• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21 
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25 
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28 
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36 
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66 
67 /**
68  * DOC: fence cross-driver contract
69  *
70  * Since &dma_fence provide a cross driver contract, all drivers must follow the
71  * same rules
72  *
73  * * Fences must complete in a reasonable time. Fences which represent kernels
74  *   and shaders submitted by userspace, which could run forever, must be backed
75  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
76  *   further command submission and force complete all in-flight fences, e.g.
77  *   when the driver or hardware do not support gpu reset, or if the gpu reset
78  *   failed for some reason. Ideally the driver supports gpu recovery which only
79  *   affects the offending userspace context, and no other userspace
80  *   submissions.
81  *
82  * * Drivers may have different ideas of what completion within a reasonable
83  *   time means. Some hang recovery code uses a fixed timeout, others a mix
84  *   between observing forward progress and increasingly strict timeouts.
85  *   Drivers should not try to second guess timeout handling of fences from
86  *   other drivers.
87  *
88  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
89  *   drivers should annotate all code required to reach dma_fence_signal(),
90  *   which completes the fences, with dma_fence_begin_signalling() and
91  *   dma_fence_end_signalling().
92  *
93  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
94  *   This means any code required for fence completion cannot acquire a
95  *   &dma_resv lock. Note that this also pulls in the entire established
96  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
97  *
98  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
99  *   callbacks. This means any code required for fence completion cannot
100  *   allocate memory with GFP_KERNEL.
101  *
102  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
103  *   respectively &mmu_interval_notifier callbacks. This means any code required
104  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
105  *   Only GFP_ATOMIC is permissible, which might fail.
106  *
107  * Note that only GPU drivers have a reasonable excuse for both requiring
108  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
109  * track asynchronous compute work using &dma_fence. No driver outside of
110  * drivers/gpu should ever call dma_fence_wait() in such contexts.
111  */
112 
dma_fence_stub_get_name(struct dma_fence * fence)113 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
114 {
115     return "stub";
116 }
117 
118 static const struct dma_fence_ops dma_fence_stub_ops = {
119     .get_driver_name = dma_fence_stub_get_name,
120     .get_timeline_name = dma_fence_stub_get_name,
121 };
122 
123 /**
124  * dma_fence_get_stub - return a signaled fence
125  *
126  * Return a stub fence which is already signaled.
127  */
dma_fence_get_stub(void)128 struct dma_fence *dma_fence_get_stub(void)
129 {
130     spin_lock(&dma_fence_stub_lock);
131     if (!dma_fence_stub.ops) {
132         dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops, &dma_fence_stub_lock, 0, 0);
133         dma_fence_signal_locked(&dma_fence_stub);
134     }
135     spin_unlock(&dma_fence_stub_lock);
136 
137     return dma_fence_get(&dma_fence_stub);
138 }
139 EXPORT_SYMBOL(dma_fence_get_stub);
140 
141 /**
142  * dma_fence_context_alloc - allocate an array of fence contexts
143  * @num: amount of contexts to allocate
144  *
145  * This function will return the first index of the number of fence contexts
146  * allocated.  The fence context is used for setting &dma_fence.context to a
147  * unique number by passing the context to dma_fence_init().
148  */
dma_fence_context_alloc(unsigned num)149 u64 dma_fence_context_alloc(unsigned num)
150 {
151     WARN_ON(!num);
152     return atomic64_fetch_add(num, &dma_fence_context_counter);
153 }
154 EXPORT_SYMBOL(dma_fence_context_alloc);
155 
156 /**
157  * DOC: fence signalling annotation
158  *
159  * Proving correctness of all the kernel code around &dma_fence through code
160  * review and testing is tricky for a few reasons:
161  *
162  * * It is a cross-driver contract, and therefore all drivers must follow the
163  *   same rules for lock nesting order, calling contexts for various functions
164  *   and anything else significant for in-kernel interfaces. But it is also
165  *   impossible to test all drivers in a single machine, hence brute-force N vs.
166  *   N testing of all combinations is impossible. Even just limiting to the
167  *   possible combinations is infeasible.
