buf[siglen - 1] != 0xBC )
2035         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2036 
2037     if( md_alg != MBEDTLS_MD_NONE )
2038     {
2039         /* Gather length of hash to sign */
2040         md_info = mbedtls_md_info_from_type( md_alg );
2041         if( md_info == NULL )
2042             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2043         #if defined(VENDOR_ONT_RSA_C)
2044         hashlen = mbedtls_md_get_size( md_info );
2045         #else
2046         if( hashlen != mbedtls_md_get_size( md_info ) )
2047             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2048         #endif
2049     }
2050 
2051     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2052     if( md_info == NULL )
2053         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2054 
2055     hlen = mbedtls_md_get_size( md_info );
2056 
2057     memset( zeros, 0, 8 );
2058 
2059     /*
2060      * Note: EMSA-PSS verification is over the length of N - 1 bits
2061      */
2062     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2063 
2064     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2065         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2066 
2067     /* Compensate for boundary condition when applying mask */
2068     if( msb % 8 == 0 )
2069     {
2070         p++;
2071         siglen -= 1;
2072     }
2073 
2074     if( siglen < hlen + 2 )
2075         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2076     hash_start = p + siglen - hlen - 1;
2077 
2078     mbedtls_md_init( &md_ctx );
2079     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2080         goto exit;
2081 
2082     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2083     if( ret != 0 )
2084         goto exit;
2085 
2086     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2087 
2088     while( p < hash_start - 1 && *p == 0 )
2089         p++;
2090 
2091     if( *p++ != 0x01 )
2092     {
2093         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2094         goto exit;
2095     }
2096 
2097     observed_salt_len = hash_start - p;
2098 
2099     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2100         observed_salt_len != (size_t) expected_salt_len )
2101     {
2102         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2103         goto exit;
2104     }
2105 
2106     /*
2107      * Generate H = Hash( M' )
2108      */
2109     ret = mbedtls_md_starts( &md_ctx );
2110     if ( ret != 0 )
2111         goto exit;
2112     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2113     if ( ret != 0 )
2114         goto exit;
2115     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2116     if ( ret != 0 )
2117         goto exit;
2118     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2119     if ( ret != 0 )
2120         goto exit;
2121     ret = mbedtls_md_finish( &md_ctx, result );
2122     if ( ret != 0 )
2123         goto exit;
2124 
2125     if( memcmp( hash_start, result, hlen ) != 0 )
2126     {
2127         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2128         goto exit;
2129     }
2130 
2131 exit:
2132     mbedtls_md_free( &md_ctx );
2133 
2134     return( ret );
2135 }
2136 
2137 /*
2138  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2139  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2140 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2141                            mbedtls_md_type_t md_alg,
2142                            unsigned int hashlen,
2143                            const unsigned char *hash,
2144                            const unsigned char *sig )
2145 {
2146     mbedtls_md_type_t mgf1_hash_id;
2147     RSA_VALIDATE_RET( ctx != NULL );
2148     RSA_VALIDATE_RET( sig != NULL );
2149     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2150                         hashlen == 0 ) ||
2151                       hash != NULL );
2152 
2153     mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2154                              ? (mbedtls_md_type_t) ctx->hash_id
2155                              : md_alg;
2156 
2157     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx,
2158                                                md_alg, hashlen, hash,
2159                                                mgf1_hash_id,
2160                                                MBEDTLS_RSA_SALT_LEN_ANY,
2161                                                sig ) );
2162 
2163 }
2164 #endif /* MBEDTLS_PKCS1_V21 */
2165 
2166 #if defined(MBEDTLS_PKCS1_V15)
2167 /*
2168  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2169  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2170 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2171                                  mbedtls_md_type_t md_alg,
2172                                  unsigned int hashlen,
2173                                  const unsigned char *hash,
2174                                  const unsigned char *sig )
2175 {
2176     int ret = 0;
2177     size_t sig_len;
2178     unsigned char *encoded = NULL, *encoded_expected = NULL;
2179 
2180     RSA_VALIDATE_RET( ctx != NULL );
2181     RSA_VALIDATE_RET( sig != NULL );
2182     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2183                         hashlen == 0 ) ||
2184                       hash != NULL );
2185 
2186     sig_len = ctx->len;
2187 
2188     /*
2189      * Prepare expected PKCS1 v1.5 encoding of hash.
