• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef COMMON_SDK_LINUX_KERNEL_SCHED_SCHED_H
6 #define COMMON_SDK_LINUX_KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/clock.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/cpufreq.h>
13 #include <linux/sched/cputime.h>
14 #include <linux/sched/deadline.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/hotplug.h>
17 #include <linux/sched/idle.h>
18 #include <linux/sched/init.h>
19 #include <linux/sched/isolation.h>
20 #include <linux/sched/jobctl.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/nohz.h>
24 #include <linux/sched/numa_balancing.h>
25 #include <linux/sched/prio.h>
26 #include <linux/sched/rt.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/smt.h>
29 #include <linux/sched/stat.h>
30 #include <linux/sched/sysctl.h>
31 #include <linux/sched/task.h>
32 #include <linux/sched/task_stack.h>
33 #include <linux/sched/topology.h>
34 #include <linux/sched/user.h>
35 #include <linux/sched/wake_q.h>
36 #include <linux/sched/xacct.h>
37 
38 #include <uapi/linux/sched/types.h>
39 
40 #include <linux/binfmts.h>
41 #include <linux/blkdev.h>
42 #include <linux/compat.h>
43 #include <linux/context_tracking.h>
44 #include <linux/cpufreq.h>
45 #include <linux/cpuidle.h>
46 #include <linux/cpuset.h>
47 #include <linux/ctype.h>
48 #include <linux/debugfs.h>
49 #include <linux/delayacct.h>
50 #include <linux/energy_model.h>
51 #include <linux/init_task.h>
52 #include <linux/kprobes.h>
53 #include <linux/kthread.h>
54 #include <linux/membarrier.h>
55 #include <linux/migrate.h>
56 #include <linux/mmu_context.h>
57 #include <linux/nmi.h>
58 #include <linux/proc_fs.h>
59 #include <linux/prefetch.h>
60 #include <linux/profile.h>
61 #include <linux/psi.h>
62 #include <linux/rcupdate_wait.h>
63 #include <linux/security.h>
64 #include <linux/stop_machine.h>
65 #include <linux/suspend.h>
66 #include <linux/swait.h>
67 #include <linux/syscalls.h>
68 #include <linux/task_work.h>
69 #include <linux/tsacct_kern.h>
70 
71 #include <asm/tlb.h>
72 #include <asm-generic/vmlinux.lds.h>
73 
74 #ifdef CONFIG_PARAVIRT
75 #include <asm/paravirt.h>
76 #endif
77 
78 #include "cpupri.h"
79 #include "cpudeadline.h"
80 
81 #include <trace/events/sched.h>
82 
83 #ifdef CONFIG_SCHED_DEBUG
84 #define SCHED_WARN_ON(x) (WARN_ONCE(x, #x))
85 #else
86 #define SCHED_WARN_ON(x) ( {               \
87     (void)(x), 0; })
88 #endif
89 
90 struct rq;
91 struct cpuidle_state;
92 
93 #ifdef CONFIG_SCHED_RT_CAS
94 extern unsigned long uclamp_task_util(struct task_struct *p);
95 #endif
96 
97 #ifdef CONFIG_SCHED_WALT
98 extern unsigned int sched_ravg_window;
99 extern unsigned int walt_cpu_util_freq_divisor;
100 
101 struct walt_sched_stats {
102     u64 cumulative_runnable_avg_scaled;
103 };
104 
105 struct load_subtractions {
106     u64 window_start;
107     u64 subs;
108     u64 new_subs;
109 };
110 
111 #define NUM_TRACKED_WINDOWS 2
112 
113 struct sched_cluster {
114     raw_spinlock_t load_lock;
115     struct list_head list;
116     struct cpumask cpus;
117     int id;
118     int max_power_cost;
119     int min_power_cost;
120     int max_possible_capacity;
121     int capacity;
122     int efficiency; /* Differentiate cpus with different IPC capability */
123     int load_scale_factor;
124     unsigned int exec_scale_factor;
125     /*
126      * max_freq = user maximum
127      * max_possible_freq = maximum supported by hardware
128      */
129     unsigned int cur_freq, max_freq, min_freq;
130     unsigned int max_possible_freq;
131     bool freq_init_done;
132 };
133 
134 extern unsigned int sched_disable_window_stats;
135 #endif /* CONFIG_SCHED_WALT */
136 
137 /* task_struct::on_rq states: */
138 #define TASK_ON_RQ_QUEUED 1
139 #define TASK_ON_RQ_MIGRATING 2
140 
141 extern __read_mostly int scheduler_running;
142 
143 extern unsigned long calc_load_update;
144 extern atomic_long_t calc_load_tasks;
145 
146 extern const u64 max_cfs_quota_period;
147 
148 extern void calc_global_load_tick(struct rq *this_rq);
149 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
150 
151 #ifdef CONFIG_SMP
152 extern void init_sched_groups_capacity(int cpu, struct sched_domain *sd);
153 #endif
154 
155 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
156 /*
157  * Helpers for converting nanosecond timing to jiffy resolution
158  */
159 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
160 #ifdef CONFIG_SCHED_LATENCY_NICE
161 #define MAX_LATENCY_NICE	19
162 #define MIN_LATENCY_NICE	-20
163 #define LATENCY_NICE_WIDTH	\
164     (MAX_LATENCY_NICE - MIN_LATENCY_NICE + 1)
165 #define DEFAULT_LATENCY_NICE	0
166 #define DEFAULT_LATENCY_PRIO	(DEFAULT_LATENCY_NICE + LATENCY_NICE_WIDTH/2)
167 #define NICE_TO_LATENCY(nice)	((nice) + DEFAULT_LATENCY_PRIO)
168 #define LATENCY_TO_NICE(prio)	((prio) - DEFAULT_LATENCY_PRIO)
169 #define NICE_LATENCY_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
170 #define NICE_LATENCY_WEIGHT_MAX	(1L << NICE_LATENCY_SHIFT)
171 #endif /* CONFIG_SCHED_LATENCY_NICE */
172 
173 /*
174  * Increase resolution of nice-level calculations for 64-bit architectures.
175  * The extra resolution improves shares distribution and load balancing of
176  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
177  * hierarchies, especially on larger systems. This is not a user-visible change
178  * and does not change the user-interface for setting shares/weights.
179  *
180  * We increase resolution only if we have enough bits to allow this increased
181  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
182  * are pretty high and the returns do not justify the increased costs.
183  *
184  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
185  * increase coverage and consistency always enable it on 64-bit platforms.
