1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/power/snapshot.c
4 *
5 * This file provides system snapshot/restore functionality for swsusp.
6 *
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 */
10
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/io.h>
39
40 #include "power.h"
41
42 #define SNAPSHOT_TWO 2
43 #define SNAPSHOT_FIVE 5
44
45 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
46 static bool hibernate_restore_protection;
47 static bool hibernate_restore_protection_active;
48
enable_restore_image_protection(void)49 void enable_restore_image_protection(void)
50 {
51 hibernate_restore_protection = true;
52 }
53
hibernate_restore_protection_begin(void)54 static inline void hibernate_restore_protection_begin(void)
55 {
56 hibernate_restore_protection_active = hibernate_restore_protection;
57 }
58
hibernate_restore_protection_end(void)59 static inline void hibernate_restore_protection_end(void)
60 {
61 hibernate_restore_protection_active = false;
62 }
63
hibernate_restore_protect_page(void * page_address)64 static inline void hibernate_restore_protect_page(void *page_address)
65 {
66 if (hibernate_restore_protection_active) {
67 set_memory_ro((unsigned long)page_address, 1);
68 }
69 }
70
hibernate_restore_unprotect_page(void * page_address)71 static inline void hibernate_restore_unprotect_page(void *page_address)
72 {
73 if (hibernate_restore_protection_active) {
74 set_memory_rw((unsigned long)page_address, 1);
75 }
76 }
77 #else
hibernate_restore_protection_begin(void)78 static inline void hibernate_restore_protection_begin(void)
79 {
80 }
hibernate_restore_protection_end(void)81 static inline void hibernate_restore_protection_end(void)
82 {
83 }
hibernate_restore_protect_page(void * page_address)84 static inline void hibernate_restore_protect_page(void *page_address)
85 {
86 }
hibernate_restore_unprotect_page(void * page_address)87 static inline void hibernate_restore_unprotect_page(void *page_address)
88 {
89 }
90 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
91
92 static int swsusp_page_is_free(struct page *);
93 static void swsusp_set_page_forbidden(struct page *);
94 static void swsusp_unset_page_forbidden(struct page *);
95
96 /*
97 * Number of bytes to reserve for memory allocations made by device drivers
98 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
99 * cause image creation to fail (tunable via /sys/power/reserved_size).
100 */
101 unsigned long reserved_size;
102
hibernate_reserved_size_init(void)103 void __init hibernate_reserved_size_init(void)
104 {
105 reserved_size = SPARE_PAGES * PAGE_SIZE;
106 }
107
108 /*
109 * Preferred image size in bytes (tunable via /sys/power/image_size).
110 * When it is set to N, swsusp will do its best to ensure the image
111 * size will not exceed N bytes, but if that is impossible, it will
112 * try to create the smallest image possible.
113 */
114 unsigned long image_size;
115
hibernate_image_size_init(void)116 void __init hibernate_image_size_init(void)
117 {
118 image_size = ((totalram_pages() * SNAPSHOT_TWO) / SNAPSHOT_FIVE) * PAGE_SIZE;
119 }
120
121 /*
122 * List of PBEs needed for restoring the pages that were allocated before
123 * the suspend and included in the suspend image, but have also been
124 * allocated by the "resume" kernel, so their contents cannot be written
125 * directly to their "original" page frames.
126 */
127 struct pbe *restore_pblist;
128
129 /* struct linked_page is used to build chains of pages */
130
131 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
132
133 struct linked_page {
134 struct linked_page *next;
135 char data[LINKED_PAGE_DATA_SIZE];
136 } __packed;
137
138 /*
139 * List of "safe" pages (ie. pages that were not used by the image kernel
140 * before hibernation) that may be used as temporary storage for image kernel
141 * memory contents.
142 */
143 static struct linked_page *safe_pages_list;
144
145 /* Pointer to an auxiliary buffer (1 page) */
146 static void *buffer;
147
148 #define PG_ANY 0
149 #define PG_SAFE 1
150 #define PG_UNSAFE_CLEAR 1
151 #define PG_UNSAFE_KEEP 0
152
153 static unsigned int allocated_unsafe_pages;
154
155 /**
156 * get_image_page - Allocate a page for a hibernation image.
157 * @gfp_mask: GFP mask for the allocation.
158 * @safe_needed: Get pages that were not used before hibernation (restore only)
159 *
160 * During image restoration, for storing the PBE list and the image data, we can
161 * only use memory pages that do not conflict with the pages used before
162 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
163 * using allocated_unsafe_pages.
164 *
165 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
166 * swsusp_free() can release it.
167 */
get_image_page(gfp_t gfp_mask,int safe_needed)168 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
169 {
170 void *res;
171
172 res = (void *)get_zeroed_page(gfp_mask);
173 if (safe_needed) {
174 while (res && swsusp_page_is_free(virt_to_page(res))) {
175 /* The page is unsafe, mark it for swsusp_free() */
176 swsusp_set_page_forbidden(virt_to_page(res));
177 allocated_unsafe_pages++;
178 res = (void *)get_zeroed_page(gfp_mask);
179 }
180 }
181 if (res) {
182 swsusp_set_page_forbidden(virt_to_page(res));
183 swsusp_set_page_free(virt_to_page(res));
184 }
185 return res;
186 }
187
_get_safe_page(gfp_t gfp_mask)188 static void *_get_safe_page(gfp_t gfp_mask)
189 {
190 if (safe_pages_list) {
191 void *ret = safe_pages_list;
192
193 safe_pages_list = safe_pages_list->next;
194 memset(ret, 0, PAGE_SIZE);
195 return ret;
196 }
197 return get_image_page(gfp_mask, PG_SAFE);
198 }
199
get_safe_page(gfp_t gfp_mask)200 unsigned long get_safe_page(gfp_t gfp_mask)
201 {
202 return (unsigned long)_get_safe_page(gfp_mask);
203 }
204
alloc_image_page(gfp_t gfp_mask)205 static struct page *alloc_image_page(gfp_t gfp_mask)
206 {
207 struct page *page;
208
209 page = alloc_page(gfp_mask);
210 if (page) {
211 swsusp_set_page_forbidden(page);
212 swsusp_set_page_free(page);
213 }
214 return page;
215 }
216
recycle_safe_page(void * page_address)217 static void recycle_safe_page(void *page_address)
218 {
219 struct linked_page *lp = page_address;
220
221 lp->next = safe_pages_list;
222 safe_pages_list = lp;
223 }
224
225 /**
226 * free_image_page - Free a page allocated for hibernation image.
227 * @addr: Address of the page to free.
228 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
229 *
230 * The page to free should have been allocated by get_image_page() (page flags
231 * set by it are affected).
232 */
free_image_page(void * addr,int clear_nosave_free)233 static inline void free_image_page(void *addr, int clear_nosave_free)
234 {
235 struct page *page;
236
237 BUG_ON(!virt_addr_valid(addr));
238
239 page = virt_to_page(addr);
240
241 swsusp_unset_page_forbidden(page);
242 if (clear_nosave_free) {
243 swsusp_unset_page_free(page);
244 }
245
246 __free_page(page);
247 }
248
free_list_of_pages(struct linked_page * list,int clear_page_nosave)249 static inline void free_list_of_pages(struct linked_page *list, int clear_page_nosave)
250 {
251 while (list) {
252 struct linked_page *lp = list->next;
253
254 free_image_page(list, clear_page_nosave);
255 list = lp;
256 }
257 }
258
259 /*
260 * struct chain_allocator is used for allocating small objects out of
261 * a linked list of pages called 'the chain'.
262 *
263 * The chain grows each time when there is no room for a new object in
264 * the current page. The allocated objects cannot be freed individually.
265 * It is only possible to free them all at once, by freeing the entire
266 * chain.
267 *
268 * NOTE: The chain allocator may be inefficient if the allocated objects
269 * are not much smaller than PAGE_SIZE.
270 */
271 struct chain_allocator {
272 struct linked_page *chain; /* the chain */
273 unsigned int used_space; /* total size of objects allocated out
274 of the current page */
275 gfp_t gfp_mask; /* mask for allocating pages */
276 int safe_needed; /* if set, only "safe" pages are allocated */
277 };
278
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)279 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
280 {
281 ca->chain = NULL;
282 ca->used_space = LINKED_PAGE_DATA_SIZE;
283 ca->gfp_mask = gfp_mask;
284 ca->safe_needed = safe_needed;
285 }
286
chain_alloc(struct chain_allocator * ca,unsigned int size)287 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
288 {
289 void *ret;
290
291 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
292 struct linked_page *lp;
293
294 lp = ca->safe_needed ? _get_safe_page(ca->gfp_mask) : get_image_page(ca->gfp_mask, PG_ANY);
295 if (!lp) {
296 return NULL;
297 }
298
299 lp->next = ca->chain;
300 ca->chain = lp;
301 ca->used_space = 0;
302 }
303 ret = ca->chain->data + ca->used_space;
304 ca->used_space += size;
305 return ret;
306 }
307
308 /**
309 * Data types related to memory bitmaps.
310 *
311 * Memory bitmap is a structure consiting of many linked lists of
312 * objects. The main list's elements are of type struct zone_bitmap
313 * and each of them corresonds to one zone. For each zone bitmap
314 * object there is a list of objects of type struct bm_block that
315 * represent each blocks of bitmap in which information is stored.
316 *
317 * struct memory_bitmap contains a pointer to the main list of zone
318 * bitmap objects, a struct bm_position used for browsing the bitmap,
319 * and a pointer to the list of pages used for allocating all of the
320 * zone bitmap objects and bitmap block objects.
321 *
322 * NOTE: It has to be possible to lay out the bitmap in memory
323 * using only allocations of order 0. Additionally, the bitmap is
324 * designed to work with arbitrary number of zones (this is over the
325 * top for now, but let's avoid making unnecessary assumptions ;-).
326 *
327 * struct zone_bitmap contains a pointer to a list of bitmap block
328 * objects and a pointer to the bitmap block object that has been
329 * most recently used for setting bits. Additionally, it contains the
330 * PFNs that correspond to the start and end of the represented zone.
331 *
332 * struct bm_block contains a pointer to the memory page in which
333 * information is stored (in the form of a block of bitmap)
334 * It also contains the pfns that correspond to the start and end of
335 * the represented memory area.
336 *
337 * The memory bitmap is organized as a radix tree to guarantee fast random
338 * access to the bits. There is one radix tree for each zone (as returned
339 * from create_mem_extents).
340 *
341 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
342 * two linked lists for the nodes of the tree, one for the inner nodes and
343 * one for the leave nodes. The linked leave nodes are used for fast linear
344 * access of the memory bitmap.
345 *
346 * The struct rtree_node represents one node of the radix tree.