168  *
169  * * There is an enormous amount of driver code involved. For render drivers
170  *   there's the tail of command submission, after fences are published,
171  *   scheduler code, interrupt and workers to process job completion,
172  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
173  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
174  *   and &shrinker. For modesetting drivers there's the commit tail functions
175  *   between when fences for an atomic modeset are published, and when the
176  *   corresponding vblank completes, including any interrupt processing and
177  *   related workers. Auditing all that code, across all drivers, is not
178  *   feasible.
179  *
180  * * Due to how many other subsystems are involved and the locking hierarchies
181  *   this pulls in there is extremely thin wiggle-room for driver-specific
182  *   differences. &dma_fence interacts with almost all of the core memory
183  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
184  *   dma_resv_unlock(). On the other side it also interacts through all
185  *   allocation sites through &mmu_notifier and &shrinker.
186  *
187  * Furthermore lockdep does not handle cross-release dependencies, which means
188  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
189  * at runtime with some quick testing. The simplest example is one thread
190  * waiting on a &dma_fence while holding a lock::
191  *
192  *     lock(A);
193  *     dma_fence_wait(B);
194  *     unlock(A);
195  *
196  * while the other thread is stuck trying to acquire the same lock, which
197  * prevents it from signalling the fence the previous thread is stuck waiting
198  * on::
199  *
200  *     lock(A);
201  *     unlock(A);
202  *     dma_fence_signal(B);
203  *
204  * By manually annotating all code relevant to signalling a &dma_fence we can
205  * teach lockdep about these dependencies, which also helps with the validation
206  * headache since now lockdep can check all the rules for us::
207  *
208  *    cookie = dma_fence_begin_signalling();
209  *    lock(A);
210  *    unlock(A);
211  *    dma_fence_signal(B);
212  *    dma_fence_end_signalling(cookie);
213  *
214  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
215  * annotate critical sections the following rules need to be observed:
216  *
217  * * All code necessary to complete a &dma_fence must be annotated, from the
218  *   point where a fence is accessible to other threads, to the point where
219  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
220  *   and due to the very strict rules and many corner cases it is infeasible to
221  *   catch these just with review or normal stress testing.
222  *
223  * * &struct dma_resv deserves a special note, since the readers are only
224  *   protected by rcu. This means the signalling critical section starts as soon
225  *   as the new fences are installed, even before dma_resv_unlock() is called.
226  *
227  * * The only exception are fast paths and opportunistic signalling code, which
228  *   calls dma_fence_signal() purely as an optimization, but is not required to
229  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
230  *   which calls dma_fence_signal(), while the mandatory completion path goes
231  *   through a hardware interrupt and possible job completion worker.
232  *
233  * * To aid composability of code, the annotations can be freely nested, as long
234  *   as the overall locking hierarchy is consistent. The annotations also work
235  *   both in interrupt and process context. Due to implementation details this
236  *   requires that callers pass an opaque cookie from
237  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
238  *
239  * * Validation against the cross driver contract is implemented by priming
240  *   lockdep with the relevant hierarchy at boot-up. This means even just
241  *   testing with a single device is enough to validate a driver, at least as
242  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
243  *   concerned.
244  */
245 #ifdef CONFIG_LOCKDEP
246 static struct lockdep_map dma_fence_lockdep_map = {.name = "dma_fence_map"};
247 
248 /**
249  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
250  *
251  * Drivers should use this to annotate the beginning of any code section
252  * required to eventually complete &dma_fence by calling dma_fence_signal().
253  *
254  * The end of these critical sections are annotated with
255  * dma_fence_end_signalling().
256  *
257  * Returns
258  *
259  * Opaque cookie needed by the implementation, which needs to be passed to
260  * dma_fence_end_signalling().
261  */
dma_fence_begin_signalling(void)262 bool dma_fence_begin_signalling(void)
263 {
264     /* explicitly nesting ... */
265     if (lock_is_held_type(&dma_fence_lockdep_map, 1)) {
266         return true;
267     }
268 
269     /* rely on might_sleep check for soft/hardirq locks */
270     if (in_atomic()) {
271         return true;
272     }
273 
274     /* ... and non-recursive readlock */
275     lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
276 
277     return false;
278 }
279 EXPORT_SYMBOL(dma_fence_begin_signalling);
280 
281 /**
282  * dma_fence_end_signalling - end a critical DMA fence signalling section
283  * @cookie: opaque cookie from dma_fence_begin_signalling()
284  *
285  * Closes a critical section annotation opened by dma_fence_begin_signalling().