186  */
187 #ifdef CONFIG_64BIT
188 #define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
189 #define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
190 #define scale_load_down(w)                                                                                             \
191     ( {                                                                                                                \
192         unsigned long __w = (w);                                                                                       \
193         if (__w)                                                                                                       \
194             __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);                                                             \
195         __w;                                                                                                           \
196     })
197 #else
198 #define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
199 #define scale_load(w) (w)
200 #define scale_load_down(w) (w)
201 #endif
202 
203 /*
204  * Task weight (visible to users) and its load (invisible to users) have
205  * independent resolution, but they should be well calibrated. We use
206  * scale_load() and scale_load_down(w) to convert between them. The
207  * following must be true:
208  *
209  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
210  *
211  */
212 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
213 #define CPU_FREQ_1K 1024
214 #define CPU_SAMPLE_ARTE 8
215 
216 extern struct cpufreq_governor schedutil_gov;
217 
218 /*
219  * Single value that decides SCHED_DEADLINE internal math precision.
220  * 10 -> just above 1us
221  * 9  -> just above 0.5us
222  */
223 #define DL_SCALE 10
224 
225 /*
226  * Single value that denotes runtime == period, ie unlimited time.
227  */
228 #define RUNTIME_INF ((u64)~0ULL)
229 
idle_policy(int policy)230 static inline int idle_policy(int policy)
231 {
232     return policy == SCHED_IDLE;
233 }
fair_policy(int policy)234 static inline int fair_policy(int policy)
235 {
236     return policy == SCHED_NORMAL || policy == SCHED_BATCH;
237 }
238 
rt_policy(int policy)239 static inline int rt_policy(int policy)
240 {
241     return policy == SCHED_FIFO || policy == SCHED_RR;
242 }
243 
dl_policy(int policy)244 static inline int dl_policy(int policy)
245 {
246     return policy == SCHED_DEADLINE;
247 }
valid_policy(int policy)248 static inline bool valid_policy(int policy)
249 {
250     return idle_policy(policy) || fair_policy(policy) || rt_policy(policy) || dl_policy(policy);
251 }
252 
task_has_idle_policy(struct task_struct * p)253 static inline int task_has_idle_policy(struct task_struct *p)
254 {
255     return idle_policy(p->policy);
256 }
257 
task_has_rt_policy(struct task_struct * p)258 static inline int task_has_rt_policy(struct task_struct *p)
259 {
260     return rt_policy(p->policy);
261 }
262 
task_has_dl_policy(struct task_struct * p)263 static inline int task_has_dl_policy(struct task_struct *p)
264 {
265     return dl_policy(p->policy);
266 }
267 
268 #define cap_scale(v, s) (((v) * (s)) >> SCHED_CAPACITY_SHIFT)
269 
update_avg(u64 * avg,u64 sample)270 static inline void update_avg(u64 *avg, u64 sample)
271 {
272     s64 diff = sample - *avg;
273     *avg += diff / CPU_SAMPLE_ARTE;
274 }
275 
276 /*
277  * Shifting a value by an exponent greater *or equal* to the size of said value
278  * is UB; cap at size-1.
279  */
280 #define shr_bound(val, shift) ((val) >> min_t(typeof(shift), (shift), BITS_PER_TYPE(typeof(val)) - 1))
281 
282 /*
283  * !! For sched_setattr_nocheck() (kernel) only !!
284  *
285  * This is actually gross. :(
286  *
287  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
288  * tasks, but still be able to sleep. We need this on platforms that cannot
289  * atomically change clock frequency. Remove once fast switching will be
290  * available on such platforms.
291  *
292  * SUGOV stands for SchedUtil GOVernor.
293  */
294 #define SCHED_FLAG_SUGOV 0x10000000
295 
296 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
297 
dl_entity_is_special(struct sched_dl_entity * dl_se)298 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
299 {
300 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
301     return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
302 #else
303     return false;
304 #endif
305 }
306 
307 /*
308  * Tells if entity @a should preempt entity @b.
309  */
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)310 static inline bool dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
311 {
312     return dl_entity_is_special(a) || dl_time_before(a->deadline, b->deadline);
313 }
314 
315 /*
316  * This is the priority-queue data structure of the RT scheduling class:
317  */
318 struct rt_prio_array {
319     DECLARE_BITMAP(bitmap, MAX_RT_PRIO + 1); /* include 1 bit for delimiter */
320     struct list_head queue[MAX_RT_PRIO];
321 };
322 
323 struct rt_bandwidth {
324     /* nests inside the rq lock: */
325     raw_spinlock_t rt_runtime_lock;
326     ktime_t rt_period;
327     u64 rt_runtime;
328     struct hrtimer rt_period_timer;
329     unsigned int rt_period_active;
330 };
331 
332 void __dl_clear_params(struct task_struct *p);
333 
334 struct dl_bandwidth {
335     raw_spinlock_t dl_runtime_lock;
336     u64 dl_runtime;
337     u64 dl_period;
338 };
339 
dl_bandwidth_enabled(void)340 static inline int dl_bandwidth_enabled(void)
341 {
342     return sysctl_sched_rt_runtime >= 0;
343 }
344 
345 /*
346  * To keep the bandwidth of -deadline tasks under control
347  * we need some place where:
348  *  - store the maximum -deadline bandwidth of each cpu;
349  *  - cache the fraction of bandwidth that is currently allocated in
350  *    each root domain;
351  *
352  * This is all done in the data structure below. It is similar to the
353  * one used for RT-throttling (rt_bandwidth), with the main difference
354  * that, since here we are only interested in admission control, we
355  * do not decrease any runtime while the group "executes", neither we
356  * need a timer to replenish it.
357  *
358  * With respect to SMP, bandwidth is given on a per root domain basis,
359  * meaning that:
360  *  - bw (< 100%) is the deadline bandwidth of each CPU;
361  *  - total_bw is the currently allocated bandwidth in each root domain;
362  */
363 struct dl_bw {
364     raw_spinlock_t lock;
365     u64 bw;
366     u64 total_bw;
367 };
368 
369 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
370 
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)371 static inline void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
372 {
373     dl_b->total_bw -= tsk_bw;
374     __dl_update(dl_b, (s32)tsk_bw / cpus);
375 }
376 
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)377 static inline void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
378 {
379     dl_b->total_bw += tsk_bw;
380     __dl_update(dl_b, -((s32)tsk_bw / cpus));
381 }
382 
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)383 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
384 {
385     return (dl_b->bw != -1) && (cap_scale(dl_b->bw, cap) < (dl_b->total_bw - old_bw + new_bw));
386 }
387 
388 /*
389  * Verify the fitness of task @p to run on @cpu taking into account the
390  * CPU original capacity and the runtime/deadline ratio of the task.
391  *
392  * The function will return true if the CPU original capacity of the
393  * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
394  * task and false otherwise.