347 */
348
349 #define BM_END_OF_MAP (~0UL)
350
351 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
352 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
353 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
354
355 /*
356 * struct rtree_node is a wrapper struct to link the nodes
357 * of the rtree together for easy linear iteration over
358 * bits and easy freeing
359 */
360 struct rtree_node {
361 struct list_head list;
362 unsigned long *data;
363 };
364
365 /*
366 * struct mem_zone_bm_rtree represents a bitmap used for one
367 * populated memory zone.
368 */
369 struct mem_zone_bm_rtree {
370 struct list_head list; /* Link Zones together */
371 struct list_head nodes; /* Radix Tree inner nodes */
372 struct list_head leaves; /* Radix Tree leaves */
373 unsigned long start_pfn; /* Zone start page frame */
374 unsigned long end_pfn; /* Zone end page frame + 1 */
375 struct rtree_node *rtree; /* Radix Tree Root */
376 int levels; /* Number of Radix Tree Levels */
377 unsigned int blocks; /* Number of Bitmap Blocks */
378 };
379
380 /* strcut bm_position is used for browsing memory bitmaps */
381
382 struct bm_position {
383 struct mem_zone_bm_rtree *zone;
384 struct rtree_node *node;
385 unsigned long node_pfn;
386 int node_bit;
387 };
388
389 struct memory_bitmap {
390 struct list_head zones;
391 struct linked_page *p_list; /* list of pages used to store zone
392 bitmap objects and bitmap block
393 objects */
394 struct bm_position cur; /* most recently used bit position */
395 };
396
397 /* Functions that operate on memory bitmaps */
398
399 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
400 #if BITS_PER_LONG == 32
401 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
402 #else
403 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
404 #endif
405 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
406
407 /**
408 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
409 *
410 * This function is used to allocate inner nodes as well as the
411 * leave nodes of the radix tree. It also adds the node to the
412 * corresponding linked list passed in by the *list parameter.
413 */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)414 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca,
415 struct list_head *list)
416 {
417 struct rtree_node *node;
418
419 node = chain_alloc(ca, sizeof(struct rtree_node));
420 if (!node) {
421 return NULL;
422 }
423
424 node->data = get_image_page(gfp_mask, safe_needed);
425 if (!node->data) {
426 return NULL;
427 }
428
429 list_add_tail(&node->list, list);
430
431 return node;
432 }
433
434 /**
435 * add_rtree_block - Add a new leave node to the radix tree.
436 *
437 * The leave nodes need to be allocated in order to keep the leaves
438 * linked list in order. This is guaranteed by the zone->blocks
439 * counter.
440 */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)441 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca)
442 {
443 struct rtree_node *node, *block, **dst;
444 unsigned int levels_needed, block_nr;
445 int i;
446
447 block_nr = zone->blocks;
448 levels_needed = 0;
449
450 /* How many levels do we need for this block nr? */
451 while (block_nr) {
452 levels_needed += 1;
453 block_nr >>= BM_RTREE_LEVEL_SHIFT;
454 }
455
456 /* Make sure the rtree has enough levels */
457 for (i = zone->levels; i < levels_needed; i++) {
458 node = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->nodes);
459 if (!node) {
460 return -ENOMEM;
461 }
462
463 node->data[0] = (unsigned long)zone->rtree;
464 zone->rtree = node;
465 zone->levels += 1;
466 }
467
468 /* Allocate new block */
469 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
470 if (!block) {
471 return -ENOMEM;
472 }
473
474 /* Now walk the rtree to insert the block */
475 node = zone->rtree;
476 dst = &zone->rtree;
477 block_nr = zone->blocks;
478 for (i = zone->levels; i > 0; i--) {
479 int index;
480
481 if (!node) {
482 node = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->nodes);
483 if (!node) {
484 return -ENOMEM;
485 }
486 *dst = node;
487 }
488
489 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
490 index &= BM_RTREE_LEVEL_MASK;
491 dst = (struct rtree_node **)&((*dst)->data[index]);
492 node = *dst;
493 }
494
495 zone->blocks += 1;
496 *dst = block;
497
498 return 0;
499 }
500
501 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, int clear_nosave_free);
502
503 /**
504 * create_zone_bm_rtree - Create a radix tree for one zone.
505 *
506 * Allocated the mem_zone_bm_rtree structure and initializes it.
507 * This function also allocated and builds the radix tree for the
508 * zone.
509 */
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)510 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed, struct chain_allocator *ca,
511 unsigned long start, unsigned long end)
512 {
513 struct mem_zone_bm_rtree *zone;
514 unsigned int i, nr_blocks;
515 unsigned long pages;
516
517 pages = end - start;
518 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
519 if (!zone) {
520 return NULL;
521 }
522
523 INIT_LIST_HEAD(&zone->nodes);
524 INIT_LIST_HEAD(&zone->leaves);
525 zone->start_pfn = start;
526 zone->end_pfn = end;
527 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
528
529 for (i = 0; i < nr_blocks; i++) {
530 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
531 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
532 return NULL;
533 }
534 }
535
536 return zone;
537 }
538
539 /**
540 * free_zone_bm_rtree - Free the memory of the radix tree.
541 *
542 * Free all node pages of the radix tree. The mem_zone_bm_rtree
543 * structure itself is not freed here nor are the rtree_node
544 * structs.
545 */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)546 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone, int clear_nosave_free)
547 {
548 struct rtree_node *node;
549
550 list_for_each_entry(node, &zone->nodes, list) free_image_page(node->data, clear_nosave_free);
551
552 list_for_each_entry(node, &zone->leaves, list) free_image_page(node->data, clear_nosave_free);
553 }
554
memory_bm_position_reset(struct memory_bitmap * bm)555 static void memory_bm_position_reset(struct memory_bitmap *bm)
556 {
557 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree, list);
558 bm->cur.node = list_entry(bm->cur.zone->leaves.next, struct rtree_node, list);
559 bm->cur.node_pfn = 0;
560 bm->cur.node_bit = 0;
561 }
562
563 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
564
565 struct mem_extent {
566 struct list_head hook;
567 unsigned long start;
568 unsigned long end;
569 };
570
571 /**
572 * free_mem_extents - Free a list of memory extents.
573 * @list: List of extents to free.
574 */
free_mem_extents(struct list_head * list)575 static void free_mem_extents(struct list_head *list)
576 {
577 struct mem_extent *ext, *aux;
578
579 list_for_each_entry_safe(ext, aux, list, hook)
580 {
581 list_del(&ext->hook);
582 kfree(ext);
583 }
584 }
585
586 /**
587 * create_mem_extents - Create a list of memory extents.
588 * @list: List to put the extents into.
589 * @gfp_mask: Mask to use for memory allocations.
590 *
591 * The extents represent contiguous ranges of PFNs.
592 */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)593 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
594 {
595 struct zone *zone;
596
597 INIT_LIST_HEAD(list);
598
599 for_each_populated_zone(zone)
600 {
601 unsigned long zone_start, zone_end;
602 struct mem_extent *ext, *cur, *aux;
603
604 zone_start = zone->zone_start_pfn;
605 zone_end = zone_end_pfn(zone);
606
607 list_for_each_entry(ext, list, hook) if (zone_start <= ext->end) break;
608
609 if (&ext->hook == list || zone_end < ext->start) {
610 /* New extent is necessary */
611 struct mem_extent *new_ext;
612
613 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
614 if (!new_ext) {
615 free_mem_extents(list);
616 return -ENOMEM;
617 }
618 new_ext->start = zone_start;
619 new_ext->end = zone_end;
620 list_add_tail(&new_ext->hook, &ext->hook);
621 continue;
622 }
623
624 /* Merge this zone's range of PFNs with the existing one */
625 if (zone_start < ext->start) {
626 ext->start = zone_start;
627 }
628 if (zone_end > ext->end) {
629 ext->end = zone_end;
630 }
631
632 /* More merging may be possible */
633 cur = ext;
634 list_for_each_entry_safe_continue(cur, aux, list, hook)
635 {
636 if (zone_end < cur->start) {
637 break;
638 }
639 if (zone_end < cur->end) {
640 ext->end = cur->end;
641 }
642 list_del(&cur->hook);
643 kfree(cur);
644 }
645 }
646
647 return 0;
648 }
649
650 /**
651 * memory_bm_create - Allocate memory for a memory bitmap.
652 */
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)653 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
654 {
655 struct chain_allocator ca;
656 struct list_head mem_extents;
657 struct mem_extent *ext;
658 int error;
659
660 chain_init(&ca, gfp_mask, safe_needed);
661 INIT_LIST_HEAD(&bm->zones);
662
663 error = create_mem_extents(&mem_extents, gfp_mask);
664 if (error) {
665 return error;
666 }
667
668 list_for_each_entry(ext, &mem_extents, hook)
669 {
670 struct mem_zone_bm_rtree *zone;
671
672 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca, ext->start, ext->end);
673 if (!zone) {
674 error = -ENOMEM;
675 goto Error;
676 }
677 list_add_tail(&zone->list, &bm->zones);
678 }
679
680 bm->p_list = ca.chain;
681 memory_bm_position_reset(bm);
682 while (1) {
683 free_mem_extents(&mem_extents);
684 return error;
685
686 Error:
687 bm->p_list = ca.chain;
688 memory_bm_free(bm, PG_UNSAFE_CLEAR);
689 continue;
690 }
691 }
692
693 /**
694 * memory_bm_free - Free memory occupied by the memory bitmap.
695 * @bm: Memory bitmap.
696 */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)697 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
698 {
699 struct mem_zone_bm_rtree *zone;
700
701 list_for_each_entry(zone, &bm->zones, list) free_zone_bm_rtree(zone, clear_nosave_free);
702
703 free_list_of_pages(bm->p_list, clear_nosave_free);
704
705 INIT_LIST_HEAD(&bm->zones);
706 }
707
708 /**
709 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
710 *
711 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
712 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
713 *
714 * Walk the radix tree to find the page containing the bit that represents @pfn
715 * and return the position of the bit in @addr and @bit_nr.
716 */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)717 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, void **addr, unsigned int *bit_nr)
718 {
719 struct mem_zone_bm_rtree *curr, *zone;
720 struct rtree_node *node;
721 int i, block_nr;
722
723 zone = bm->cur.zone;
724
725 if (pfn >= zone->start_pfn && pfn < zone->end_pfn) {
726 goto zone_found;
727 }
728
729 zone = NULL;
730
731 /* Find the right zone */
732 list_for_each_entry(curr, &bm->zones, list)
733 {
734 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
735 zone = curr;
736 break;
737 }
738 }
739
740 if (!zone) {
741 return -EFAULT;
742 }
743
744 zone_found:
745 /*
746 * We have found the zone. Now walk the radix tree to find the leaf node
747 * for our PFN.