286  */
dma_fence_end_signalling(bool cookie)287 void dma_fence_end_signalling(bool cookie)
288 {
289     if (cookie) {
290         return;
291     }
292 
293     lock_release(&dma_fence_lockdep_map, _RET_IP_);
294 }
295 EXPORT_SYMBOL(dma_fence_end_signalling);
296 
_dma_fence_might_wait(void)297 void _dma_fence_might_wait(void)
298 {
299     bool tmp;
300 
301     tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
302     if (tmp) {
303         lock_release(&dma_fence_lockdep_map, _THIS_IP_);
304     }
305     lock_map_acquire(&dma_fence_lockdep_map);
306     lock_map_release(&dma_fence_lockdep_map);
307     if (tmp) {
308         lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
309     }
310 }
311 #endif
312 
313 /**
314  * dma_fence_signal_timestamp_locked - signal completion of a fence
315  * @fence: the fence to signal
316  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
317  *
318  * Signal completion for software callbacks on a fence, this will unblock
319  * dma_fence_wait() calls and run all the callbacks added with
320  * dma_fence_add_callback(). Can be called multiple times, but since a fence
321  * can only go from the unsignaled to the signaled state and not back, it will
322  * only be effective the first time. Set the timestamp provided as the fence
323  * signal timestamp.
324  *
325  * Unlike dma_fence_signal_timestamp(), this function must be called with
326  * &dma_fence.lock held.
327  *
328  * Returns 0 on success and a negative error value when @fence has been
329  * signalled already.
330  */
dma_fence_signal_timestamp_locked(struct dma_fence * fence,ktime_t timestamp)331 int dma_fence_signal_timestamp_locked(struct dma_fence *fence, ktime_t timestamp)
332 {
333     struct dma_fence_cb *cur, *tmp;
334     struct list_head cb_list;
335 
336     lockdep_assert_held(fence->lock);
337 
338     if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
339         &fence->flags)))
340         return -EINVAL;
341 
342     /* Stash the cb_list before replacing it with the timestamp */
343     list_replace(&fence->cb_list, &cb_list);
344 
345     fence->timestamp = timestamp;
346     set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
347     trace_dma_fence_signaled(fence);
348 
349     list_for_each_entry_safe(cur, tmp, &cb_list, node) {
350         INIT_LIST_HEAD(&cur->node);
351         cur->func(fence, cur);
352     }
353 
354     return 0;
355 }
356 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
357 
358 /**
359  * dma_fence_signal_timestamp - signal completion of a fence
360  * @fence: the fence to signal
361  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
362  *
363  * Signal completion for software callbacks on a fence, this will unblock
364  * dma_fence_wait() calls and run all the callbacks added with
365  * dma_fence_add_callback(). Can be called multiple times, but since a fence
366  * can only go from the unsignaled to the signaled state and not back, it will
367  * only be effective the first time. Set the timestamp provided as the fence
368  * signal timestamp.
369  *
370  * Returns 0 on success and a negative error value when @fence has been
371  * signalled already.
372  */
dma_fence_signal_timestamp(struct dma_fence * fence,ktime_t timestamp)373 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
374 {
375     unsigned long flags;
376     int ret;
377 
378     if (!fence) {
379         return -EINVAL;
380     }
381 
382     spin_lock_irqsave(fence->lock, flags);
383     ret = dma_fence_signal_timestamp_locked(fence, timestamp);
384     spin_unlock_irqrestore(fence->lock, flags);
385 
386     return ret;
387 }
388 EXPORT_SYMBOL(dma_fence_signal_timestamp);
389 /**
390  * dma_fence_signal_locked - signal completion of a fence
391  * @fence: the fence to signal
392  *
393  * Signal completion for software callbacks on a fence, this will unblock
394  * dma_fence_wait() calls and run all the callbacks added with
395  * dma_fence_add_callback(). Can be called multiple times, but since a fence
396  * can only go from the unsignaled to the signaled state and not back, it will
397  * only be effective the first time.
398  *
399  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
400  * held.
401  *
402  * Returns 0 on success and a negative error value when @fence has been
403  * signalled already.