395  */
dl_task_fits_capacity(struct task_struct * p,int cpu)396 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
397 {
398     unsigned long cap = arch_scale_cpu_capacity(cpu);
399 
400     return ((cap_scale(p->dl.dl_deadline, cap)) >= (p->dl.dl_runtime));
401 }
402 
403 extern void init_dl_bw(struct dl_bw *dl_b);
404 extern int sched_dl_global_validate(void);
405 extern void sched_dl_do_global(void);
406 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
407 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
408 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
409 extern bool __checkparam_dl(const struct sched_attr *attr);
410 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
411 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
412 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
413 extern int  dl_cpu_busy(int cpu, struct task_struct *p);
414 
415 #ifdef CONFIG_CGROUP_SCHED
416 
417 #include <linux/cgroup.h>
418 #include <linux/psi.h>
419 
420 struct cfs_rq;
421 struct rt_rq;
422 
423 extern struct list_head task_groups;
424 
425 struct cfs_bandwidth {
426 #ifdef CONFIG_CFS_BANDWIDTH
427     raw_spinlock_t lock;
428     ktime_t period;
429     u64 quota;
430     u64 runtime;
431     s64 hierarchical_quota;
432 
433     u8 idle;
434     u8 period_active;
435     u8 slack_started;
436     struct hrtimer period_timer;
437     struct hrtimer slack_timer;
438     struct list_head throttled_cfs_rq;
439 
440     /* Statistics: */
441     int nr_periods;
442     int nr_throttled;
443     u64 throttled_time;
444 #endif
445 };
446 
447 /* Task group related information */
448 struct task_group {
449     struct cgroup_subsys_state css;
450 
451 #ifdef CONFIG_FAIR_GROUP_SCHED
452     /* schedulable entities of this group on each CPU */
453     struct sched_entity **se;
454     /* runqueue "owned" by this group on each CPU */
455     struct cfs_rq **cfs_rq;
456     unsigned long shares;
457 
458 #ifdef CONFIG_SMP
459     /*
460      * load_avg can be heavily contended at clock tick time, so put
461      * it in its own cacheline separated from the fields above which
462      * will also be accessed at each tick.
463      */
464     atomic_long_t load_avg ____cacheline_aligned;
465 #endif
466 #endif
467 
468 #ifdef CONFIG_RT_GROUP_SCHED
469     struct sched_rt_entity **rt_se;
470     struct rt_rq **rt_rq;
471 
472     struct rt_bandwidth rt_bandwidth;
473 #endif
474 
475     struct rcu_head rcu;
476     struct list_head list;
477 
478     struct task_group *parent;
479     struct list_head siblings;
480     struct list_head children;
481 
482 #ifdef CONFIG_SCHED_AUTOGROUP
483     struct autogroup *autogroup;
484 #endif
485 
486     struct cfs_bandwidth cfs_bandwidth;
487 
488 #ifdef CONFIG_UCLAMP_TASK_GROUP
489     /* The two decimal precision [%] value requested from user-space */
490     unsigned int uclamp_pct[UCLAMP_CNT];
491     /* Clamp values requested for a task group */
492     struct uclamp_se uclamp_req[UCLAMP_CNT];
493     /* Effective clamp values used for a task group */
494     struct uclamp_se uclamp[UCLAMP_CNT];
495 #endif
496 
497 #ifdef CONFIG_SCHED_RTG_CGROUP
498     /*
499      * Controls whether tasks of this cgroup should be colocated with each
500      * other and tasks of other cgroups that have the same flag turned on.
501      */
502     bool colocate;
503 
504     /* Controls whether further updates are allowed to the colocate flag */
505     bool colocate_update_disabled;
506 #endif
507 };
508 
509 #ifdef CONFIG_FAIR_GROUP_SCHED
510 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
511 
512 /*
513  * A weight of 0 or 1 can cause arithmetics problems.
514  * A weight of a cfs_rq is the sum of weights of which entities
515  * are queued on this cfs_rq, so a weight of a entity should not be
516  * too large, so as the shares value of a task group.
517  * (The default weight is 1024 - so there's no practical
518  *  limitation from this.)
519  */
520 #define MIN_SHARES (1UL << 1)
521 #define MAX_SHARES (1UL << 18)
522 #endif
523 
524 typedef int (*tg_visitor)(struct task_group *, void *);
525 
526 extern int walk_tg_tree_from(struct task_group *from, tg_visitor down, tg_visitor up, void *data);
527 
528 /*
529  * Iterate the full tree, calling @down when first entering a node and @up when
530  * leaving it for the final time.
531  *
532  * Caller must hold rcu_lock or sufficient equivalent.
533  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)534 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
535 {
536     return walk_tg_tree_from(&root_task_group, down, up, data);
537 }
538 
539 extern int tg_nop(struct task_group *tg, void *data);
540 
541 extern void free_fair_sched_group(struct task_group *tg);
542 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
543 extern void online_fair_sched_group(struct task_group *tg);
544 extern void unregister_fair_sched_group(struct task_group *tg);
545 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu,
546                               struct sched_entity *parent);
547 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
548 
549 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
550 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
551 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
552 
553 extern void free_rt_sched_group(struct task_group *tg);
554 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
555 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu,
556                              struct sched_rt_entity *parent);
557 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
558 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
559 extern long sched_group_rt_runtime(struct task_group *tg);
560 extern long sched_group_rt_period(struct task_group *tg);
561 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
562 
563 extern struct task_group *sched_create_group(struct task_group *parent);
564 extern void sched_online_group(struct task_group *tg, struct task_group *parent);
565 extern void sched_destroy_group(struct task_group *tg);
566 extern void sched_offline_group(struct task_group *tg);
567 
568 extern void sched_move_task(struct task_struct *tsk);
569 
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
572 
573 #ifdef CONFIG_SMP
574 extern void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next);
575 #else  /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)576 static inline void set_task_rq_fair(struct sched_entity *se, struct cfs_rq *prev, struct cfs_rq *next)
577 {
578 }
579 #endif /* CONFIG_SMP */
580 #endif /* CONFIG_FAIR_GROUP_SCHED */
581 
582 #else /* CONFIG_CGROUP_SCHED */
583 
584 struct cfs_bandwidth {
585 };
586 
587 #endif /* CONFIG_CGROUP_SCHED */
588 
589 /* CFS-related fields in a runqueue */
590 struct cfs_rq {
591     struct load_weight load;
592     unsigned int nr_running;
593     unsigned int h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
594     unsigned int idle_h_nr_running; /* SCHED_IDLE */
595 
596     u64 exec_clock;
597     u64 min_vruntime;
598 #ifndef CONFIG_64BIT
599     u64 min_vruntime_copy;
600 #endif
601 
602     struct rb_root_cached tasks_timeline;
603 
604     /*
605      * 'curr' points to currently running entity on this cfs_rq.
606      * It is set to NULL otherwise (i.e when none are currently running).