748 */
749
750 /*
751 * If the zone we wish to scan is the current zone and the
752 * pfn falls into the current node then we do not need to walk
753 * the tree.
754 */
755 node = bm->cur.node;
756 if (zone == bm->cur.zone && ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn) {
757 goto node_found;
758 }
759
760 node = zone->rtree;
761 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
762
763 for (i = zone->levels; i > 0; i--) {
764 int index;
765
766 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
767 index &= BM_RTREE_LEVEL_MASK;
768 BUG_ON(node->data[index] == 0);
769 node = (struct rtree_node *)node->data[index];
770 }
771
772 node_found:
773 /* Update last position */
774 bm->cur.zone = zone;
775 bm->cur.node = node;
776 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
777
778 /* Set return values */
779 *addr = node->data;
780 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
781
782 return 0;
783 }
784
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)785 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
786 {
787 void *addr;
788 unsigned int bit;
789 int error;
790
791 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
792 BUG_ON(error);
793 set_bit(bit, addr);
794 }
795
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)796 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
797 {
798 void *addr;
799 unsigned int bit;
800 int error;
801
802 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
803 if (!error) {
804 set_bit(bit, addr);
805 }
806
807 return error;
808 }
809
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)810 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
811 {
812 void *addr;
813 unsigned int bit;
814 int error;
815
816 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 BUG_ON(error);
818 clear_bit(bit, addr);
819 }
820
memory_bm_clear_current(struct memory_bitmap * bm)821 static void memory_bm_clear_current(struct memory_bitmap *bm)
822 {
823 int bit;
824
825 bit = max(bm->cur.node_bit - 1, 0);
826 clear_bit(bit, bm->cur.node->data);
827 }
828
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)829 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
830 {
831 void *addr;
832 unsigned int bit;
833 int error;
834
835 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
836 BUG_ON(error);
837 return test_bit(bit, addr);
838 }
839
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)840 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
841 {
842 void *addr;
843 unsigned int bit;
844
845 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
846 }
847
848 /*
849 * rtree_next_node - Jump to the next leaf node.
850 *
851 * Set the position to the beginning of the next node in the
852 * memory bitmap. This is either the next node in the current
853 * zone's radix tree or the first node in the radix tree of the
854 * next zone.
855 *
856 * Return true if there is a next node, false otherwise.
857 */
rtree_next_node(struct memory_bitmap * bm)858 static bool rtree_next_node(struct memory_bitmap *bm)
859 {
860 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
861 bm->cur.node = list_entry(bm->cur.node->list.next, struct rtree_node, list);
862 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
863 bm->cur.node_bit = 0;
864 touch_softlockup_watchdog();
865 return true;
866 }
867
868 /* No more nodes, goto next zone */
869 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
870 bm->cur.zone = list_entry(bm->cur.zone->list.next, struct mem_zone_bm_rtree, list);
871 bm->cur.node = list_entry(bm->cur.zone->leaves.next, struct rtree_node, list);
872 bm->cur.node_pfn = 0;
873 bm->cur.node_bit = 0;
874 return true;
875 }
876
877 /* No more zones */
878 return false;
879 }
880
881 /**
882 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
883 * @bm: Memory bitmap.
884 *
885 * Starting from the last returned position this function searches for the next
886 * set bit in @bm and returns the PFN represented by it. If no more bits are
887 * set, BM_END_OF_MAP is returned.
888 *
889 * It is required to run memory_bm_position_reset() before the first call to
890 * this function for the given memory bitmap.
891 */
memory_bm_next_pfn(struct memory_bitmap * bm)892 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
893 {
894 unsigned long bits, pfn, pages;
895 int bit;
896
897 do {
898 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
899 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
900 bit = find_next_bit(bm->cur.node->data, bits, bm->cur.node_bit);
901 if (bit < bits) {
902 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
903 bm->cur.node_bit = bit + 1;
904 return pfn;
905 }
906 } while (rtree_next_node(bm));
907
908 return BM_END_OF_MAP;
909 }
910
911 /*
912 * This structure represents a range of page frames the contents of which
913 * should not be saved during hibernation.
914 */
915 struct nosave_region {
916 struct list_head list;
917 unsigned long start_pfn;
918 unsigned long end_pfn;
919 };
920
921 static LIST_HEAD(nosave_regions);
922
recycle_zone_bm_rtree(struct mem_zone_bm_rtree * zone)923 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
924 {
925 struct rtree_node *node;
926
927 list_for_each_entry(node, &zone->nodes, list) recycle_safe_page(node->data);
928
929 list_for_each_entry(node, &zone->leaves, list) recycle_safe_page(node->data);
930 }
931
memory_bm_recycle(struct memory_bitmap * bm)932 static void memory_bm_recycle(struct memory_bitmap *bm)
933 {
934 struct mem_zone_bm_rtree *zone;
935 struct linked_page *p_list;
936
937 list_for_each_entry(zone, &bm->zones, list) recycle_zone_bm_rtree(zone);
938
939 p_list = bm->p_list;
940 while (p_list) {
941 struct linked_page *lp = p_list;
942
943 p_list = lp->next;
944 recycle_safe_page(lp);
945 }
946 }
947
948 /**
949 * register_nosave_region - Register a region of unsaveable memory.
950 *
951 * Register a range of page frames the contents of which should not be saved
952 * during hibernation (to be used in the early initialization code).
953 */
register_nosave_region(unsigned long start_pfn,unsigned long end_pfn)954 void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
955 {
956 struct nosave_region *region;
957
958 if (start_pfn >= end_pfn) {
959 return;
960 }
961
962 if (!list_empty(&nosave_regions)) {
963 /* Try to extend the previous region (they should be sorted) */
964 region = list_entry(nosave_regions.prev,
965 struct nosave_region, list);
966 if (region->end_pfn == start_pfn) {
967 region->end_pfn = end_pfn;
968 goto Report;
969 }
970 }
971 /* This allocation cannot fail */
972 region = memblock_alloc(sizeof(struct nosave_region),
973 SMP_CACHE_BYTES);
974 if (!region)
975 panic("%s: Failed to allocate %zu bytes\n", __func__,
976 sizeof(struct nosave_region));
977 region->start_pfn = start_pfn;
978 region->end_pfn = end_pfn;
979 list_add_tail(®ion->list, &nosave_regions);
980 Report:
981 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
982 (unsigned long long) start_pfn << PAGE_SHIFT,
983 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
984 }
985
986 /*
987 * Set bits in this map correspond to the page frames the contents of which
988 * should not be saved during the suspend.
989 */
990 static struct memory_bitmap *forbidden_pages_map;
991
992 /* Set bits in this map correspond to free page frames. */
993 static struct memory_bitmap *free_pages_map;
994
995 /*
996 * Each page frame allocated for creating the image is marked by setting the
997 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
998 */
999
swsusp_set_page_free(struct page * page)1000 void swsusp_set_page_free(struct page *page)
1001 {
1002 if (free_pages_map) {
1003 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1004 }
1005 }
1006
swsusp_page_is_free(struct page * page)1007 static int swsusp_page_is_free(struct page *page)
1008 {
1009 return free_pages_map ? memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1010 }
1011
swsusp_unset_page_free(struct page * page)1012 void swsusp_unset_page_free(struct page *page)
1013 {
1014 if (free_pages_map) {
1015 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1016 }
1017 }
1018
swsusp_set_page_forbidden(struct page * page)1019 static void swsusp_set_page_forbidden(struct page *page)
1020 {
1021 if (forbidden_pages_map) {
1022 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1023 }
1024 }
1025
swsusp_page_is_forbidden(struct page * page)1026 int swsusp_page_is_forbidden(struct page *page)
1027 {
1028 return forbidden_pages_map ? memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1029 }
1030
swsusp_unset_page_forbidden(struct page * page)1031 static void swsusp_unset_page_forbidden(struct page *page)
1032 {
1033 if (forbidden_pages_map) {
1034 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1035 }
1036 }
1037
1038 /**
1039 * mark_nosave_pages - Mark pages that should not be saved.
1040 * @bm: Memory bitmap.
1041 *
1042 * Set the bits in @bm that correspond to the page frames the contents of which
1043 * should not be saved.
1044 */
mark_nosave_pages(struct memory_bitmap * bm)1045 static void mark_nosave_pages(struct memory_bitmap *bm)
1046 {
1047 struct nosave_region *region;
1048
1049 if (list_empty(&nosave_regions)) {
1050 return;
1051 }
1052
1053 list_for_each_entry(region, &nosave_regions, list)
1054 {
1055 unsigned long pfn;
1056
1057 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n", (unsigned long long)region->start_pfn << PAGE_SHIFT,
1058 ((unsigned long long)region->end_pfn << PAGE_SHIFT) - 1);
1059
1060 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) {
1061 if (pfn_valid(pfn)) {
1062 /*
1063 * It is safe to ignore the result of
1064 * mem_bm_set_bit_check() here, since we won't
1065 * touch the PFNs for which the error is
1066 * returned anyway.
1067 */
1068 mem_bm_set_bit_check(bm, pfn);
1069 }
1070 }
1071 }
1072 }
1073
1074 /**
1075 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1076 *
1077 * Create bitmaps needed for marking page frames that should not be saved and
1078 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1079 * only modified if everything goes well, because we don't want the bits to be
1080 * touched before both bitmaps are set up.
1081 */
create_basic_memory_bitmaps(void)1082 int create_basic_memory_bitmaps(void)
1083 {
1084 struct memory_bitmap *bm1, *bm2;
1085 int error = 0;
1086
1087 if (forbidden_pages_map && free_pages_map) {
1088 return 0;
1089 } else {
1090 BUG_ON(forbidden_pages_map || free_pages_map);
1091 }
1092
1093 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1094 if (!bm1) {
1095 return -ENOMEM;
1096 }
1097
1098 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1099 if (error) {
1100 goto Free_first_object;
1101 }
1102
1103 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1104 if (!bm2) {
1105 goto Free_first_bitmap;
1106 }
1107
1108 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1109 if (error) {
1110 goto Free_second_object;
1111 }
1112
1113 forbidden_pages_map = bm1;
1114 free_pages_map = bm2;
1115 mark_nosave_pages(forbidden_pages_map);
1116
1117 pr_debug("Basic memory bitmaps created\n");
1118
1119 return 0;
1120
1121 Free_second_object:
1122 kfree(bm2);
1123 Free_first_bitmap:
1124 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1125 Free_first_object:
1126 kfree(bm1);
1127 return -ENOMEM;
1128 }
1129
1130 /**
1131 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1132 *
1133 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1134 * auxiliary pointers are necessary so that the bitmaps themselves are not
1135 * referred to while they are being freed.