404  */
dma_fence_signal_locked(struct dma_fence * fence)405 int dma_fence_signal_locked(struct dma_fence *fence)
406 {
407     return dma_fence_signal_timestamp_locked(fence, ktime_get());
408 }
409 EXPORT_SYMBOL(dma_fence_signal_locked);
410 
411 /**
412  * dma_fence_signal - signal completion of a fence
413  * @fence: the fence to signal
414  *
415  * Signal completion for software callbacks on a fence, this will unblock
416  * dma_fence_wait() calls and run all the callbacks added with
417  * dma_fence_add_callback(). Can be called multiple times, but since a fence
418  * can only go from the unsignaled to the signaled state and not back, it will
419  * only be effective the first time.
420  *
421  * Returns 0 on success and a negative error value when @fence has been
422  * signalled already.
423  */
dma_fence_signal(struct dma_fence * fence)424 int dma_fence_signal(struct dma_fence *fence)
425 {
426     unsigned long flags;
427     int ret;
428     bool tmp;
429 
430     if (!fence) {
431         return -EINVAL;
432     }
433 
434     tmp = dma_fence_begin_signalling();
435 
436     spin_lock_irqsave(fence->lock, flags);
437     ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
438     spin_unlock_irqrestore(fence->lock, flags);
439 
440     dma_fence_end_signalling(tmp);
441 
442     return ret;
443 }
444 EXPORT_SYMBOL(dma_fence_signal);
445 
446 /**
447  * dma_fence_wait_timeout - sleep until the fence gets signaled
448  * or until timeout elapses
449  * @fence: the fence to wait on
450  * @intr: if true, do an interruptible wait
451  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
452  *
453  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
454  * remaining timeout in jiffies on success. Other error values may be
455  * returned on custom implementations.
456  *
457  * Performs a synchronous wait on this fence. It is assumed the caller
458  * directly or indirectly (buf-mgr between reservation and committing)
459  * holds a reference to the fence, otherwise the fence might be
460  * freed before return, resulting in undefined behavior.
461  *
462  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
463  */
dma_fence_wait_timeout(struct dma_fence * fence,bool intr,signed long timeout)464 signed long dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
465 {
466     signed long ret;
467 
468     if (WARN_ON(timeout < 0)) {
469         return -EINVAL;
470     }
471 
472     might_sleep();
473 
474     _dma_fence_might_wait();
475 
476     trace_dma_fence_wait_start(fence);
477     if (fence->ops->wait) {
478         ret = fence->ops->wait(fence, intr, timeout);
479     } else {
480         ret = dma_fence_default_wait(fence, intr, timeout);
481     }
482     trace_dma_fence_wait_end(fence);
483     return ret;
484 }
485 EXPORT_SYMBOL(dma_fence_wait_timeout);
486 
487 /**
488  * dma_fence_release - default relese function for fences
489  * @kref: &dma_fence.recfount
490  *
491  * This is the default release functions for &dma_fence. Drivers shouldn't call
492  * this directly, but instead call dma_fence_put().
493  */
dma_fence_release(struct kref * kref)494 void dma_fence_release(struct kref *kref)
495 {
496     struct dma_fence *fence = container_of(kref, struct dma_fence, refcount);
497 
498     trace_dma_fence_destroy(fence);
499 
500     if (WARN(!list_empty(&fence->cb_list) && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
501              "Fence %s:%s:%llx:%llx released with pending signals!\n", fence->ops->get_driver_name(fence),
502              fence->ops->get_timeline_name(fence), fence->context, fence->seqno)) {
503         unsigned long flags;
504 
505         /*
506          * Failed to signal before release, likely a refcounting issue.
507          *
508          * This should never happen, but if it does make sure that we
509          * don't leave chains dangling. We set the error flag first
510          * so that the callbacks know this signal is due to an error.
511          */
512         spin_lock_irqsave(fence->lock, flags);
513         fence->error = -EDEADLK;
514         dma_fence_signal_locked(fence);
515         spin_unlock_irqrestore(fence->lock, flags);
516     }
517 
518     if (fence->ops->release) {
519         fence->ops->release(fence);
520     } else {
521         dma_fence_free(fence);
522     }
523 }
524 EXPORT_SYMBOL(dma_fence_release);
525 
526 /**
527  * dma_fence_free - default release function for &dma_fence.