607      */
608     struct sched_entity *curr;
609     struct sched_entity *next;
610     struct sched_entity *last;
611     struct sched_entity *skip;
612 
613 #ifdef CONFIG_SCHED_DEBUG
614     unsigned int nr_spread_over;
615 #endif
616 
617 #ifdef CONFIG_SMP
618     /*
619      * CFS load tracking
620      */
621     struct sched_avg avg;
622 #ifndef CONFIG_64BIT
623     u64 load_last_update_time_copy;
624 #endif
625     struct {
626         raw_spinlock_t lock ____cacheline_aligned;
627         int nr;
628         unsigned long load_avg;
629         unsigned long util_avg;
630         unsigned long runnable_avg;
631     } removed;
632 
633 #ifdef CONFIG_FAIR_GROUP_SCHED
634     unsigned long tg_load_avg_contrib;
635     long propagate;
636     long prop_runnable_sum;
637 
638     /*
639      *   h_load = weight * f(tg)
640      *
641      * Where f(tg) is the recursive weight fraction assigned to
642      * this group.
643      */
644     unsigned long h_load;
645     u64 last_h_load_update;
646     struct sched_entity *h_load_next;
647 #endif /* CONFIG_FAIR_GROUP_SCHED */
648 #endif /* CONFIG_SMP */
649 
650 #ifdef CONFIG_FAIR_GROUP_SCHED
651     struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
652 
653     /*
654      * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
655      * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
656      * (like users, containers etc.)
657      *
658      * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
659      * This list is used during load balance.
660      */
661     int on_list;
662     struct list_head leaf_cfs_rq_list;
663     struct task_group *tg; /* group that "owns" this runqueue */
664 
665 #ifdef CONFIG_SCHED_WALT
666     struct walt_sched_stats walt_stats;
667 #endif
668 
669 #ifdef CONFIG_CFS_BANDWIDTH
670     int runtime_enabled;
671     s64 runtime_remaining;
672 
673     u64 throttled_clock;
674     u64 throttled_clock_pelt;
675     u64 throttled_clock_pelt_time;
676     int throttled;
677     int throttle_count;
678     struct list_head throttled_list;
679 #ifdef CONFIG_SCHED_WALT
680     u64 cumulative_runnable_avg;
681 #endif
682 #endif /* CONFIG_CFS_BANDWIDTH */
683 #endif /* CONFIG_FAIR_GROUP_SCHED */
684 };
685 
rt_bandwidth_enabled(void)686 static inline int rt_bandwidth_enabled(void)
687 {
688     return sysctl_sched_rt_runtime >= 0;
689 }
690 
691 /* RT IPI pull logic requires IRQ_WORK */
692 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
693 #define HAVE_RT_PUSH_IPI
694 #endif
695 
696 /* Real-Time classes' related field in a runqueue: */
697 struct rt_rq {
698     struct rt_prio_array active;
699     unsigned int rt_nr_running;
700     unsigned int rr_nr_running;
701 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
702     struct {
703         int curr; /* highest queued rt task prio */
704 #ifdef CONFIG_SMP
705         int next; /* next highest */
706 #endif
707     } highest_prio;
708 #endif
709 #ifdef CONFIG_SMP
710     unsigned long rt_nr_migratory;
711     unsigned long rt_nr_total;
712     int overloaded;
713     struct plist_head pushable_tasks;
714 
715 #endif /* CONFIG_SMP */
716     int rt_queued;
717 
718     int rt_throttled;
719     u64 rt_time;
720     u64 rt_runtime;
721     /* Nests inside the rq lock: */
722     raw_spinlock_t rt_runtime_lock;
723 
724 #ifdef CONFIG_RT_GROUP_SCHED
725     unsigned long rt_nr_boosted;
726 
727     struct rq *rq;
728     struct task_group *tg;
729 #endif
730 };
731 
rt_rq_is_runnable(struct rt_rq * rt_rq)732 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
733 {
734     return rt_rq->rt_queued && rt_rq->rt_nr_running;
735 }
736 
737 /* Deadline class' related fields in a runqueue */
738 struct dl_rq {
739     /* runqueue is an rbtree, ordered by deadline */
740     struct rb_root_cached root;
741 
742     unsigned long dl_nr_running;
743 
744 #ifdef CONFIG_SMP
745     /*
746      * Deadline values of the currently executing and the
747      * earliest ready task on this rq. Caching these facilitates
748      * the decision whether or not a ready but not running task
749      * should migrate somewhere else.
750      */
751     struct {
752         u64 curr;
753         u64 next;
754     } earliest_dl;
755 
756     unsigned long dl_nr_migratory;
757     int overloaded;
758 
759     /*
760      * Tasks on this rq that can be pushed away. They are kept in
761      * an rb-tree, ordered by tasks' deadlines, with caching
762      * of the leftmost (earliest deadline) element.
763      */
764     struct rb_root_cached pushable_dl_tasks_root;
765 #else
766     struct dl_bw dl_bw;
767 #endif
768     /*
769      * "Active utilization" for this runqueue: increased when a
770      * task wakes up (becomes TASK_RUNNING) and decreased when a
771      * task blocks
772      */
773     u64 running_bw;
774 
775     /*
776      * Utilization of the tasks "assigned" to this runqueue (including
777      * the tasks that are in runqueue and the tasks that executed on this
778      * CPU and blocked). Increased when a task moves to this runqueue, and
779      * decreased when the task moves away (migrates, changes scheduling
780      * policy, or terminates).
781      * This is needed to compute the "inactive utilization" for the
782      * runqueue (inactive utilization = this_bw - running_bw).
783      */
784     u64 this_bw;
785     u64 extra_bw;
786 
787     /*
788      * Inverse of the fraction of CPU utilization that can be reclaimed
789      * by the GRUB algorithm.
790      */
791     u64 bw_ratio;
792 };
793 
794 #ifdef CONFIG_FAIR_GROUP_SCHED
795 /* An entity is a task if it doesn't "own" a runqueue */
796 #define entity_is_task(se) (!se->my_q)
797 
se_update_runnable(struct sched_entity * se)798 static inline void se_update_runnable(struct sched_entity *se)
799 {
800     if (!entity_is_task(se)) {
801         se->runnable_weight = se->my_q->h_nr_running;
802     }
803 }
804 
se_runnable(struct sched_entity * se)805 static inline long se_runnable(struct sched_entity *se)
806 {
807     if (entity_is_task(se)) {
808         return !!se->on_rq;
809     } else {
810         return se->runnable_weight;
811     }
812 }
813 
814 #else
815 #define entity_is_task(se) 1
816 
se_update_runnable(struct sched_entity * se)817 static inline void se_update_runnable(struct sched_entity *se)
818 {
819 }
820 
se_runnable(struct sched_entity * se)821 static inline long se_runnable(struct sched_entity *se)
822 {
823     return !!se->on_rq;
824 }
825 #endif
826 
827 #ifdef CONFIG_SMP
828 /*
829  * XXX we want to get rid of these helpers and use the full load resolution.