1136 */
free_basic_memory_bitmaps(void)1137 void free_basic_memory_bitmaps(void)
1138 {
1139 struct memory_bitmap *bm1, *bm2;
1140
1141 if (WARN_ON(!(forbidden_pages_map && free_pages_map))) {
1142 return;
1143 }
1144
1145 bm1 = forbidden_pages_map;
1146 bm2 = free_pages_map;
1147 forbidden_pages_map = NULL;
1148 free_pages_map = NULL;
1149 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1150 kfree(bm1);
1151 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1152 kfree(bm2);
1153
1154 pr_debug("Basic memory bitmaps freed\n");
1155 }
1156
clear_or_poison_free_page(struct page * page)1157 static void clear_or_poison_free_page(struct page *page)
1158 {
1159 if (page_poisoning_enabled_static()) {
1160 _kernel_poison_pages(page, 1);
1161 } else if (want_init_on_free()) {
1162 clear_highpage(page);
1163 }
1164 }
1165
clear_or_poison_free_pages(void)1166 void clear_or_poison_free_pages(void)
1167 {
1168 struct memory_bitmap *bm = free_pages_map;
1169 unsigned long pfn;
1170
1171 if (WARN_ON(!(free_pages_map))) {
1172 return;
1173 }
1174
1175 if (page_poisoning_enabled() || want_init_on_free()) {
1176 memory_bm_position_reset(bm);
1177 pfn = memory_bm_next_pfn(bm);
1178 while (pfn != BM_END_OF_MAP) {
1179 if (pfn_valid(pfn)) {
1180 clear_or_poison_free_page(pfn_to_page(pfn));
1181 }
1182
1183 pfn = memory_bm_next_pfn(bm);
1184 }
1185 memory_bm_position_reset(bm);
1186 pr_info("free pages cleared after restore\n");
1187 }
1188 }
1189
1190 /**
1191 * snapshot_additional_pages - Estimate the number of extra pages needed.
1192 * @zone: Memory zone to carry out the computation for.
1193 *
1194 * Estimate the number of additional pages needed for setting up a hibernation
1195 * image data structures for @zone (usually, the returned value is greater than
1196 * the exact number).
1197 */
snapshot_additional_pages(struct zone * zone)1198 unsigned int snapshot_additional_pages(struct zone *zone)
1199 {
1200 unsigned int rtree, nodes;
1201
1202 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1203 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node), LINKED_PAGE_DATA_SIZE);
1204 while (nodes > 1) {
1205 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1206 rtree += nodes;
1207 }
1208
1209 return 0x2 * rtree;
1210 }
1211
1212 #ifdef CONFIG_HIGHMEM
1213 /**
1214 * count_free_highmem_pages - Compute the total number of free highmem pages.
1215 *
1216 * The returned number is system-wide.
1217 */
count_free_highmem_pages(void)1218 static unsigned int count_free_highmem_pages(void)
1219 {
1220 struct zone *zone;
1221 unsigned int cnt = 0;
1222
1223 for_each_populated_zone(zone) if (is_highmem(zone)) cnt += zone_page_state(zone, NR_FREE_PAGES);
1224
1225 return cnt;
1226 }
1227
1228 /**
1229 * saveable_highmem_page - Check if a highmem page is saveable.
1230 *
1231 * Determine whether a highmem page should be included in a hibernation image.
1232 *
1233 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1234 * and it isn't part of a free chunk of pages.
1235 */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1236 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1237 {
1238 struct page *page;
1239
1240 if (!pfn_valid(pfn)) {
1241 return NULL;
1242 }
1243
1244 page = pfn_to_online_page(pfn);
1245 if (!page || page_zone(page) != zone) {
1246 return NULL;
1247 }
1248
1249 BUG_ON(!PageHighMem(page));
1250
1251 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) {
1252 return NULL;
1253 }
1254
1255 if (PageReserved(page) || PageOffline(page)) {
1256 return NULL;
1257 }
1258
1259 if (page_is_guard(page)) {
1260 return NULL;
1261 }
1262
1263 return page;
1264 }
1265
1266 /**
1267 * count_highmem_pages - Compute the total number of saveable highmem pages.
1268 */
count_highmem_pages(void)1269 static unsigned int count_highmem_pages(void)
1270 {
1271 struct zone *zone;
1272 unsigned int n = 0;
1273
1274 for_each_populated_zone(zone)
1275 {
1276 unsigned long pfn, max_zone_pfn;
1277
1278 if (!is_highmem(zone)) {
1279 continue;
1280 }
1281
1282 mark_free_pages(zone);
1283 max_zone_pfn = zone_end_pfn(zone);
1284 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
1285 if (saveable_highmem_page(zone, pfn)) {
1286 n++;
1287 }
1288 }
1289 }
1290 return n;
1291 }
1292 #else
saveable_highmem_page(struct zone * z,unsigned long p)1293 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1294 {
1295 return NULL;
1296 }
1297 #endif /* CONFIG_HIGHMEM */
1298
1299 /**
1300 * saveable_page - Check if the given page is saveable.
1301 *
1302 * Determine whether a non-highmem page should be included in a hibernation
1303 * image.
1304 *
1305 * We should save the page if it isn't Nosave, and is not in the range
1306 * of pages statically defined as 'unsaveable', and it isn't part of
1307 * a free chunk of pages.
1308 */
saveable_page(struct zone * zone,unsigned long pfn)1309 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1310 {
1311 struct page *page;
1312
1313 if (!pfn_valid(pfn)) {
1314 return NULL;
1315 }
1316
1317 page = pfn_to_online_page(pfn);
1318 if (!page || page_zone(page) != zone) {
1319 return NULL;
1320 }
1321
1322 BUG_ON(PageHighMem(page));
1323
1324 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) {
1325 return NULL;
1326 }
1327
1328 if (PageOffline(page)) {
1329 return NULL;
1330 }
1331
1332 if (PageReserved(page) && (!kernel_page_present(page) || pfn_is_nosave(pfn))) {
1333 return NULL;
1334 }
1335
1336 if (page_is_guard(page)) {
1337 return NULL;
1338 }
1339
1340 return page;
1341 }
1342
1343 /**
1344 * count_data_pages - Compute the total number of saveable non-highmem pages.
1345 */
count_data_pages(void)1346 static unsigned int count_data_pages(void)
1347 {
1348 struct zone *zone;
1349 unsigned long pfn, max_zone_pfn;
1350 unsigned int n = 0;
1351
1352 for_each_populated_zone(zone)
1353 {
1354 if (is_highmem(zone)) {
1355 continue;
1356 }
1357
1358 mark_free_pages(zone);
1359 max_zone_pfn = zone_end_pfn(zone);
1360 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
1361 if (saveable_page(zone, pfn)) {
1362 n++;
1363 }
1364 }
1365 }
1366 return n;
1367 }
1368
1369 /*
1370 * This is needed, because copy_page and memcpy are not usable for copying
1371 * task structs.
1372 */
do_copy_page(long * dst,long * src)1373 static inline void do_copy_page(long *dst, long *src)
1374 {
1375 int n;
1376
1377 for (n = PAGE_SIZE / sizeof(long); n; n--) {
1378 *dst++ = *src++;
1379 }
1380 }
1381
1382 /**
1383 * safe_copy_page - Copy a page in a safe way.
1384 *
1385 * Check if the page we are going to copy is marked as present in the kernel
1386 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1387 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1388 * always returns 'true'.
1389 */
safe_copy_page(void * dst,struct page * s_page)1390 static void safe_copy_page(void *dst, struct page *s_page)
1391 {
1392 if (kernel_page_present(s_page)) {
1393 do_copy_page(dst, page_address(s_page));
1394 } else {
1395 kernel_map_pages(s_page, 1, 1);
1396 do_copy_page(dst, page_address(s_page));
1397 kernel_map_pages(s_page, 1, 0);
1398 }
1399 }
1400
1401 #ifdef CONFIG_HIGHMEM
page_is_saveable(struct zone * zone,unsigned long pfn)1402 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1403 {
1404 return is_highmem(zone) ? saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1405 }
1406
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1407 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1408 {
1409 struct page *s_page, *d_page;
1410 void *src, *dst;
1411
1412 s_page = pfn_to_page(src_pfn);
1413 d_page = pfn_to_page(dst_pfn);
1414 if (PageHighMem(s_page)) {
1415 src = kmap_atomic(s_page);
1416 dst = kmap_atomic(d_page);
1417 do_copy_page(dst, src);
1418 kunmap_atomic(dst);
1419 kunmap_atomic(src);
1420 } else {
1421 if (PageHighMem(d_page)) {
1422 /*
1423 * The page pointed to by src may contain some kernel
1424 * data modified by kmap_atomic()
1425 */
1426 safe_copy_page(buffer, s_page);
1427 dst = kmap_atomic(d_page);
1428 copy_page(dst, buffer);
1429 kunmap_atomic(dst);
1430 } else {
1431 safe_copy_page(page_address(d_page), s_page);
1432 }
1433 }
1434 }
1435 #else
1436 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1437
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1438 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1439 {
1440 safe_copy_page(page_address(pfn_to_page(dst_pfn)), pfn_to_page(src_pfn));
1441 }
1442 #endif /* CONFIG_HIGHMEM */
1443
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1444 static void copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1445 {
1446 struct zone *zone;
1447 unsigned long pfn;
1448
1449 for_each_populated_zone(zone)
1450 {
1451 unsigned long max_zone_pfn;
1452
1453 mark_free_pages(zone);
1454 max_zone_pfn = zone_end_pfn(zone);
1455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
1456 if (page_is_saveable(zone, pfn)) {
1457 memory_bm_set_bit(orig_bm, pfn);
1458 }
1459 }
1460 }
1461 memory_bm_position_reset(orig_bm);
1462 memory_bm_position_reset(copy_bm);
1463 for (;;) {
1464 pfn = memory_bm_next_pfn(orig_bm);
1465 if (unlikely(pfn == BM_END_OF_MAP)) {
1466 break;
1467 }
1468 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1469 }
1470 }
1471
1472 /* Total number of image pages */
1473 static unsigned int nr_copy_pages;
1474 /* Number of pages needed for saving the original pfns of the image pages */
1475 static unsigned int nr_meta_pages;
1476 /*
1477 * Numbers of normal and highmem page frames allocated for hibernation image
1478 * before suspending devices.
1479 */
1480 static unsigned int alloc_normal, alloc_highmem;
1481 /*
1482 * Memory bitmap used for marking saveable pages (during hibernation) or
1483 * hibernation image pages (during restore)
1484 */
1485 static struct memory_bitmap orig_bm;
1486 /*
1487 * Memory bitmap used during hibernation for marking allocated page frames that
1488 * will contain copies of saveable pages. During restore it is initially used
1489 * for marking hibernation image pages, but then the set bits from it are
1490 * duplicated in @orig_bm and it is released. On highmem systems it is next
1491 * used for marking "safe" highmem pages, but it has to be reinitialized for
1492 * this purpose.