528  * @fence: fence to release
529  *
530  * This is the default implementation for &dma_fence_ops.release. It calls
531  * kfree_rcu() on @fence.
532  */
dma_fence_free(struct dma_fence * fence)533 void dma_fence_free(struct dma_fence *fence)
534 {
535     kfree_rcu(fence, rcu);
536 }
537 EXPORT_SYMBOL(dma_fence_free);
538 
_dma_fence_enable_signaling(struct dma_fence * fence)539 static bool _dma_fence_enable_signaling(struct dma_fence *fence)
540 {
541     bool was_set;
542 
543     lockdep_assert_held(fence->lock);
544 
545     was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
546 
547     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
548         return false;
549     }
550 
551     if (!was_set && fence->ops->enable_signaling) {
552         trace_dma_fence_enable_signal(fence);
553 
554         if (!fence->ops->enable_signaling(fence)) {
555             dma_fence_signal_locked(fence);
556             return false;
557         }
558     }
559 
560     return true;
561 }
562 
563 /**
564  * dma_fence_enable_sw_signaling - enable signaling on fence
565  * @fence: the fence to enable
566  *
567  * This will request for sw signaling to be enabled, to make the fence
568  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
569  * internally.
570  */
dma_fence_enable_sw_signaling(struct dma_fence * fence)571 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
572 {
573     unsigned long flags;
574 
575     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
576         return;
577     }
578 
579     spin_lock_irqsave(fence->lock, flags);
580     _dma_fence_enable_signaling(fence);
581     spin_unlock_irqrestore(fence->lock, flags);
582 }
583 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
584 
585 /**
586  * dma_fence_add_callback - add a callback to be called when the fence
587  * is signaled
588  * @fence: the fence to wait on
589  * @cb: the callback to register
590  * @func: the function to call
591  *
592  * @cb will be initialized by dma_fence_add_callback(), no initialization
593  * by the caller is required. Any number of callbacks can be registered
594  * to a fence, but a callback can only be registered to one fence at a time.
595  *
596  * Note that the callback can be called from an atomic context.  If
597  * fence is already signaled, this function will return -ENOENT (and
598  * *not* call the callback).
599  *
600  * Add a software callback to the fence. Same restrictions apply to
601  * refcount as it does to dma_fence_wait(), however the caller doesn't need to
602  * keep a refcount to fence afterward dma_fence_add_callback() has returned:
603  * when software access is enabled, the creator of the fence is required to keep
604  * the fence alive until after it signals with dma_fence_signal(). The callback
605  * itself can be called from irq context.
606  *
607  * Returns 0 in case of success, -ENOENT if the fence is already signaled
608  * and -EINVAL in case of error.
609  */
dma_fence_add_callback(struct dma_fence * fence,struct dma_fence_cb * cb,dma_fence_func_t func)610 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb, dma_fence_func_t func)
611 {
612     unsigned long flags;
613     int ret = 0;
614 
615     if (WARN_ON(!fence || !func)) {
616         return -EINVAL;
617     }
618 
619     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
620         INIT_LIST_HEAD(&cb->node);
621         return -ENOENT;
622     }
623 
624     spin_lock_irqsave(fence->lock, flags);
625 
626     if (_dma_fence_enable_signaling(fence)) {
627         cb->func = func;
628         list_add_tail(&cb->node, &fence->cb_list);
629     } else {
630         INIT_LIST_HEAD(&cb->node);
631         ret = -ENOENT;
632     }
633 
634     spin_unlock_irqrestore(fence->lock, flags);
635 
636     return ret;
637 }
638 EXPORT_SYMBOL(dma_fence_add_callback);
639 
640 /**
641  * dma_fence_get_status - returns the status upon completion
642  * @fence: the dma_fence to query
643  *
644  * This wraps dma_fence_get_status_locked() to return the error status
645  * condition on a signaled fence. See dma_fence_get_status_locked() for more
646  * details.
647  *
648  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
649  * been signaled without an error condition, or a negative error code
650  * if the fence has been completed in err.