830  */
se_weight(struct sched_entity * se)831 static inline long se_weight(struct sched_entity *se)
832 {
833     return scale_load_down(se->load.weight);
834 }
835 
sched_asym_prefer(int a,int b)836 static inline bool sched_asym_prefer(int a, int b)
837 {
838     return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
839 }
840 
841 struct perf_domain {
842     struct em_perf_domain *em_pd;
843     struct perf_domain *next;
844     struct rcu_head rcu;
845 };
846 
847 /* Scheduling group status flags */
848 #define SG_OVERLOAD 0x1     /* More than one runnable task on a CPU. */
849 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
850 
851 /*
852  * We add the notion of a root-domain which will be used to define per-domain
853  * variables. Each exclusive cpuset essentially defines an island domain by
854  * fully partitioning the member CPUs from any other cpuset. Whenever a new
855  * exclusive cpuset is created, we also create and attach a new root-domain
856  * object.
857  *
858  */
859 struct root_domain {
860     atomic_t refcount;
861     atomic_t rto_count;
862     struct rcu_head rcu;
863     cpumask_var_t span;
864     cpumask_var_t online;
865 
866     /*
867      * Indicate pullable load on at least one CPU, e.g:
868      * - More than one runnable task
869      * - Running task is misfit
870      */
871     int overload;
872 
873     /* Indicate one or more cpus over-utilized (tipping point) */
874     int overutilized;
875 
876     /*
877      * The bit corresponding to a CPU gets set here if such CPU has more
878      * than one runnable -deadline task (as it is below for RT tasks).
879      */
880     cpumask_var_t dlo_mask;
881     atomic_t dlo_count;
882     struct dl_bw dl_bw;
883     struct cpudl cpudl;
884 
885 #ifdef HAVE_RT_PUSH_IPI
886     /*
887      * For IPI pull requests, loop across the rto_mask.
888      */
889     struct irq_work rto_push_work;
890     raw_spinlock_t rto_lock;
891     /* These are only updated and read within rto_lock */
892     int rto_loop;
893     int rto_cpu;
894     /* These atomics are updated outside of a lock */
895     atomic_t rto_loop_next;
896     atomic_t rto_loop_start;
897 #endif
898     /*
899      * The "RT overload" flag: it gets set if a CPU has more than
900      * one runnable RT task.
901      */
902     cpumask_var_t rto_mask;
903     struct cpupri cpupri;
904 
905     unsigned long max_cpu_capacity;
906 
907     /*
908      * NULL-terminated list of performance domains intersecting with the
909      * CPUs of the rd. Protected by RCU.
910      */
911     struct perf_domain __rcu *pd;
912 #ifdef CONFIG_SCHED_RT_CAS
913     int max_cap_orig_cpu;
914 #endif
915 };
916 
917 extern void init_defrootdomain(void);
918 extern int sched_init_domains(const struct cpumask *cpu_map);
919 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
920 extern void sched_get_rd(struct root_domain *rd);
921 extern void sched_put_rd(struct root_domain *rd);
922 
923 #ifdef HAVE_RT_PUSH_IPI
924 extern void rto_push_irq_work_func(struct irq_work *work);
925 #endif
926 #endif /* CONFIG_SMP */
927 
928 #ifdef CONFIG_UCLAMP_TASK
929 /*
930  * struct uclamp_bucket - Utilization clamp bucket
931  * @value: utilization clamp value for tasks on this clamp bucket
932  * @tasks: number of RUNNABLE tasks on this clamp bucket
933  *
934  * Keep track of how many tasks are RUNNABLE for a given utilization
935  * clamp value.
936  */
937 struct uclamp_bucket {
938     unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
939     unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
940 };
941 
942 /*
943  * struct uclamp_rq - rq's utilization clamp
944  * @value: currently active clamp values for a rq
945  * @bucket: utilization clamp buckets affecting a rq
946  *
947  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
948  * A clamp value is affecting a rq when there is at least one task RUNNABLE
949  * (or actually running) with that value.
950  *
951  * There are up to UCLAMP_CNT possible different clamp values, currently there
952  * are only two: minimum utilization and maximum utilization.
953  *
954  * All utilization clamping values are MAX aggregated, since:
955  * - for util_min: we want to run the CPU at least at the max of the minimum
956  *   utilization required by its currently RUNNABLE tasks.
957  * - for util_max: we want to allow the CPU to run up to the max of the
958  *   maximum utilization allowed by its currently RUNNABLE tasks.
959  *
960  * Since on each system we expect only a limited number of different
961  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
962  * the metrics required to compute all the per-rq utilization clamp values.
963  */
964 struct uclamp_rq {
965     unsigned int value;
966     struct uclamp_bucket bucket[UCLAMP_BUCKETS];
967 };
968 
969 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
970 #endif /* CONFIG_UCLAMP_TASK */
971 
972 /*
973  * This is the main, per-CPU runqueue data structure.
974  *
975  * Locking rule: those places that want to lock multiple runqueues
976  * (such as the load balancing or the thread migration code), lock
977  * acquire operations must be ordered by ascending &runqueue.
978  */
979 struct rq {
980     /* runqueue lock: */
981     raw_spinlock_t lock;
982 
983     /*
984      * nr_running and cpu_load should be in the same cacheline because
985      * remote CPUs use both these fields when doing load calculation.
