• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Per Entity Load Tracking
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  *
23  *  Move PELT related code from fair.c into this pelt.c file
24  *  Author: Vincent Guittot <vincent.guittot@linaro.org>
25  */
26 
27 #include <linux/sched.h>
28 #include "sched.h"
29 #include "pelt.h"
30 
31 int pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
32 int pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
33 const u32 *pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
34 
set_pelt(char * str)35 static int __init set_pelt(char *str)
36 {
37     int rc, num;
38 
39     rc = kstrtoint(str, 0, &num);
40     if (rc) {
41         pr_err("%s: kstrtoint failed. rc=%d\n", __func__, rc);
42         return 0;
43     }
44 
45     switch (num) {
46         case PELT8_LOAD_AVG_PERIOD:
47             pelt_load_avg_period = PELT8_LOAD_AVG_PERIOD;
48             pelt_load_avg_max = PELT8_LOAD_AVG_MAX;
49             pelt_runnable_avg_yN_inv = pelt8_runnable_avg_yN_inv;
50             pr_info("PELT half life is set to %dms\n", num);
51             break;
52         case PELT32_LOAD_AVG_PERIOD:
53             pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
54             pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
55             pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
56             pr_info("PELT half life is set to %dms\n", num);
57             break;
58         default:
59             pr_err("Default PELT half life is 32ms\n");
60     }
61 
62     return 0;
63 }
64 
65 early_param("pelt", set_pelt);
66 
67 /*
68  * Approximate:
69  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
70  */
decay_load(u64 val,u64 n)71 static u64 decay_load(u64 val, u64 n)
72 {
73     unsigned int local_n;
74 
75     if (unlikely(n > LOAD_AVG_PERIOD * 0x3f)) {
76         return 0;
77     }
78 
79     /* after bounds checking we can collapse to 32-bit */
80     local_n = n;
81 
82     /*
83      * As y^PERIOD = 1/2, we can combine
84      *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
85      * With a look-up table which covers y^n (n<PERIOD)
86      *
87      * To achieve constant time decay_load.
88      */
89     if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
90         val >>= local_n / LOAD_AVG_PERIOD;
91         local_n %= LOAD_AVG_PERIOD;
92     }
93 
94     val = mul_u64_u32_shr(val, pelt_runnable_avg_yN_inv[local_n], 0x20);
95     return val;
96 }
97 
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)98 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
99 {
100     u32 c1, c2, c3 = d3; /* y^0 == 1 */
101 
102     /*
103      * c1 = d1 y^p
104      */
105     c1 = decay_load((u64)d1, periods);
106 
107     /*
108      *            p-1
109      * c2 = 1024 \Sum y^n
110      *            n=1
111      *
112      *              inf        inf
113      *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
114      *              n=0        n=p
115      */
116     c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 0x400;
117 
118     return c1 + c2 + c3;
119 }
120 
121 /*
122  * Accumulate the three separate parts of the sum; d1 the remainder
123  * of the last (incomplete) period, d2 the span of full periods and d3
124  * the remainder of the (incomplete) current period.
125  *
126  *           d1          d2           d3
127  *           ^           ^            ^
128  *           |           |            |
129  *         |<->|<----------------->|<--->|
130  * ... |---x---|------| ... |------|-----x (now)
131  *
132  *                           p-1
133  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
134  *                           n=1
135  *
136  *    = u y^p +                    (Step 1)
137  *
138  *                     p-1
139  *      d1 y^p + 1024 \Sum y^n + d3 y^0        (Step 2)
140  *                     n=1
141  */
accumulate_sum(u64 delta,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)142 static __always_inline u32 accumulate_sum(u64 delta, struct sched_avg *sa, unsigned long load, unsigned long runnable,
143                                           int running)
144 {
145     u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
146     u64 periods;
147 
148     delta += sa->period_contrib;
149     periods = delta / 0x400; /* A period is 1024us (~1ms) */
150 
151     /*
152      * Step 1: decay old *_sum if we crossed period boundaries.
153      */
154     if (periods) {
155         sa->load_sum = decay_load(sa->load_sum, periods);
156         sa->runnable_sum = decay_load(sa->runnable_sum, periods);
157         sa->util_sum = decay_load((u64)(sa->util_sum), periods);
158 
159         /*
160          * Step 2
161          */
162         delta %= 0x400;
163         if (load) {
164             /*
165              * This relies on the:
166              *
167              * if (!load)
168              *    runnable = running = 0;
169              *
170              * clause from ___update_load_sum(); this results in
171              * the below usage of @contrib to dissapear entirely,
172              * so no point in calculating it.