1493 */
1494 static struct memory_bitmap copy_bm;
1495
1496 /**
1497 * swsusp_free - Free pages allocated for hibernation image.
1498 *
1499 * Image pages are alocated before snapshot creation, so they need to be
1500 * released after resume.
1501 */
swsusp_free(void)1502 void swsusp_free(void)
1503 {
1504 unsigned long fb_pfn, fr_pfn;
1505
1506 if (!forbidden_pages_map || !free_pages_map) {
1507 goto out;
1508 }
1509
1510 memory_bm_position_reset(forbidden_pages_map);
1511 memory_bm_position_reset(free_pages_map);
1512
1513 while (1) {
1514 fr_pfn = memory_bm_next_pfn(free_pages_map);
1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517 /*
1518 * Find the next bit set in both bitmaps. This is guaranteed to
1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520 */
1521 do {
1522 if (fb_pfn < fr_pfn) {
1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524 }
1525 if (fr_pfn < fb_pfn) {
1526 fr_pfn = memory_bm_next_pfn(free_pages_map);
1527 }
1528 } while (fb_pfn != fr_pfn);
1529
1530 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1531 struct page *page = pfn_to_page(fr_pfn);
1532
1533 memory_bm_clear_current(forbidden_pages_map);
1534 memory_bm_clear_current(free_pages_map);
1535 hibernate_restore_unprotect_page(page_address(page));
1536 __free_page(page);
1537 continue;
1538 }
1539 break;
1540 }
1541
1542 out:
1543 nr_copy_pages = 0;
1544 nr_meta_pages = 0;
1545 restore_pblist = NULL;
1546 buffer = NULL;
1547 alloc_normal = 0;
1548 alloc_highmem = 0;
1549 hibernate_restore_protection_end();
1550 }
1551
1552 /* Helper functions used for the shrinking of memory. */
1553
1554 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1555
1556 /**
1557 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1558 * @nr_pages: Number of page frames to allocate.
1559 * @mask: GFP flags to use for the allocation.
1560 *
1561 * Return value: Number of page frames actually allocated
1562 */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1563 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1564 {
1565 unsigned long nr_alloc = 0;
1566
1567 while (nr_pages > 0) {
1568 struct page *page;
1569
1570 page = alloc_image_page(mask);
1571 if (!page) {
1572 break;
1573 }
1574 memory_bm_set_bit(©_bm, page_to_pfn(page));
1575 if (PageHighMem(page)) {
1576 alloc_highmem++;
1577 } else {
1578 alloc_normal++;
1579 }
1580 nr_pages--;
1581 nr_alloc++;
1582 }
1583
1584 return nr_alloc;
1585 }
1586
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1587 static unsigned long preallocate_image_memory(unsigned long nr_pages, unsigned long avail_normal)
1588 {
1589 unsigned long alloc;
1590
1591 if (avail_normal <= alloc_normal) {
1592 return 0;
1593 }
1594
1595 alloc = avail_normal - alloc_normal;
1596 if (nr_pages < alloc) {
1597 alloc = nr_pages;
1598 }
1599
1600 return preallocate_image_pages(alloc, GFP_IMAGE);
1601 }
1602
1603 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1604 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1605 {
1606 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1607 }
1608
1609 /**
1610 * _fraction - Compute (an approximation of) x * (multiplier / base).
1611 */
_fraction(u64 x,u64 multiplier,u64 base)1612 static unsigned long _fraction(u64 x, u64 multiplier, u64 base)
1613 {
1614 return div64_u64(x * multiplier, base);
1615 }
1616
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1617 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, unsigned long highmem, unsigned long total)
1618 {
1619 unsigned long alloc = _fraction(nr_pages, highmem, total);
1620
1621 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1622 }
1623 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1624 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1625 {
1626 return 0;
1627 }
1628
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1629 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, unsigned long highmem,
1630 unsigned long total)
1631 {
1632 return 0;
1633 }
1634 #endif /* CONFIG_HIGHMEM */
1635
1636 /**
1637 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1638 */
free_unnecessary_pages(void)1639 static unsigned long free_unnecessary_pages(void)
1640 {
1641 unsigned long save, to_free_normal, to_free_highmem, free;
1642
1643 save = count_data_pages();
1644 if (alloc_normal >= save) {
1645 to_free_normal = alloc_normal - save;
1646 save = 0;
1647 } else {
1648 to_free_normal = 0;
1649 save -= alloc_normal;
1650 }
1651 save += count_highmem_pages();
1652 if (alloc_highmem >= save) {
1653 to_free_highmem = alloc_highmem - save;
1654 } else {
1655 to_free_highmem = 0;
1656 save -= alloc_highmem;
1657 if (to_free_normal > save) {
1658 to_free_normal -= save;
1659 } else {
1660 to_free_normal = 0;
1661 }
1662 }
1663 free = to_free_normal + to_free_highmem;
1664
1665 memory_bm_position_reset(©_bm);
1666
1667 while (to_free_normal > 0 || to_free_highmem > 0) {
1668 unsigned long pfn = memory_bm_next_pfn(©_bm);
1669 struct page *page = pfn_to_page(pfn);
1670
1671 if (PageHighMem(page)) {
1672 if (!to_free_highmem) {
1673 continue;
1674 }
1675 to_free_highmem--;
1676 alloc_highmem--;
1677 } else {
1678 if (!to_free_normal) {
1679 continue;
1680 }
1681 to_free_normal--;
1682 alloc_normal--;
1683 }
1684 memory_bm_clear_bit(©_bm, pfn);
1685 swsusp_unset_page_forbidden(page);
1686 swsusp_unset_page_free(page);
1687 __free_page(page);
1688 }
1689
1690 return free;
1691 }
1692
1693 /**
1694 * minimum_image_size - Estimate the minimum acceptable size of an image.
1695 * @saveable: Number of saveable pages in the system.
1696 *
1697 * We want to avoid attempting to free too much memory too hard, so estimate the
1698 * minimum acceptable size of a hibernation image to use as the lower limit for
1699 * preallocating memory.
1700 *
1701 * We assume that the minimum image size should be proportional to
1702 *
1703 * [number of saveable pages] - [number of pages that can be freed in theory]
1704 *
1705 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1706 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1707 */
minimum_image_size(unsigned long saveable)1708 static unsigned long minimum_image_size(unsigned long saveable)
1709 {
1710 unsigned long size;
1711
1712 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + global_node_page_state(NR_ACTIVE_ANON) +
1713 global_node_page_state(NR_INACTIVE_ANON) + global_node_page_state(NR_ACTIVE_FILE) +
1714 global_node_page_state(NR_INACTIVE_FILE);
1715
1716 return saveable <= size ? 0 : saveable - size;
1717 }
1718
1719 /**
1720 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1721 *
1722 * To create a hibernation image it is necessary to make a copy of every page
1723 * frame in use. We also need a number of page frames to be free during
1724 * hibernation for allocations made while saving the image and for device
1725 * drivers, in case they need to allocate memory from their hibernation
1726 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1727 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1728 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1729 * total number of available page frames and allocate at least
1730 *
1731 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1732 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1733 *
1734 * of them, which corresponds to the maximum size of a hibernation image.
1735 *
1736 * If image_size is set below the number following from the above formula,
1737 * the preallocation of memory is continued until the total number of saveable
1738 * pages in the system is below the requested image size or the minimum
1739 * acceptable image size returned by minimum_image_size(), whichever is greater.
1740 */
hibernate_preallocate_memory(void)1741 int hibernate_preallocate_memory(void)
1742 {
1743 struct zone *zone;
1744 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1745 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1746 ktime_t start, stop;
1747 int error;
1748
1749 pr_info("Preallocating image memory\n");
1750 start = ktime_get();
1751
1752 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1753 if (error) {
1754 pr_err("Cannot allocate original bitmap\n");
1755 goto err_out;
1756 }
1757
1758 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1759 if (error) {
1760 pr_err("Cannot allocate copy bitmap\n");
1761 goto err_out;
1762 }
1763
1764 alloc_normal = 0;
1765 alloc_highmem = 0;
1766
1767 /* Count the number of saveable data pages. */
1768 save_highmem = count_highmem_pages();
1769 saveable = count_data_pages();
1770
1771 /*
1772 * Compute the total number of page frames we can use (count) and the
1773 * number of pages needed for image metadata (size).
1774 */
1775 count = saveable;
1776 saveable += save_highmem;
1777 highmem = save_highmem;
1778 size = 0;
1779 for_each_populated_zone(zone)
1780 {
1781 size += snapshot_additional_pages(zone);
1782 if (is_highmem(zone)) {
1783 highmem += zone_page_state(zone, NR_FREE_PAGES);
1784 } else {
1785 count += zone_page_state(zone, NR_FREE_PAGES);
1786 }
1787 }
1788 avail_normal = count;
1789 count += highmem;
1790 count -= totalreserve_pages;
1791
1792 /* Compute the maximum number of saveable pages to leave in memory. */
1793 max_size = (count - (size + PAGES_FOR_IO)) / SNAPSHOT_TWO - SNAPSHOT_TWO * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1794 /* Compute the desired number of image pages specified by image_size. */
1795 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1796 if (size > max_size) {
1797 size = max_size;
1798 }
1799 /*
1800 * If the desired number of image pages is at least as large as the
1801 * current number of saveable pages in memory, allocate page frames for
1802 * the image and we're done.
1803 */
1804 if (size >= saveable) {
1805 pages = preallocate_image_highmem(save_highmem);
1806 pages += preallocate_image_memory(saveable - pages, avail_normal);
1807 goto out;
1808 }
1809
1810 /* Estimate the minimum size of the image. */
1811 pages = minimum_image_size(saveable);
1812 /*
1813 * To avoid excessive pressure on the normal zone, leave room in it to
1814 * accommodate an image of the minimum size (unless it's already too
1815 * small, in which case don't preallocate pages from it at all).
1816 */
1817 if (avail_normal > pages) {
1818 avail_normal -= pages;
1819 } else {
1820 avail_normal = 0;
1821 }
1822 if (size < pages) {
1823 size = min_t(unsigned long, pages, max_size);
1824 }
1825
1826 /*
1827 * Let the memory management subsystem know that we're going to need a
1828 * large number of page frames to allocate and make it free some memory.
1829 * NOTE: If this is not done, performance will be hurt badly in some
1830 * test cases.