2190      */
2191 
2192     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2193         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2194     {
2195         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2196         goto cleanup;
2197     }
2198 
2199     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2200                                              encoded_expected ) ) != 0 )
2201         goto cleanup;
2202 
2203     /*
2204      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2205      */
2206 
2207     ret = mbedtls_rsa_public( ctx, sig, encoded );
2208     if( ret != 0 )
2209         goto cleanup;
2210 
2211     /*
2212      * Compare
2213      */
2214 
2215     if( ( ret = mbedtls_ct_memcmp( encoded, encoded_expected,
2216                                               sig_len ) ) != 0 )
2217     {
2218         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2219         goto cleanup;
2220     }
2221 
2222 cleanup:
2223 
2224     if( encoded != NULL )
2225     {
2226         mbedtls_platform_zeroize( encoded, sig_len );
2227         mbedtls_free( encoded );
2228     }
2229 
2230     if( encoded_expected != NULL )
2231     {
2232         mbedtls_platform_zeroize( encoded_expected, sig_len );
2233         mbedtls_free( encoded_expected );
2234     }
2235 
2236     return( ret );
2237 }
2238 #endif /* MBEDTLS_PKCS1_V15 */
2239 
2240 /*
2241  * Do an RSA operation and check the message digest
2242  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2243 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2244                       mbedtls_md_type_t md_alg,
2245                       unsigned int hashlen,
2246                       const unsigned char *hash,
2247                       const unsigned char *sig )
2248 {
2249     RSA_VALIDATE_RET( ctx != NULL );
2250     RSA_VALIDATE_RET( sig != NULL );
2251     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2252                         hashlen == 0 ) ||
2253                       hash != NULL );
2254 
2255     switch( ctx->padding )
2256     {
2257 #if defined(MBEDTLS_PKCS1_V15)
2258         case MBEDTLS_RSA_PKCS_V15:
2259             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, md_alg,
2260                                                         hashlen, hash, sig );
2261 #endif
2262 
2263 #if defined(MBEDTLS_PKCS1_V21)
2264         case MBEDTLS_RSA_PKCS_V21:
2265             return mbedtls_rsa_rsassa_pss_verify( ctx, md_alg,
2266                                                   hashlen, hash, sig );
2267 #endif
2268 
2269         default:
2270             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2271     }
2272 }
2273 
2274 /*
2275  * Copy the components of an RSA key
2276  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2277 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2278 {
2279     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2280     RSA_VALIDATE_RET( dst != NULL );
2281     RSA_VALIDATE_RET( src != NULL );
2282 
2283     dst->len = src->len;
2284 
2285     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2286     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2287 
2288     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2289     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2290     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2291 
2292 #if !defined(MBEDTLS_RSA_NO_CRT)
2293     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2294     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2295     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2296     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2297     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2298 #endif
2299 
2300     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2301 
2302     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2303     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2304 
2305     dst->padding = src->padding;
2306     dst->hash_id = src->hash_id;
2307 
2308 cleanup:
2309     if( ret != 0 )
2310         mbedtls_rsa_free( dst );
2311 
2312     return( ret );
2313 }
2314 
2315 /*
2316  * Free the components of an RSA key
2317  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2318 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2319 {
2320     if( ctx == NULL )
2321         return;
2322 
2323     mbedtls_mpi_free( &ctx->Vi );
2324     mbedtls_mpi_free( &ctx->Vf );
2325     mbedtls_mpi_free( &ctx->RN );
2326     mbedtls_mpi_free( &ctx->D  );
2327     mbedtls_mpi_free( &ctx->Q  );
2328     mbedtls_mpi_free( &ctx->P  );
2329     mbedtls_mpi_free( &ctx->E  );
2330     mbedtls_mpi_free( &ctx->N  );
2331 
2332 #if !defined(MBEDTLS_RSA_NO_CRT)
2333     mbedtls_mpi_free( &ctx->RQ );
2334     mbedtls_mpi_free( &ctx->RP );
2335     mbedtls_mpi_free( &ctx->QP );
2336     mbedtls_mpi_free( &ctx->DQ );
2337     mbedtls_mpi_free( &ctx->DP );
2338 #endif /* MBEDTLS_RSA_NO_CRT */
2339 
2340 #if defined(MBEDTLS_THREADING_C)
2341     /* Free the mutex, but only if it hasn't been freed already. */
2342     if( ctx->ver != 0 )
2343     {
2344         mbedtls_mutex_free( &ctx->mutex );
2345         ctx->ver = 0;
2346     }
2347 #endif
2348 }
2349 
2350 #endif /* !MBEDTLS_RSA_ALT */
2351 
2352 #if defined(MBEDTLS_SELF_TEST)
2353 
2354 #include "mbedtls/sha1.h"
2355 
2356 /*
2357  * Example RSA-1024 keypair, for test purposes
2358  */
2359 #define KEY_LEN 128
2360 
2361 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2362                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2363                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2364                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2365                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2366                 "1AE31942917403FF4946B0A83D3D3E05" \
2367                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2368                 "5E94BB77B07507233A0BC7BAC8F90F79"
2369 
2370 #define RSA_E   "10001"
2371 
2372 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2373                 "66CA472BC44D253102F8B4A9D3BFA750" \