173              */
174             contrib = __accumulate_pelt_segments(periods, 0x400 - sa->period_contrib, delta);
175         }
176     }
177     sa->period_contrib = delta;
178 
179     if (load) {
180         sa->load_sum += load * contrib;
181     }
182     if (runnable) {
183         sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
184     }
185     if (running) {
186         sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
187     }
188 
189     return periods;
190 }
191 
192 /*
193  * We can represent the historical contribution to runnable average as the
194  * coefficients of a geometric series.  To do this we sub-divide our runnable
195  * history into segments of approximately 1ms (1024us); label the segment that
196  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
197  *
198  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
199  *      p0            p1           p2
200  *     (now)       (~1ms ago)  (~2ms ago)
201  *
202  * Let u_i denote the fraction of p_i that the entity was runnable.
203  *
204  * We then designate the fractions u_i as our co-efficients, yielding the
205  * following representation of historical load:
206  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
207  *
208  * We choose y based on the with of a reasonably scheduling period, fixing:
209  *   y^32 = 0.5
210  *
211  * This means that the contribution to load ~32ms ago (u_32) will be weighted
212  * approximately half as much as the contribution to load within the last ms
213  * (u_0).
214  *
215  * When a period "rolls over" and we have new u_0`, multiplying the previous
216  * sum again by y is sufficient to update:
217  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
218  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
219  */
___update_load_sum(u64 now,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)220 static __always_inline int ___update_load_sum(u64 now, struct sched_avg *sa, unsigned long load, unsigned long runnable,
221                                               int running)
222 {
223     u64 delta;
224 
225     delta = now - sa->last_update_time;
226     /*
227      * This should only happen when time goes backwards, which it
228      * unfortunately does during sched clock init when we swap over to TSC.
229      */
230     if ((s64)delta < 0) {
231         sa->last_update_time = now;
232         return 0;
233     }
234 
235     /*
236      * Use 1024ns as the unit of measurement since it's a reasonable
237      * approximation of 1us and fast to compute.
238      */
239     delta >>= 0xa;
240     if (!delta) {
241         return 0;
242     }
243 
244     sa->last_update_time += delta << 0xa;
245 
246     /*
247      * running is a subset of runnable (weight) so running can't be set if
248      * runnable is clear. But there are some corner cases where the current
249      * se has been already dequeued but cfs_rq->curr still points to it.
250      * This means that weight will be 0 but not running for a sched_entity
251      * but also for a cfs_rq if the latter becomes idle. As an example,
252      * this happens during idle_balance() which calls
253      * update_blocked_averages().
254      *
255      * Also see the comment in accumulate_sum().
256      */
257     if (!load) {
258         runnable = running = 0;
259     }
260 
261     /*
262      * Now we know we crossed measurement unit boundaries. The *_avg
263      * accrues by two steps:
264      *
265      * Step 1: accumulate *_sum since last_update_time. If we haven't
266      * crossed period boundaries, finish.
267      */
268     if (!accumulate_sum(delta, sa, load, runnable, running)) {
269         return 0;
270     }
271 
272     return 1;
273 }
274 
275 /*
276  * When syncing *_avg with *_sum, we must take into account the current
277  * position in the PELT segment otherwise the remaining part of the segment
278  * will be considered as idle time whereas it's not yet elapsed and this will
279  * generate unwanted oscillation in the range [1002..1024[.
280  *
281  * The max value of *_sum varies with the position in the time segment and is
282  * equals to :
283  *
284  *   LOAD_AVG_MAX*y + sa->period_contrib
285  *
286  * which can be simplified into:
287  *
288  *   LOAD_AVG_MAX - 1024 + sa->period_contrib
289  *
290  * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
291  *
292  * The same care must be taken when a sched entity is added, updated or
293  * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
294  * and the cfs rq, to which they are attached, have the same position in the
295  * time segment because they use the same clock. This means that we can use
296  * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
297  * if it's more convenient.
298  */
___update_load_avg(struct sched_avg * sa,unsigned long load)299 static __always_inline void ___update_load_avg(struct sched_avg *sa, unsigned long load)
300 {
301     u32 divider = get_pelt_divider(sa);
302 
303     /*
304      * Step 2: update *_avg.