1831 */
1832 shrink_all_memory(saveable - size);
1833
1834 /*
1835 * The number of saveable pages in memory was too high, so apply some
1836 * pressure to decrease it. First, make room for the largest possible
1837 * image and fail if that doesn't work. Next, try to decrease the size
1838 * of the image as much as indicated by 'size' using allocations from
1839 * highmem and non-highmem zones separately.
1840 */
1841 pages_highmem = preallocate_image_highmem(highmem / SNAPSHOT_TWO);
1842 alloc = count - max_size;
1843 if (alloc > pages_highmem) {
1844 alloc -= pages_highmem;
1845 } else {
1846 alloc = 0;
1847 }
1848 pages = preallocate_image_memory(alloc, avail_normal);
1849 if (pages < alloc) {
1850 /* We have exhausted non-highmem pages, try highmem. */
1851 alloc -= pages;
1852 pages += pages_highmem;
1853 pages_highmem = preallocate_image_highmem(alloc);
1854 if (pages_highmem < alloc) {
1855 pr_err("Image allocation is %lu pages short\n", alloc - pages_highmem);
1856 goto err_out;
1857 }
1858 pages += pages_highmem;
1859 /*
1860 * size is the desired number of saveable pages to leave in
1861 * memory, so try to preallocate (all memory - size) pages.
1862 */
1863 alloc = (count - pages) - size;
1864 pages += preallocate_image_highmem(alloc);
1865 } else {
1866 /*
1867 * There are approximately max_size saveable pages at this point
1868 * and we want to reduce this number down to size.
1869 */
1870 alloc = max_size - size;
1871 size = preallocate_highmem_fraction(alloc, highmem, count);
1872 pages_highmem += size;
1873 alloc -= size;
1874 size = preallocate_image_memory(alloc, avail_normal);
1875 pages_highmem += preallocate_image_highmem(alloc - size);
1876 pages += pages_highmem + size;
1877 }
1878
1879 /*
1880 * We only need as many page frames for the image as there are saveable
1881 * pages in memory, but we have allocated more. Release the excessive
1882 * ones now.
1883 */
1884 pages -= free_unnecessary_pages();
1885
1886 out:
1887 stop = ktime_get();
1888 pr_info("Allocated %lu pages for snapshot\n", pages);
1889 swsusp_show_speed(start, stop, pages, "Allocated");
1890
1891 return 0;
1892
1893 err_out:
1894 swsusp_free();
1895 return -ENOMEM;
1896 }
1897
1898 #ifdef CONFIG_HIGHMEM
1899 /**
1900 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1901 *
1902 * Compute the number of non-highmem pages that will be necessary for creating
1903 * copies of highmem pages.
1904 */
count_pages_for_highmem(unsigned int nr_highmem)1905 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1906 {
1907 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1908 if (free_highmem >= nr_highmem) {
1909 nr_highmem = 0;
1910 } else {
1911 nr_highmem -= free_highmem;
1912 }
1913
1914 return nr_highmem;
1915 }
1916 #else
count_pages_for_highmem(unsigned int nr_highmem)1917 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1918 {
1919 return 0;
1920 }
1921 #endif /* CONFIG_HIGHMEM */
1922
1923 /**
1924 * enough_free_mem - Check if there is enough free memory for the image.
1925 */
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1926 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1927 {
1928 struct zone *zone;
1929 unsigned int free = alloc_normal;
1930
1931 for_each_populated_zone(zone) if (!is_highmem(zone)) free += zone_page_state(zone, NR_FREE_PAGES);
1932
1933 nr_pages += count_pages_for_highmem(nr_highmem);
1934 pr_debug("Normal pages needed: %u + %u, available pages: %u\n", nr_pages, PAGES_FOR_IO, free);
1935
1936 return free > nr_pages + PAGES_FOR_IO;
1937 }
1938
1939 #ifdef CONFIG_HIGHMEM
1940 /**
1941 * get_highmem_buffer - Allocate a buffer for highmem pages.
1942 *
1943 * If there are some highmem pages in the hibernation image, we may need a
1944 * buffer to copy them and/or load their data.
1945 */
get_highmem_buffer(int safe_needed)1946 static inline int get_highmem_buffer(int safe_needed)
1947 {
1948 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1949 return buffer ? 0 : -ENOMEM;
1950 }
1951
1952 /**
1953 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1954 *
1955 * Try to allocate as many pages as needed, but if the number of free highmem
1956 * pages is less than that, allocate them all.
1957 */
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1958 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1959 {
1960 unsigned int to_alloc = count_free_highmem_pages();
1961 if (to_alloc > nr_highmem) {
1962 to_alloc = nr_highmem;
1963 }
1964
1965 nr_highmem -= to_alloc;
1966 while (to_alloc-- > 0) {
1967 struct page *page;
1968
1969 page = alloc_image_page(__GFP_HIGHMEM | __GFP_KSWAPD_RECLAIM);
1970 memory_bm_set_bit(bm, page_to_pfn(page));
1971 }
1972 return nr_highmem;
1973 }
1974 #else
get_highmem_buffer(int safe_needed)1975 static inline int get_highmem_buffer(int safe_needed)
1976 {
1977 return 0;
1978 }
1979
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1980 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n)
1981 {
1982 return 0;
1983 }
1984 #endif /* CONFIG_HIGHMEM */
1985
1986 /**
1987 * swsusp_alloc - Allocate memory for hibernation image.
1988 *
1989 * We first try to allocate as many highmem pages as there are
1990 * saveable highmem pages in the system. If that fails, we allocate
1991 * non-highmem pages for the copies of the remaining highmem ones.
1992 *
1993 * In this approach it is likely that the copies of highmem pages will
1994 * also be located in the high memory, because of the way in which
1995 * copy_data_pages() works.
1996 */
swsusp_alloc(struct memory_bitmap * copy_bm_ex,unsigned int nr_pages,unsigned int nr_highmem)1997 static int swsusp_alloc(struct memory_bitmap *copy_bm_ex, unsigned int nr_pages, unsigned int nr_highmem)
1998 {
1999 if (nr_highmem > 0) {
2000 if (get_highmem_buffer(PG_ANY)) {
2001 goto err_out;
2002 }
2003 if (nr_highmem > alloc_highmem) {
2004 nr_highmem -= alloc_highmem;
2005 nr_pages += alloc_highmem_pages(copy_bm_ex, nr_highmem);
2006 }
2007 }
2008 if (nr_pages > alloc_normal) {
2009 nr_pages -= alloc_normal;
2010 while (nr_pages-- > 0) {
2011 struct page *page;
2012
2013 page = alloc_image_page(GFP_ATOMIC);
2014 if (!page) {
2015 goto err_out;
2016 }
2017 memory_bm_set_bit(copy_bm_ex, page_to_pfn(page));
2018 }
2019 }
2020
2021 return 0;
2022
2023 err_out:
2024 swsusp_free();
2025 return -ENOMEM;
2026 }
2027
swsusp_save(void)2028 asmlinkage __visible int swsusp_save(void)
2029 {
2030 unsigned int nr_pages, nr_highmem;
2031
2032 pr_info("Creating image:\n");
2033
2034 drain_local_pages(NULL);
2035 nr_pages = count_data_pages();
2036 nr_highmem = count_highmem_pages();
2037 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2038
2039 if (!enough_free_mem(nr_pages, nr_highmem)) {
2040 pr_err("Not enough free memory\n");
2041 return -ENOMEM;
2042 }
2043
2044 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) {
2045 pr_err("Memory allocation failed\n");
2046 return -ENOMEM;
2047 }
2048
2049 /*
2050 * During allocating of suspend pagedir, new cold pages may appear.
2051 * Kill them.
2052 */
2053 drain_local_pages(NULL);
2054 copy_data_pages(©_bm, &orig_bm);
2055
2056 /*
2057 * End of critical section. From now on, we can write to memory,
2058 * but we should not touch disk. This specially means we must _not_
2059 * touch swap space! Except we must write out our image of course.
2060 */
2061
2062 nr_pages += nr_highmem;
2063 nr_copy_pages = nr_pages;
2064 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2065
2066 pr_info("Image created (%d pages copied)\n", nr_pages);
2067
2068 return 0;
2069 }
2070
2071 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)2072 static int init_header_complete(struct swsusp_info *info)
2073 {
2074 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2075 info->version_code = LINUX_VERSION_CODE;
2076 return 0;
2077 }
2078
check_image_kernel(struct swsusp_info * info)2079 static const char *check_image_kernel(struct swsusp_info *info)
2080 {
2081 if (info->version_code != LINUX_VERSION_CODE) {
2082 return "kernel version";
2083 }
2084 if (strcmp(info->uts.sysname, init_utsname()->sysname)) {
2085 return "system type";
2086 }
2087 if (strcmp(info->uts.release, init_utsname()->release)) {
2088 return "kernel release";
2089 }
2090 if (strcmp(info->uts.version, init_utsname()->version)) {
2091 return "version";
2092 }
2093 if (strcmp(info->uts.machine, init_utsname()->machine)) {
2094 return "machine";
2095 }
2096 return NULL;
2097 }
2098 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2099
snapshot_get_image_size(void)2100 unsigned long snapshot_get_image_size(void)
2101 {
2102 return nr_copy_pages + nr_meta_pages + 1;
2103 }
2104
init_header(struct swsusp_info * info)2105 static int init_header(struct swsusp_info *info)
2106 {
2107 memset(info, 0, sizeof(struct swsusp_info));
2108 info->num_physpages = get_num_physpages();
2109 info->image_pages = nr_copy_pages;
2110 info->pages = snapshot_get_image_size();
2111 info->size = info->pages;
2112 info->size <<= PAGE_SHIFT;
2113 return init_header_complete(info);
2114 }
2115
2116 /**
2117 * pack_pfns - Prepare PFNs for saving.
2118 * @bm: Memory bitmap.
2119 * @buf: Memory buffer to store the PFNs in.
2120 *
2121 * PFNs corresponding to set bits in @bm are stored in the area of memory
2122 * pointed to by @buf (1 page at a time).
2123 */
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)2124 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2125 {
2126 int j;
2127
2128 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2129 buf[j] = memory_bm_next_pfn(bm);
2130 if (unlikely(buf[j] == BM_END_OF_MAP)) {
2131 break;
2132 }
2133 }
2134 }
2135
2136 /**
2137 * snapshot_read_next - Get the address to read the next image page from.
2138 * @handle: Snapshot handle to be used for the reading.
2139 *
2140 * On the first call, @handle should point to a zeroed snapshot_handle
2141 * structure. The structure gets populated then and a pointer to it should be
2142 * passed to this function every next time.
2143 *
2144 * On success, the function returns a positive number. Then, the caller
2145 * is allowed to read up to the returned number of bytes from the memory
2146 * location computed by the data_of() macro.