651  */
dma_fence_get_status(struct dma_fence * fence)652 int dma_fence_get_status(struct dma_fence *fence)
653 {
654     unsigned long flags;
655     int status;
656 
657     spin_lock_irqsave(fence->lock, flags);
658     status = dma_fence_get_status_locked(fence);
659     spin_unlock_irqrestore(fence->lock, flags);
660 
661     return status;
662 }
663 EXPORT_SYMBOL(dma_fence_get_status);
664 
665 /**
666  * dma_fence_remove_callback - remove a callback from the signaling list
667  * @fence: the fence to wait on
668  * @cb: the callback to remove
669  *
670  * Remove a previously queued callback from the fence. This function returns
671  * true if the callback is successfully removed, or false if the fence has
672  * already been signaled.
673  *
674  * *WARNING*:
675  * Cancelling a callback should only be done if you really know what you're
676  * doing, since deadlocks and race conditions could occur all too easily. For
677  * this reason, it should only ever be done on hardware lockup recovery,
678  * with a reference held to the fence.
679  *
680  * Behaviour is undefined if @cb has not been added to @fence using
681  * dma_fence_add_callback() beforehand.
682  */
dma_fence_remove_callback(struct dma_fence * fence,struct dma_fence_cb * cb)683 bool dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
684 {
685     unsigned long flags;
686     bool ret;
687 
688     spin_lock_irqsave(fence->lock, flags);
689 
690     ret = !list_empty(&cb->node);
691     if (ret) {
692         list_del_init(&cb->node);
693     }
694 
695     spin_unlock_irqrestore(fence->lock, flags);
696 
697     return ret;
698 }
699 EXPORT_SYMBOL(dma_fence_remove_callback);
700 
701 struct default_wait_cb {
702     struct dma_fence_cb base;
703     struct task_struct *task;
704 };
705 
dma_fence_default_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)706 static void dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
707 {
708     struct default_wait_cb *wait = container_of(cb, struct default_wait_cb, base);
709 
710     wake_up_state(wait->task, TASK_NORMAL);
711 }
712 
713 /**
714  * dma_fence_default_wait - default sleep until the fence gets signaled
715  * or until timeout elapses
716  * @fence: the fence to wait on
717  * @intr: if true, do an interruptible wait
718  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
719  *
720  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
721  * remaining timeout in jiffies on success. If timeout is zero the value one is
722  * returned if the fence is already signaled for consistency with other
723  * functions taking a jiffies timeout.
724  */
dma_fence_default_wait(struct dma_fence * fence,bool intr,signed long timeout)725 signed long dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
726 {
727     struct default_wait_cb cb;
728     unsigned long flags;
729     signed long ret = timeout ? timeout : 1;
730 
731     if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
732         return ret;
733     }
734 
735     spin_lock_irqsave(fence->lock, flags);
736 
737     if (intr && signal_pending(current)) {
738         ret = -ERESTARTSYS;
739         goto out;
740     }
741 
742     if (!_dma_fence_enable_signaling(fence)) {
743         goto out;
744     }
745 
746     if (!timeout) {
747         ret = 0;
748         goto out;
749     }
750 
751     cb.base.func = dma_fence_default_wait_cb;
752     cb.task = current;
753     list_add(&cb.base.node, &fence->cb_list);
754 
755     while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
756         if (intr) {
757             __set_current_state(TASK_INTERRUPTIBLE);
758         } else {
759             __set_current_state(TASK_UNINTERRUPTIBLE);
760         }
761         spin_unlock_irqrestore(fence->lock, flags);
762 
763         ret = schedule_timeout(ret);
764 
765         spin_lock_irqsave(fence->lock, flags);
766         if (ret > 0 && intr && signal_pending(current)) {
767             ret = -ERESTARTSYS;
768         }
769     }
770 
771     if (!list_empty(&cb.base.node)) {
772         list_del(&cb.base.node);
773     }
774     __set_current_state(TASK_RUNNING);
775 
776 out:
777     spin_unlock_irqrestore(fence->lock, flags);
778     return ret;
779 }
780 EXPORT_SYMBOL(dma_fence_default_wait);
781 
dma_fence_test_signaled_any(struct dma_fence ** fences,uint32_t count,uint32_t * idx)782 static bool dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count, uint32_t *idx)
783 {
784     int i;
785 
786     for (i = 0; i < count; ++i) {
787         struct dma_fence *fence = fences[i];
788         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
789             if (idx) {
790                 *idx = i;
791             }
792             return true;
793         }
794     }
795     return false;
796 }
797 
798 /**
799  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
800  * or until timeout elapses
801  * @fences: array of fences to wait on
802  * @count: number of fences to wait on
803  * @intr: if true, do an interruptible wait
804  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
805  * @idx: used to store the first signaled fence index, meaningful only on
806  *    positive return
807  *
808  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
809  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
810  * on success.