2374                 "91386C0077937FE33FA3252D28855837" \
2375                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2376                 "DF79C5CE07EE72C7F123142198164234" \
2377                 "CABB724CF78B8173B9F880FC86322407" \
2378                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2379                 "071513A1E85B5DFA031F21ECAE91A34D"
2380 
2381 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2382                 "2C01CAD19EA484A87EA4377637E75500" \
2383                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2384                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2385 
2386 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2387                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2388                 "910E4168387E3C30AA1E00C339A79508" \
2389                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2390 
2391 #define PT_LEN  24
2392 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2393                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2394 
2395 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2396 static int myrand( void *rng_state, unsigned char *output, size_t len )
2397 {
2398 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2399     size_t i;
2400 
2401     if( rng_state != NULL )
2402         rng_state  = NULL;
2403 
2404     for( i = 0; i < len; ++i )
2405         output[i] = rand();
2406 #else
2407     if( rng_state != NULL )
2408         rng_state = NULL;
2409 
2410     arc4random_buf( output, len );
2411 #endif /* !OpenBSD && !NetBSD */
2412 
2413     return( 0 );
2414 }
2415 #endif /* MBEDTLS_PKCS1_V15 */
2416 
2417 /*
2418  * Checkup routine
2419  */
mbedtls_rsa_self_test(int verbose)2420 int mbedtls_rsa_self_test( int verbose )
2421 {
2422     int ret = 0;
2423 #if defined(MBEDTLS_PKCS1_V15)
2424     size_t len;
2425     mbedtls_rsa_context rsa;
2426     unsigned char rsa_plaintext[PT_LEN];
2427     unsigned char rsa_decrypted[PT_LEN];
2428     unsigned char rsa_ciphertext[KEY_LEN];
2429 #if defined(MBEDTLS_SHA1_C)
2430     unsigned char sha1sum[20];
2431 #endif
2432 
2433     mbedtls_mpi K;
2434 
2435     mbedtls_mpi_init( &K );
2436     mbedtls_rsa_init( &rsa );
2437 
2438     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2439     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2440     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2441     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2442     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2443     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2444     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2445     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2446     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2447     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2448 
2449     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2450 
2451     if( verbose != 0 )
2452         mbedtls_printf( "  RSA key validation: " );
2453 
2454     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2455         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2456     {
2457         if( verbose != 0 )
2458             mbedtls_printf( "failed\n" );
2459 
2460         ret = 1;
2461         goto cleanup;
2462     }
2463 
2464     if( verbose != 0 )
2465         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2466 
2467     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2468 
2469     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL,
2470                                    PT_LEN, rsa_plaintext,
2471                                    rsa_ciphertext ) != 0 )
2472     {
2473         if( verbose != 0 )
2474             mbedtls_printf( "failed\n" );
2475 
2476         ret = 1;
2477         goto cleanup;
2478     }
2479 
2480     if( verbose != 0 )
2481         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2482 
2483     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL,
2484                                    &len, rsa_ciphertext, rsa_decrypted,
2485                                    sizeof(rsa_decrypted) ) != 0 )
2486     {
2487         if( verbose != 0 )
2488             mbedtls_printf( "failed\n" );
2489 
2490         ret = 1;
2491         goto cleanup;
2492     }
2493 
2494     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2495     {
2496         if( verbose != 0 )
2497             mbedtls_printf( "failed\n" );
2498 
2499         ret = 1;
2500         goto cleanup;
2501     }
2502 
2503     if( verbose != 0 )
2504         mbedtls_printf( "passed\n" );
2505 
2506 #if defined(MBEDTLS_SHA1_C)
2507     if( verbose != 0 )
2508         mbedtls_printf( "  PKCS#1 data sign  : " );
2509 
2510     if( mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2511     {
2512         if( verbose != 0 )
2513             mbedtls_printf( "failed\n" );
2514 
2515         return( 1 );
2516     }
2517 
2518     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2519                                 MBEDTLS_MD_SHA1, 20,
2520                                 sha1sum, rsa_ciphertext ) != 0 )
2521     {
2522         if( verbose != 0 )
2523             mbedtls_printf( "failed\n" );
2524 
2525         ret = 1;
2526         goto cleanup;
2527     }
2528 
2529     if( verbose != 0 )
2530         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2531 
2532     if( mbedtls_rsa_pkcs1_verify( &rsa, MBEDTLS_MD_SHA1, 20,
2533                                   sha1sum, rsa_ciphertext ) != 0 )
2534     {
2535         if( verbose != 0 )
2536             mbedtls_printf( "failed\n" );
2537 
2538         ret = 1;
2539         goto cleanup;
2540     }
2541 
2542     if( verbose != 0 )
2543         mbedtls_printf( "passed\n" );
2544 #endif /* MBEDTLS_SHA1_C */
2545 
2546     if( verbose != 0 )
2547         mbedtls_printf( "\n" );
2548 
2549 cleanup:
2550     mbedtls_mpi_free( &K );
2551     mbedtls_rsa_free( &rsa );
2552 #else /* MBEDTLS_PKCS1_V15 */
2553     ((void) verbose);
2554 #endif /* MBEDTLS_PKCS1_V15 */
2555     return( ret );
2556 }
2557 
2558 #endif /* MBEDTLS_SELF_TEST */
2559 
2560 #endif /* MBEDTLS_RSA_C */
2561