2147 *
2148 * The function returns 0 to indicate the end of the data stream condition,
2149 * and negative numbers are returned on errors. If that happens, the structure
2150 * pointed to by @handle is not updated and should not be used any more.
2151 */
snapshot_read_next(struct snapshot_handle * handle)2152 int snapshot_read_next(struct snapshot_handle *handle)
2153 {
2154 if (handle->cur > nr_meta_pages + nr_copy_pages) {
2155 return 0;
2156 }
2157
2158 if (!buffer) {
2159 /* This makes the buffer be freed by swsusp_free() */
2160 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2161 if (!buffer) {
2162 return -ENOMEM;
2163 }
2164 }
2165 if (!handle->cur) {
2166 int error;
2167
2168 error = init_header((struct swsusp_info *)buffer);
2169 if (error) {
2170 return error;
2171 }
2172 handle->buffer = buffer;
2173 memory_bm_position_reset(&orig_bm);
2174 memory_bm_position_reset(©_bm);
2175 } else if (handle->cur <= nr_meta_pages) {
2176 clear_page(buffer);
2177 pack_pfns(buffer, &orig_bm);
2178 } else {
2179 struct page *page;
2180
2181 page = pfn_to_page(memory_bm_next_pfn(©_bm));
2182 if (PageHighMem(page)) {
2183 /*
2184 * Highmem pages are copied to the buffer,
2185 * because we can't return with a kmapped
2186 * highmem page (we may not be called again).
2187 */
2188 void *kaddr;
2189
2190 kaddr = kmap_atomic(page);
2191 copy_page(buffer, kaddr);
2192 kunmap_atomic(kaddr);
2193 handle->buffer = buffer;
2194 } else {
2195 handle->buffer = page_address(page);
2196 }
2197 }
2198 handle->cur++;
2199 return PAGE_SIZE;
2200 }
2201
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2202 static void duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2203 {
2204 unsigned long pfn;
2205
2206 memory_bm_position_reset(src);
2207 pfn = memory_bm_next_pfn(src);
2208 while (pfn != BM_END_OF_MAP) {
2209 memory_bm_set_bit(dst, pfn);
2210 pfn = memory_bm_next_pfn(src);
2211 }
2212 }
2213
2214 /**
2215 * mark_unsafe_pages - Mark pages that were used before hibernation.
2216 *
2217 * Mark the pages that cannot be used for storing the image during restoration,
2218 * because they conflict with the pages that had been used before hibernation.
2219 */
mark_unsafe_pages(struct memory_bitmap * bm)2220 static void mark_unsafe_pages(struct memory_bitmap *bm)
2221 {
2222 unsigned long pfn;
2223
2224 /* Clear the "free"/"unsafe" bit for all PFNs */
2225 memory_bm_position_reset(free_pages_map);
2226 pfn = memory_bm_next_pfn(free_pages_map);
2227 while (pfn != BM_END_OF_MAP) {
2228 memory_bm_clear_current(free_pages_map);
2229 pfn = memory_bm_next_pfn(free_pages_map);
2230 }
2231
2232 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2233 duplicate_memory_bitmap(free_pages_map, bm);
2234
2235 allocated_unsafe_pages = 0;
2236 }
2237
check_header(struct swsusp_info * info)2238 static int check_header(struct swsusp_info *info)
2239 {
2240 const char *reason;
2241
2242 reason = check_image_kernel(info);
2243 if (!reason && info->num_physpages != get_num_physpages()) {
2244 reason = "memory size";
2245 }
2246 if (reason) {
2247 pr_err("Image mismatch: %s\n", reason);
2248 return -EPERM;
2249 }
2250 return 0;
2251 }
2252
2253 /**
2254 * load header - Check the image header and copy the data from it.
2255 */
load_header(struct swsusp_info * info)2256 static int load_header(struct swsusp_info *info)
2257 {
2258 int error;
2259
2260 restore_pblist = NULL;
2261 error = check_header(info);
2262 if (!error) {
2263 nr_copy_pages = info->image_pages;
2264 nr_meta_pages = info->pages - info->image_pages - 1;
2265 }
2266 return error;
2267 }
2268
2269 /**
2270 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2271 * @bm: Memory bitmap.
2272 * @buf: Area of memory containing the PFNs.
2273 *
2274 * For each element of the array pointed to by @buf (1 page at a time), set the
2275 * corresponding bit in @bm.
2276 */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)2277 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2278 {
2279 int j;
2280
2281 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2282 if (unlikely(buf[j] == BM_END_OF_MAP)) {
2283 break;
2284 }
2285
2286 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
2287 memory_bm_set_bit(bm, buf[j]);
2288 } else {
2289 return -EFAULT;
2290 }
2291 }
2292
2293 return 0;
2294 }
2295
2296 #ifdef CONFIG_HIGHMEM
2297 /*
2298 * struct highmem_pbe is used for creating the list of highmem pages that
2299 * should be restored atomically during the resume from disk, because the page
2300 * frames they have occupied before the suspend are in use.
2301 */
2302 struct highmem_pbe {
2303 struct page *copy_page; /* data is here now */
2304 struct page *orig_page; /* data was here before the suspend */
2305 struct highmem_pbe *next;
2306 };
2307
2308 /*
2309 * List of highmem PBEs needed for restoring the highmem pages that were
2310 * allocated before the suspend and included in the suspend image, but have
2311 * also been allocated by the "resume" kernel, so their contents cannot be
2312 * written directly to their "original" page frames.
2313 */
2314 static struct highmem_pbe *highmem_pblist;
2315
2316 /**
2317 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2318 * @bm: Memory bitmap.
2319 *
2320 * The bits in @bm that correspond to image pages are assumed to be set.
2321 */
count_highmem_image_pages(struct memory_bitmap * bm)2322 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2323 {
2324 unsigned long pfn;
2325 unsigned int cnt = 0;
2326
2327 memory_bm_position_reset(bm);
2328 pfn = memory_bm_next_pfn(bm);
2329 while (pfn != BM_END_OF_MAP) {
2330 if (PageHighMem(pfn_to_page(pfn))) {
2331 cnt++;
2332 }
2333
2334 pfn = memory_bm_next_pfn(bm);
2335 }
2336 return cnt;
2337 }
2338
2339 static unsigned int safe_highmem_pages;
2340
2341 static struct memory_bitmap *safe_highmem_bm;
2342
2343 /**
2344 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2345 * @bm: Pointer to an uninitialized memory bitmap structure.
2346 * @nr_highmem_p: Pointer to the number of highmem image pages.
2347 *
2348 * Try to allocate as many highmem pages as there are highmem image pages
2349 * (@nr_highmem_p points to the variable containing the number of highmem image
2350 * pages). The pages that are "safe" (ie. will not be overwritten when the
2351 * hibernation image is restored entirely) have the corresponding bits set in
2352 * @bm (it must be unitialized).
2353 *
2354 * NOTE: This function should not be called if there are no highmem image pages.
2355 */
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2356 static int prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2357 {
2358 unsigned int to_alloc;
2359
2360 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) {
2361 return -ENOMEM;
2362 }
2363
2364 if (get_highmem_buffer(PG_SAFE)) {
2365 return -ENOMEM;
2366 }
2367
2368 to_alloc = count_free_highmem_pages();
2369 if (to_alloc > *nr_highmem_p) {
2370 to_alloc = *nr_highmem_p;
2371 } else {
2372 *nr_highmem_p = to_alloc;
2373 }
2374
2375 safe_highmem_pages = 0;
2376 while (to_alloc-- > 0) {
2377 struct page *page;
2378
2379 page = alloc_page(__GFP_HIGHMEM);
2380 if (!swsusp_page_is_free(page)) {
2381 /* The page is "safe", set its bit the bitmap */
2382 memory_bm_set_bit(bm, page_to_pfn(page));
2383 safe_highmem_pages++;
2384 }
2385 /* Mark the page as allocated */
2386 swsusp_set_page_forbidden(page);
2387 swsusp_set_page_free(page);
2388 }
2389 memory_bm_position_reset(bm);
2390 safe_highmem_bm = bm;
2391 return 0;
2392 }
2393
2394 static struct page *last_highmem_page;
2395
2396 /**
2397 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2398 *
2399 * For a given highmem image page get a buffer that suspend_write_next() should
2400 * return to its caller to write to.
2401 *
2402 * If the page is to be saved to its "original" page frame or a copy of
2403 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2404 * the copy of the page is to be made in normal memory, so the address of
2405 * the copy is returned.
2406 *
2407 * If @buffer is returned, the caller of suspend_write_next() will write
2408 * the page's contents to @buffer, so they will have to be copied to the
2409 * right location on the next call to suspend_write_next() and it is done
2410 * with the help of copy_last_highmem_page(). For this purpose, if
2411 * @buffer is returned, @last_highmem_page is set to the page to which
2412 * the data will have to be copied from @buffer.
2413 */
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2414 static void *get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2415 {
2416 struct highmem_pbe *pbe;
2417 void *kaddr;
2418
2419 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2420 /*
2421 * We have allocated the "original" page frame and we can
2422 * use it directly to store the loaded page.
2423 */
2424 last_highmem_page = page;
2425 return buffer;
2426 }
2427 /*
2428 * The "original" page frame has not been allocated and we have to
2429 * use a "safe" page frame to store the loaded page.
2430 */
2431 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2432 if (!pbe) {
2433 swsusp_free();
2434 return ERR_PTR(-ENOMEM);
2435 }
2436 pbe->orig_page = page;
2437 if (safe_highmem_pages > 0) {
2438 struct page *tmp;
2439
2440 /* Copy of the page will be stored in high memory */
2441 kaddr = buffer;
2442 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2443 safe_highmem_pages--;
2444 last_highmem_page = tmp;
2445 pbe->copy_page = tmp;
2446 } else {
2447 /* Copy of the page will be stored in normal memory */
2448 kaddr = safe_pages_list;
2449 safe_pages_list = safe_pages_list->next;
2450 pbe->copy_page = virt_to_page(kaddr);
2451 }
2452 pbe->next = highmem_pblist;
2453 highmem_pblist = pbe;
2454 return kaddr;
2455 }
2456
2457 /**
2458 * copy_last_highmem_page - Copy most the most recent highmem image page.
2459 *
2460 * Copy the contents of a highmem image from @buffer, where the caller of
2461 * snapshot_write_next() has stored them, to the right location represented by
2462 * @last_highmem_page .