305      */
306     sa->load_avg = div_u64(load * sa->load_sum, divider);
307     sa->runnable_avg = div_u64(sa->runnable_sum, divider);
308     WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
309 }
310 
311 /*
312  * sched_entity
313  *
314  *   task:
315  *     se_weight()   = se->load.weight
316  *     se_runnable() = !!on_rq
317  *
318  *   group: [ see update_cfs_group() ]
319  *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
320  *     se_runnable() = grq->h_nr_running
321  *
322  *   runnable_sum = se_runnable() * runnable = grq->runnable_sum
323  *   runnable_avg = runnable_sum
324  *
325  *   load_sum := runnable
326  *   load_avg = se_weight(se) * load_sum
327  *
328  * cfq_rq
329  *
330  *   runnable_sum = \Sum se->avg.runnable_sum
331  *   runnable_avg = \Sum se->avg.runnable_avg
332  *
333  *   load_sum = \Sum se_weight(se) * se->avg.load_sum
334  *   load_avg = \Sum se->avg.load_avg
335  */
336 
__update_load_avg_blocked_se(u64 now,struct sched_entity * se)337 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
338 {
339     if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
340         ___update_load_avg(&se->avg, se_weight(se));
341         trace_pelt_se_tp(se);
342         return 1;
343     }
344 
345     return 0;
346 }
347 
__update_load_avg_se(u64 now,struct cfs_rq * cfs_rq,struct sched_entity * se)348 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350     if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), cfs_rq->curr == se)) {
351         ___update_load_avg(&se->avg, se_weight(se));
352         cfs_se_util_change(&se->avg);
353         trace_pelt_se_tp(se);
354         return 1;
355     }
356 
357     return 0;
358 }
359 
__update_load_avg_cfs_rq(u64 now,struct cfs_rq * cfs_rq)360 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
361 {
362     if (___update_load_sum(now, &cfs_rq->avg, scale_load_down(cfs_rq->load.weight), cfs_rq->h_nr_running,
363                            cfs_rq->curr != NULL)) {
364         ___update_load_avg(&cfs_rq->avg, 1);
365         trace_pelt_cfs_tp(cfs_rq);
366         return 1;
367     }
368 
369     return 0;
370 }
371 
372 /*
373  * rt_rq
374  *
375  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
376  *   util_sum = cpu_scale * load_sum
377  *   runnable_sum = util_sum
378  *
379  *   load_avg and runnable_avg are not supported and meaningless.
380  *
381  */
382 
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)383 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
384 {
385     if (___update_load_sum(now, &rq->avg_rt, running, running, running)) {
386         ___update_load_avg(&rq->avg_rt, 1);
387         trace_pelt_rt_tp(rq);
388         return 1;
389     }
390 
391     return 0;
392 }
393 
394 /*
395  * dl_rq
396  *
397  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
398  *   util_sum = cpu_scale * load_sum
399  *   runnable_sum = util_sum
400  *
401  *   load_avg and runnable_avg are not supported and meaningless.
402  *
403  */
404 
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)405 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
406 {
407     if (___update_load_sum(now, &rq->avg_dl, running, running, running)) {
408         ___update_load_avg(&rq->avg_dl, 1);
409         trace_pelt_dl_tp(rq);
410         return 1;
411     }
412 
413     return 0;
414 }
415 
416 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
417 /*
418  * thermal
419  *
420  *   load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
421  *
422  *   util_avg and runnable_load_avg are not supported and meaningless.
423  *
424  * Unlike rt/dl utilization tracking that track time spent by a cpu
425  * running a rt/dl task through util_avg, the average thermal pressure is
426  * tracked through load_avg. This is because thermal pressure signal is
427  * time weighted "delta" capacity unlike util_avg which is binary.
428  * "delta capacity" =  actual capacity  -
429  *            capped capacity a cpu due to a thermal event.
430  */
431 
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)432 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
433 {
434     if (___update_load_sum(now, &rq->avg_thermal, capacity, capacity, capacity)) {
435         ___update_load_avg(&rq->avg_thermal, 1);
436         trace_pelt_thermal_tp(rq);
437         return 1;
438     }
439 
440     return 0;
441 }
442 #endif
443 
444 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
445 /*
446  * irq
447  *
448  *   util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
449  *   util_sum = cpu_scale * load_sum
450  *   runnable_sum = util_sum
451  *
452  *   load_avg and runnable_avg are not supported and meaningless.
453  *
454  */
455 
update_irq_load_avg(struct rq * rq,u64 running)456 int update_irq_load_avg(struct rq *rq, u64 running)
457 {
458     int ret = 0;
459 
460     /*
461      * We can't use clock_pelt because irq time is not accounted in
462      * clock_task. Instead we directly scale the running time to
463      * reflect the real amount of computation
464      */
465     running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
466     running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
467 
468     /*
469      * We know the time that has been used by interrupt since last update
470      * but we don't when. Let be pessimistic and assume that interrupt has
471      * happened just before the update. This is not so far from reality
472      * because interrupt will most probably wake up task and trig an update
473      * of rq clock during which the metric is updated.
474      * We start to decay with normal context time and then we add the
475      * interrupt context time.
476      * We can safely remove running from rq->clock because
477      * rq->clock += delta with delta >= running
478      */
479     ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 0, 0, 0);
480     ret += ___update_load_sum(rq->clock, &rq->avg_irq, 1, 1, 1);
481     if (ret) {
482         ___update_load_avg(&rq->avg_irq, 1);
483         trace_pelt_irq_tp(rq);
484     }
485 
486     return ret;
487 }
488 #endif
489