986      */
987     unsigned int nr_running;
988 #ifdef CONFIG_NUMA_BALANCING
989     unsigned int nr_numa_running;
990     unsigned int nr_preferred_running;
991     unsigned int numa_migrate_on;
992 #endif
993 #ifdef CONFIG_NO_HZ_COMMON
994 #ifdef CONFIG_SMP
995     unsigned long last_blocked_load_update_tick;
996     unsigned int has_blocked_load;
997     call_single_data_t nohz_csd;
998 #endif /* CONFIG_SMP */
999     unsigned int nohz_tick_stopped;
1000     atomic_t nohz_flags;
1001 #endif /* CONFIG_NO_HZ_COMMON */
1002 
1003 #ifdef CONFIG_SMP
1004     unsigned int ttwu_pending;
1005 #endif
1006     u64 nr_switches;
1007 
1008 #ifdef CONFIG_UCLAMP_TASK
1009     /* Utilization clamp values based on CPU's RUNNABLE tasks */
1010     struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
1011     unsigned int uclamp_flags;
1012 #define UCLAMP_FLAG_IDLE 0x01
1013 #endif
1014 
1015     struct cfs_rq cfs;
1016     struct rt_rq rt;
1017     struct dl_rq dl;
1018 
1019 #ifdef CONFIG_FAIR_GROUP_SCHED
1020     /* list of leaf cfs_rq on this CPU: */
1021     struct list_head leaf_cfs_rq_list;
1022     struct list_head *tmp_alone_branch;
1023 #endif /* CONFIG_FAIR_GROUP_SCHED */
1024 
1025     /*
1026      * This is part of a global counter where only the total sum
1027      * over all CPUs matters. A task can increase this counter on
1028      * one CPU and if it got migrated afterwards it may decrease
1029      * it on another CPU. Always updated under the runqueue lock:
1030      */
1031     unsigned long nr_uninterruptible;
1032 
1033     struct task_struct __rcu *curr;
1034     struct task_struct *idle;
1035     struct task_struct *stop;
1036     unsigned long next_balance;
1037     struct mm_struct *prev_mm;
1038 
1039     unsigned int clock_update_flags;
1040     u64 clock;
1041     /* Ensure that all clocks are in the same cache line */
1042     u64 clock_task ____cacheline_aligned;
1043     u64 clock_pelt;
1044     unsigned long lost_idle_time;
1045 
1046     atomic_t nr_iowait;
1047 
1048 #ifdef CONFIG_MEMBARRIER
1049     int membarrier_state;
1050 #endif
1051 
1052 #ifdef CONFIG_SMP
1053     struct root_domain *rd;
1054     struct sched_domain __rcu *sd;
1055 
1056     unsigned long cpu_capacity;
1057     unsigned long cpu_capacity_orig;
1058 
1059     struct callback_head *balance_callback;
1060 
1061     unsigned char nohz_idle_balance;
1062     unsigned char idle_balance;
1063 
1064     unsigned long misfit_task_load;
1065 
1066     /* For active balancing */
1067     int active_balance;
1068     int push_cpu;
1069 #ifdef CONFIG_SCHED_EAS
1070     struct task_struct *push_task;
1071 #endif
1072     struct cpu_stop_work active_balance_work;
1073 
1074     /* For rt active balancing */
1075 #ifdef CONFIG_SCHED_RT_ACTIVE_LB
1076     int rt_active_balance;
1077     struct task_struct *rt_push_task;
1078     struct cpu_stop_work rt_active_balance_work;
1079 #endif
1080 
1081     /* CPU of this runqueue: */
1082     int cpu;
1083     int online;
1084 
1085     struct list_head cfs_tasks;
1086 
1087     struct sched_avg avg_rt;
1088     struct sched_avg avg_dl;
1089 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1090     struct sched_avg avg_irq;
1091 #endif
1092 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1093     struct sched_avg avg_thermal;
1094 #endif
1095     u64 idle_stamp;
1096     u64 avg_idle;
1097 
1098     /* This is used to determine avg_idle's max value */
1099     u64 max_idle_balance_cost;
1100 #endif /* CONFIG_SMP */
1101 
1102 #ifdef CONFIG_SCHED_WALT
1103     struct sched_cluster *cluster;
1104     struct cpumask freq_domain_cpumask;
1105     struct walt_sched_stats walt_stats;
1106 
1107     u64 window_start;
1108     unsigned long walt_flags;
1109 
1110     u64 cur_irqload;
1111     u64 avg_irqload;
1112     u64 irqload_ts;
1113     u64 curr_runnable_sum;
1114     u64 prev_runnable_sum;
1115     u64 nt_curr_runnable_sum;
1116     u64 nt_prev_runnable_sum;
1117     u64 cum_window_demand_scaled;
1118     struct load_subtractions load_subs[NUM_TRACKED_WINDOWS];
1119 #ifdef CONFIG_SCHED_RTG
1120     struct group_cpu_time grp_time;
1121 #endif
1122 #endif /* CONFIG_SCHED_WALT */
1123 
1124 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1125     u64 prev_irq_time;
1126 #endif
1127 #ifdef CONFIG_PARAVIRT
1128     u64 prev_steal_time;
1129 #endif
1130 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1131     u64 prev_steal_time_rq;
1132 #endif
1133 
1134     /* calc_load related fields */
1135     unsigned long calc_load_update;
1136     long calc_load_active;
1137 
1138 #ifdef CONFIG_SCHED_HRTICK
1139 #ifdef CONFIG_SMP
1140     call_single_data_t hrtick_csd;
1141 #endif
1142     struct hrtimer hrtick_timer;
1143     ktime_t hrtick_time;
1144 #endif
1145 
1146 #ifdef CONFIG_SCHEDSTATS
1147     /* latency stats */
1148     struct sched_info rq_sched_info;
1149     unsigned long long rq_cpu_time;
1150     /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1151 
1152     /* sys_sched_yield() stats */
1153     unsigned int yld_count;
1154 
1155     /* schedule() stats */
1156     unsigned int sched_count;
1157     unsigned int sched_goidle;
1158 
1159     /* try_to_wake_up() stats */
1160     unsigned int ttwu_count;
1161     unsigned int ttwu_local;
1162 #endif
1163 
1164 #ifdef CONFIG_CPU_IDLE
1165     /* Must be inspected within a rcu lock section */
1166     struct cpuidle_state *idle_state;
1167 #endif
1168 };
1169 
1170 #ifdef CONFIG_FAIR_GROUP_SCHED
1171 
1172 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1173 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1174 {
1175     return cfs_rq->rq;
1176 }
1177 
1178 #else
1179 
rq_of(struct cfs_rq * cfs_rq)1180 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1181 {
1182     return container_of(cfs_rq, struct rq, cfs);
1183 }
1184 #endif
1185 
cpu_of(struct rq * rq)1186 static inline int cpu_of(struct rq *rq)
1187 {
1188 #ifdef CONFIG_SMP
1189     return rq->cpu;
1190 #else
1191     return 0;
1192 #endif
1193 }
1194 
1195 #ifdef CONFIG_SCHED_SMT
1196 extern void __update_idle_core(struct rq *rq);
1197 
update_idle_core(struct rq * rq)1198 static inline void update_idle_core(struct rq *rq)
1199 {
1200     if (static_branch_unlikely(&sched_smt_present)) {
1201         __update_idle_core(rq);
1202     }
1203 }
1204 
1205 #else
update_idle_core(struct rq * rq)1206 static inline void update_idle_core(struct rq *rq)
1207 {
1208 }
1209 #endif
1210 
1211 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1212 
1213 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1214 #define this_rq() this_cpu_ptr(&runqueues)
1215 #define task_rq(p) cpu_rq(task_cpu(p))
1216 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1217 #define raw_rq() raw_cpu_ptr(&runqueues)
1218 
1219 extern void update_rq_clock(struct rq *rq);
1220 
__rq_clock_broken(struct rq * rq)1221 static inline u64 __rq_clock_broken(struct rq *rq)
1222 {
1223     return READ_ONCE(rq->clock);
1224 }
1225 
1226 /*
1227  * rq::clock_update_flags bits
1228  *
1229  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1230  *  call to __schedule(). This is an optimisation to avoid
1231  *  neighbouring rq clock updates.