811  *
812  * Synchronous waits for the first fence in the array to be signaled. The
813  * caller needs to hold a reference to all fences in the array, otherwise a
814  * fence might be freed before return, resulting in undefined behavior.
815  *
816  * See also dma_fence_wait() and dma_fence_wait_timeout().
817  */
dma_fence_wait_any_timeout(struct dma_fence ** fences,uint32_t count,bool intr,signed long timeout,uint32_t * idx)818 signed long dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count, bool intr, signed long timeout,
819                                        uint32_t *idx)
820 {
821     struct default_wait_cb *cb;
822     signed long ret = timeout;
823     unsigned i;
824 
825     if (WARN_ON(!fences || !count || timeout < 0)) {
826         return -EINVAL;
827     }
828 
829     if (timeout == 0) {
830         for (i = 0; i < count; ++i) {
831             if (dma_fence_is_signaled(fences[i]) && idx) {
832                     *idx = i;
833                 return 1;
834             }
835         }
836         return 0;
837     }
838 
839     cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
840     if (cb == NULL) {
841         ret = -ENOMEM;
842         goto err_free_cb;
843     }
844 
845     for (i = 0; i < count; ++i) {
846         struct dma_fence *fence = fences[i];
847         cb[i].task = current;
848         if (dma_fence_add_callback(fence, &cb[i].base, dma_fence_default_wait_cb)) {
849             if (idx) {
850                 *idx = i;
851             }
852             goto fence_rm_cb;
853         }
854     }
855 
856     while (ret > 0) {
857         if (intr) {
858             set_current_state(TASK_INTERRUPTIBLE);
859         } else {
860             set_current_state(TASK_UNINTERRUPTIBLE);
861         }
862 
863         if (dma_fence_test_signaled_any(fences, count, idx)) {
864             break;
865         }
866 
867         ret = schedule_timeout(ret);
868         if (ret > 0 && intr && signal_pending(current)) {
869             ret = -ERESTARTSYS;
870         }
871     }
872     __set_current_state(TASK_RUNNING);
873 fence_rm_cb:
874     while (i-- > 0) {
875         dma_fence_remove_callback(fences[i], &cb[i].base);
876     }
877 err_free_cb:
878     kfree(cb);
879 
880     return ret;
881 }
882 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
883 
884 /**
885  * dma_fence_init - Initialize a custom fence.
886  * @fence: the fence to initialize
887  * @ops: the dma_fence_ops for operations on this fence
888  * @lock: the irqsafe spinlock to use for locking this fence
889  * @context: the execution context this fence is run on
890  * @seqno: a linear increasing sequence number for this context
891  *
892  * Initializes an allocated fence, the caller doesn't have to keep its
893  * refcount after committing with this fence, but it will need to hold a
894  * refcount again if &dma_fence_ops.enable_signaling gets called.
895  *
896  * context and seqno are used for easy comparison between fences, allowing
897  * to check which fence is later by simply using dma_fence_later().
898  */
dma_fence_init(struct dma_fence * fence,const struct dma_fence_ops * ops,spinlock_t * lock,u64 context,u64 seqno)899 void dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops, spinlock_t *lock, u64 context, u64 seqno)
900 {
901     BUG_ON(!lock);
902     BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
903 
904     kref_init(&fence->refcount);
905     fence->ops = ops;
906     INIT_LIST_HEAD(&fence->cb_list);
907     fence->lock = lock;
908     fence->context = context;
909     fence->seqno = seqno;
910     fence->flags = 0UL;
911     fence->error = 0;
912 
913     trace_dma_fence_init(fence);
914 }
915 EXPORT_SYMBOL(dma_fence_init);
916