2463 */
copy_last_highmem_page(void)2464 static void copy_last_highmem_page(void)
2465 {
2466 if (last_highmem_page) {
2467 void *dst;
2468
2469 dst = kmap_atomic(last_highmem_page);
2470 copy_page(dst, buffer);
2471 kunmap_atomic(dst);
2472 last_highmem_page = NULL;
2473 }
2474 }
2475
last_highmem_page_copied(void)2476 static inline int last_highmem_page_copied(void)
2477 {
2478 return !last_highmem_page;
2479 }
2480
free_highmem_data(void)2481 static inline void free_highmem_data(void)
2482 {
2483 if (safe_highmem_bm) {
2484 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2485 }
2486
2487 if (buffer) {
2488 free_image_page(buffer, PG_UNSAFE_CLEAR);
2489 }
2490 }
2491 #else
count_highmem_image_pages(struct memory_bitmap * bm)2492 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2493 {
2494 return 0;
2495 }
2496
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2497 static inline int prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2498 {
2499 return 0;
2500 }
2501
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2502 static inline void *get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2503 {
2504 return ERR_PTR(-EINVAL);
2505 }
2506
copy_last_highmem_page(void)2507 static inline void copy_last_highmem_page(void)
2508 {
2509 }
last_highmem_page_copied(void)2510 static inline int last_highmem_page_copied(void)
2511 {
2512 return 1;
2513 }
free_highmem_data(void)2514 static inline void free_highmem_data(void)
2515 {
2516 }
2517 #endif /* CONFIG_HIGHMEM */
2518
2519 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2520
2521 /**
2522 * prepare_image - Make room for loading hibernation image.
2523 * @new_bm: Unitialized memory bitmap structure.
2524 * @bm: Memory bitmap with unsafe pages marked.
2525 *
2526 * Use @bm to mark the pages that will be overwritten in the process of
2527 * restoring the system memory state from the suspend image ("unsafe" pages)
2528 * and allocate memory for the image.
2529 *
2530 * The idea is to allocate a new memory bitmap first and then allocate
2531 * as many pages as needed for image data, but without specifying what those
2532 * pages will be used for just yet. Instead, we mark them all as allocated and
2533 * create a lists of "safe" pages to be used later. On systems with high
2534 * memory a list of "safe" highmem pages is created too.
2535 */
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2536 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2537 {
2538 unsigned int nr_pages, nr_highmem;
2539 struct linked_page *lp;
2540 int error;
2541
2542 /* If there is no highmem, the buffer will not be necessary */
2543 free_image_page(buffer, PG_UNSAFE_CLEAR);
2544 buffer = NULL;
2545
2546 nr_highmem = count_highmem_image_pages(bm);
2547 mark_unsafe_pages(bm);
2548
2549 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2550 if (error) {
2551 goto Free;
2552 }
2553
2554 duplicate_memory_bitmap(new_bm, bm);
2555 memory_bm_free(bm, PG_UNSAFE_KEEP);
2556 if (nr_highmem > 0) {
2557 error = prepare_highmem_image(bm, &nr_highmem);
2558 if (error) {
2559 goto Free;
2560 }
2561 }
2562 /*
2563 * Reserve some safe pages for potential later use.
2564 *
2565 * NOTE: This way we make sure there will be enough safe pages for the
2566 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2567 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2568 *
2569 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2570 */
2571 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2572 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2573 while (nr_pages > 0) {
2574 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2575 if (!lp) {
2576 error = -ENOMEM;
2577 goto Free;
2578 }
2579 lp->next = safe_pages_list;
2580 safe_pages_list = lp;
2581 nr_pages--;
2582 }
2583 /* Preallocate memory for the image */
2584 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2585 while (nr_pages > 0) {
2586 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2587 if (!lp) {
2588 error = -ENOMEM;
2589 goto Free;
2590 }
2591 if (!swsusp_page_is_free(virt_to_page(lp))) {
2592 /* The page is "safe", add it to the list */
2593 lp->next = safe_pages_list;
2594 safe_pages_list = lp;
2595 }
2596 /* Mark the page as allocated */
2597 swsusp_set_page_forbidden(virt_to_page(lp));
2598 swsusp_set_page_free(virt_to_page(lp));
2599 nr_pages--;
2600 }
2601 return 0;
2602
2603 Free:
2604 swsusp_free();
2605 return error;
2606 }
2607
2608 /**
2609 * get_buffer - Get the address to store the next image data page.
2610 *
2611 * Get the address that snapshot_write_next() should return to its caller to
2612 * write to.
2613 */
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2614 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2615 {
2616 struct pbe *pbe;
2617 struct page *page;
2618 unsigned long pfn = memory_bm_next_pfn(bm);
2619 if (pfn == BM_END_OF_MAP) {
2620 return ERR_PTR(-EFAULT);
2621 }
2622
2623 page = pfn_to_page(pfn);
2624 if (PageHighMem(page)) {
2625 return get_highmem_page_buffer(page, ca);
2626 }
2627
2628 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2629 /*
2630 * We have allocated the "original" page frame and we can
2631 * use it directly to store the loaded page.
2632 */
2633 return page_address(page);
2634 }
2635
2636 /*
2637 * The "original" page frame has not been allocated and we have to
2638 * use a "safe" page frame to store the loaded page.
2639 */
2640 pbe = chain_alloc(ca, sizeof(struct pbe));
2641 if (!pbe) {
2642 swsusp_free();
2643 return ERR_PTR(-ENOMEM);
2644 }
2645 pbe->orig_address = page_address(page);
2646 pbe->address = safe_pages_list;
2647 safe_pages_list = safe_pages_list->next;
2648 pbe->next = restore_pblist;
2649 restore_pblist = pbe;
2650 return pbe->address;
2651 }
2652
2653 /**
2654 * snapshot_write_next - Get the address to store the next image page.
2655 * @handle: Snapshot handle structure to guide the writing.
2656 *
2657 * On the first call, @handle should point to a zeroed snapshot_handle
2658 * structure. The structure gets populated then and a pointer to it should be
2659 * passed to this function every next time.
2660 *
2661 * On success, the function returns a positive number. Then, the caller
2662 * is allowed to write up to the returned number of bytes to the memory
2663 * location computed by the data_of() macro.
2664 *
2665 * The function returns 0 to indicate the "end of file" condition. Negative
2666 * numbers are returned on errors, in which cases the structure pointed to by
2667 * @handle is not updated and should not be used any more.
2668 */
snapshot_write_next(struct snapshot_handle * handle)2669 int snapshot_write_next(struct snapshot_handle *handle)
2670 {
2671 static struct chain_allocator ca;
2672 int error = 0;
2673
2674 /* Check if we have already loaded the entire image */
2675 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2676 return 0;
2677 }
2678
2679 handle->sync_read = 1;
2680
2681 if (!handle->cur) {
2682 if (!buffer) {
2683 /* This makes the buffer be freed by swsusp_free() */
2684 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2685 }
2686
2687 if (!buffer) {
2688 return -ENOMEM;
2689 }
2690
2691 handle->buffer = buffer;
2692 } else if (handle->cur == 1) {
2693 error = load_header(buffer);
2694 if (error) {
2695 return error;
2696 }
2697
2698 safe_pages_list = NULL;
2699
2700 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2701 if (error) {
2702 return error;
2703 }
2704
2705 hibernate_restore_protection_begin();
2706 } else if (handle->cur <= nr_meta_pages + 1) {
2707 error = unpack_orig_pfns(buffer, ©_bm);
2708 if (error) {
2709 return error;
2710 }
2711
2712 if (handle->cur == nr_meta_pages + 1) {
2713 error = prepare_image(&orig_bm, ©_bm);
2714 if (error) {
2715 return error;
2716 }
2717
2718 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2719 memory_bm_position_reset(&orig_bm);
2720 restore_pblist = NULL;
2721 handle->buffer = get_buffer(&orig_bm, &ca);
2722 handle->sync_read = 0;
2723 if (IS_ERR(handle->buffer)) {
2724 return PTR_ERR(handle->buffer);
2725 }
2726 }
2727 } else {
2728 copy_last_highmem_page();
2729 hibernate_restore_protect_page(handle->buffer);
2730 handle->buffer = get_buffer(&orig_bm, &ca);
2731 if (IS_ERR(handle->buffer)) {
2732 return PTR_ERR(handle->buffer);
2733 }
2734 if (handle->buffer != buffer) {
2735 handle->sync_read = 0;
2736 }
2737 }
2738 handle->cur++;
2739 return PAGE_SIZE;
2740 }
2741
2742 /**
2743 * snapshot_write_finalize - Complete the loading of a hibernation image.
2744 *
2745 * Must be called after the last call to snapshot_write_next() in case the last
2746 * page in the image happens to be a highmem page and its contents should be
2747 * stored in highmem. Additionally, it recycles bitmap memory that's not
2748 * necessary any more.
2749 */
snapshot_write_finalize(struct snapshot_handle * handle)2750 void snapshot_write_finalize(struct snapshot_handle *handle)
2751 {
2752 copy_last_highmem_page();
2753 hibernate_restore_protect_page(handle->buffer);
2754 /* Do that only if we have loaded the image entirely */
2755 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2756 memory_bm_recycle(&orig_bm);
2757 free_highmem_data();
2758 }
2759 }
2760
snapshot_image_loaded(struct snapshot_handle * handle)2761 int snapshot_image_loaded(struct snapshot_handle *handle)
2762 {
2763 return !(!nr_copy_pages || !last_highmem_page_copied() || handle->cur <= nr_meta_pages + nr_copy_pages);
2764 }
2765
2766 #ifdef CONFIG_HIGHMEM
2767 /* Assumes that @buf is ready and points to a "safe" page */
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2768 static inline void swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2769 {
2770 void *kaddr1, *kaddr2;
2771
2772 kaddr1 = kmap_atomic(p1);
2773 kaddr2 = kmap_atomic(p2);
2774 copy_page(buf, kaddr1);
2775 copy_page(kaddr1, kaddr2);
2776 copy_page(kaddr2, buf);
2777 kunmap_atomic(kaddr2);
2778 kunmap_atomic(kaddr1);
2779 }
2780
2781 /**
2782 * restore_highmem - Put highmem image pages into their original locations.
2783 *
2784 * For each highmem page that was in use before hibernation and is included in
2785 * the image, and also has been allocated by the "restore" kernel, swap its
2786 * current contents with the previous (ie. "before hibernation") ones.
2787 *
2788 * If the restore eventually fails, we can call this function once again and
2789 * restore the highmem state as seen by the restore kernel.
2790 */
restore_highmem(void)2791 int restore_highmem(void)
2792 {
2793 struct highmem_pbe *pbe = highmem_pblist;
2794 void *buf;
2795
2796 if (!pbe) {
2797 return 0;
2798 }
2799
2800 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2801 if (!buf) {
2802 return -ENOMEM;
2803 }
2804
2805 while (pbe) {
2806 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2807 pbe = pbe->next;
2808 }
2809 free_image_page(buf, PG_UNSAFE_CLEAR);
2810 return 0;
2811 }
2812 #endif /* CONFIG_HIGHMEM */
2813