1232  *
1233  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1234  *  in effect and calls to update_rq_clock() are being ignored.
1235  *
1236  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1237  *  made to update_rq_clock() since the last time rq::lock was pinned.
1238  *
1239  * If inside of __schedule(), clock_update_flags will have been
1240  * shifted left (a left shift is a cheap operation for the fast path
1241  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1242  *
1243  *    if (rq-clock_update_flags >= RQCF_UPDATED)
1244  *
1245  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1246  * one position though, because the next rq_unpin_lock() will shift it
1247  * back.
1248  */
1249 #define RQCF_REQ_SKIP 0x01
1250 #define RQCF_ACT_SKIP 0x02
1251 #define RQCF_UPDATED 0x04
1252 
assert_clock_updated(struct rq * rq)1253 static inline void assert_clock_updated(struct rq *rq)
1254 {
1255     /*
1256      * The only reason for not seeing a clock update since the
1257      * last rq_pin_lock() is if we're currently skipping updates.
1258      */
1259     SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1260 }
1261 
rq_clock(struct rq * rq)1262 static inline u64 rq_clock(struct rq *rq)
1263 {
1264     lockdep_assert_held(&rq->lock);
1265     assert_clock_updated(rq);
1266 
1267     return rq->clock;
1268 }
1269 
rq_clock_task(struct rq * rq)1270 static inline u64 rq_clock_task(struct rq *rq)
1271 {
1272     lockdep_assert_held(&rq->lock);
1273     assert_clock_updated(rq);
1274 
1275     return rq->clock_task;
1276 }
1277 
1278 /**
1279  * By default the decay is the default pelt decay period.
1280  * The decay shift can change the decay period in
1281  * multiples of 32.
1282  *  Decay shift        Decay period(ms)
1283  *    0            32
1284  *    1            64
1285  *    2            128
1286  *    3            256
1287  *    4            512
1288  */
1289 extern int sched_thermal_decay_shift;
1290 
rq_clock_thermal(struct rq * rq)1291 static inline u64 rq_clock_thermal(struct rq *rq)
1292 {
1293     return rq_clock_task(rq) >> sched_thermal_decay_shift;
1294 }
1295 
rq_clock_skip_update(struct rq * rq)1296 static inline void rq_clock_skip_update(struct rq *rq)
1297 {
1298     lockdep_assert_held(&rq->lock);
1299     rq->clock_update_flags |= RQCF_REQ_SKIP;
1300 }
1301 
1302 /*
1303  * See rt task throttling, which is the only time a skip
1304  * request is cancelled.
1305  */
rq_clock_cancel_skipupdate(struct rq * rq)1306 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1307 {
1308     lockdep_assert_held(&rq->lock);
1309     rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1310 }
1311 
1312 struct rq_flags {
1313     unsigned long flags;
1314     struct pin_cookie cookie;
1315 #ifdef CONFIG_SCHED_DEBUG
1316     /*
1317      * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1318      * current pin context is stashed here in case it needs to be
1319      * restored in rq_repin_lock().
1320      */
1321     unsigned int clock_update_flags;
1322 #endif
1323 };
1324 
1325 /*
1326  * Lockdep annotation that avoids accidental unlocks; it's like a
1327  * sticky/continuous lockdep_assert_held().
1328  *
1329  * This avoids code that has access to 'struct rq *rq' (basically everything in
1330  * the scheduler) from accidentally unlocking the rq if they do not also have a
1331  * copy of the (on-stack) 'struct rq_flags rf'.
1332  *
1333  * Also see Documentation/locking/lockdep-design.rst.
1334  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1335 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1336 {
1337     rf->cookie = lockdep_pin_lock(&rq->lock);
1338 
1339 #ifdef CONFIG_SCHED_DEBUG
1340     rq->clock_update_flags &= (RQCF_REQ_SKIP | RQCF_ACT_SKIP);
1341     rf->clock_update_flags = 0;
1342 #endif
1343 }
1344 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1345 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1346 {
1347 #ifdef CONFIG_SCHED_DEBUG
1348     if (rq->clock_update_flags > RQCF_ACT_SKIP) {
1349         rf->clock_update_flags = RQCF_UPDATED;
1350     }
1351 #endif
1352 
1353     lockdep_unpin_lock(&rq->lock, rf->cookie);
1354 }
1355 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1356 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1357 {
1358     lockdep_repin_lock(&rq->lock, rf->cookie);
1359 
1360 #ifdef CONFIG_SCHED_DEBUG
1361     /*
1362      * Restore the value we stashed in @rf for this pin context.
1363      */
1364     rq->clock_update_flags |= rf->clock_update_flags;
1365 #endif
1366 }
1367 
1368 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(rq->lock);
1369 
1370 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) __acquires(p->pi_lock) __acquires(rq->lock);
1371 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1372 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
1373 {
1374     rq_unpin_lock(rq, rf);
1375     raw_spin_unlock(&rq->lock);
1376 }
1377 
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1378 static inline void task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) __releases(rq->lock)
1379     __releases(p->pi_lock)
1380 {
1381     rq_unpin_lock(rq, rf);
1382     raw_spin_unlock(&rq->lock);
1383     raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1384 }
1385 
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1386 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
1387 {
1388     raw_spin_lock_irqsave(&rq->lock, rf->flags);
1389     rq_pin_lock(rq, rf);
1390 }
1391 
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1392 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
1393 {
1394     raw_spin_lock_irq(&rq->lock);
1395     rq_pin_lock(rq, rf);
1396 }
1397 
rq_lock(struct rq * rq,struct rq_flags * rf)1398 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
1399 {
1400     raw_spin_lock(&rq->lock);
1401     rq_pin_lock(rq, rf);
1402 }
1403 
rq_relock(struct rq * rq,struct rq_flags * rf)1404 static inline void rq_relock(struct rq *rq, struct rq_flags *rf) __acquires(rq->lock)
1405 {
1406     raw_spin_lock(&rq->lock);
1407     rq_repin_lock(rq, rf);
1408 }
1409 
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1410 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
1411 {
1412     rq_unpin_lock(rq, rf);
1413     raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1414 }
1415 
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1416 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
1417 {
1418     rq_unpin_lock(rq, rf);
1419     raw_spin_unlock_irq(&rq->lock);
1420 }
1421 
rq_unlock(struct rq * rq,struct rq_flags * rf)1422 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) __releases(rq->lock)
1423 {
1424     rq_unpin_lock(rq, rf);
1425     raw_spin_unlock(&rq->lock);
1426 }
1427 
this_rq_lock_irq(struct rq_flags * rf)1428 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) __acquires(rq->lock)
1429 {
1430     struct rq *rq;
1431 
1432     local_irq_disable();
1433     rq = this_rq();
1434     rq_lock(rq, rf);
1435     return rq;
1436 }
1437 
1438 #ifdef CONFIG_NUMA
1439 enum numa_topology_type {
1440     NUMA_DIRECT,
1441     NUMA_GLUELESS_MESH,
1442     NUMA_BACKPLANE,
1443 };
1444 extern enum numa_topology_type sched_numa_topology_type;
1445 extern int sched_max_numa_distance;
1446 extern bool find_numa_distance(int distance);
1447 extern void sched_init_numa(void);
1448 extern void sched_domains_numa_masks_set(unsigned int cpu);
1449 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1450 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1451 #else
sched_init_numa(void)1452 static inline void sched_init_numa(void)
1453 {
1454 }
sched_domains_numa_masks_set(unsigned int cpu)1455 static inline void sched_domains_numa_masks_set(unsigned int cpu)
1456 {
1457 }
sched_domains_numa_masks_clear(unsigned int cpu)1458 static inline void sched_domains_numa_masks_clear(unsigned int cpu)
1459 {
1460 }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1461 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1462 {
1463     return nr_cpu_ids;
1464 }
1465 #endif
1466 
1467 #ifdef CONFIG_NUMA_BALANCING
1468 /* The regions in numa_faults array from task_struct */
1469 enum numa_faults_stats { NUMA_MEM = 0, NUMA_CPU, NUMA_MEMBUF, NUMA_CPUBUF };
1470 extern void sched_setnuma(struct task_struct *p, int node);
1471 extern int migrate_task_to(struct task_struct *p, int cpu);
1472 extern int migrate_swap(struct task_struct *p, struct task_struct *t, int cpu, int scpu);
1473 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1474 #else
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1475 static inline void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1476 {
1477 }
1478 #endif /* CONFIG_NUMA_BALANCING */
1479 
1480 #ifdef CONFIG_SMP
1481 
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1482 static inline void queue_balance_callback(struct rq *rq, struct callback_head *head, void (*func)(struct rq *rq))
1483 {
1484     lockdep_assert_held(&rq->lock);
1485 
1486     if (unlikely(head->next)) {
1487         return;
1488     }
1489 
1490     head->func = (void (*)(struct callback_head *))func;
1491     head->next = rq->balance_callback;
1492     rq->balance_callback = head;
1493 }
1494 
1495 #define rcu_dereference_check_sched_domain(p) rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1496 
1497 /*
1498  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1499  * See destroy_sched_domains: call_rcu for details.
1500  *
1501  * The domain tree of any CPU may only be accessed from within
1502  * preempt-disabled sections.
1503  */
1504 #define for_each_domain(cpu, __sd)                                                                                     \
1505     for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1506 
1507 /**
1508  * highest_flag_domain - Return highest sched_domain containing flag.
1509  * @cpu:    The CPU whose highest level of sched domain is to
1510  *        be returned.
1511  * @flag:    The flag to check for the highest sched_domain
1512  *        for the given CPU.
1513  *
1514  * Returns the highest sched_domain of a CPU which contains the given flag.
1515  */
highest_flag_domain(int cpu,int flag)1516 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1517 {
1518     struct sched_domain *sd, *hsd = NULL;
1519 
1520     for (sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); sd; sd = sd->parent) {
1521         if (!(sd->flags & flag)) {
1522             break;
1523         }
1524         hsd = sd;
1525     }
1526 
1527     return hsd;
1528 }
1529 
lowest_flag_domain(int cpu,int flag)1530 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1531 {
1532     struct sched_domain *sd;
1533 
1534     for (sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); sd; sd = sd->parent) {
1535         if (sd->flags & flag) {
1536             break;
1537         }
1538     }
1539 
1540     return sd;
1541 }
1542 
1543 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1544 DECLARE_PER_CPU(int, sd_llc_size);
1545 DECLARE_PER_CPU(int, sd_llc_id);
1546 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1547 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1548 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1549 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1550 extern struct static_key_false sched_asym_cpucapacity;
1551 
1552 struct sched_group_capacity {
1553     atomic_t ref;
1554     /*
1555      * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1556      * for a single CPU.
1557      */
1558     unsigned long capacity;
1559     unsigned long min_capacity; /* Min per-CPU capacity in group */
1560     unsigned long max_capacity; /* Max per-CPU capacity in group */
1561     unsigned long next_update;
1562     int imbalance; /* XXX unrelated to capacity but shared group state */
1563 
1564 #ifdef CONFIG_SCHED_DEBUG
1565     int id;
1566 #endif
1567 
1568     unsigned long cpumask[]; /* Balance mask */
1569 };
1570 
1571 struct sched_group {
1572     struct sched_group *next; /* Must be a circular list */
1573     atomic_t ref;
1574 
1575     unsigned int group_weight;
1576     struct sched_group_capacity *sgc;
1577     int asym_prefer_cpu; /* CPU of highest priority in group */
1578 
1579     /*
1580      * The CPUs this group covers.
1581      *
1582      * NOTE: this field is variable length. (Allocated dynamically
1583      * by attaching extra space to the end of the structure,
1584      * depending on how many CPUs the kernel has booted up with)
1585      */
1586     unsigned long cpumask[];
1587 };
1588 
sched_group_span(struct sched_group * sg)1589 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1590 {
1591     return to_cpumask(sg->cpumask);
1592 }
1593 
1594 /*
1595  * See build_balance_mask().
1596  */
group_balance_mask(struct sched_group * sg)1597 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1598 {
1599     return to_cpumask(sg->sgc->cpumask);
1600 }
1601 
1602 /**
1603  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1604  * @group: The group whose first CPU is to be returned.
1605  */
group_first_cpu(struct sched_group * group)1606 static inline unsigned int group_first_cpu(struct sched_group *group)
1607 {
1608     return cpumask_first(sched_group_span(group));
1609 }
1610 
1611 extern int group_balance_cpu(struct sched_group *sg);
1612 
1613 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1614 void register_sched_domain_sysctl(void);
1615 void dirty_sched_domain_sysctl(int cpu);
1616 void unregister_sched_domain_sysctl(void);
1617 #else
register_sched_domain_sysctl(void)1618 static inline void register_sched_domain_sysctl(void)
1619 {
1620 }
dirty_sched_domain_sysctl(int cpu)1621 static inline void dirty_sched_domain_sysctl(int cpu)
1622 {
1623 }
unregister_sched_domain_sysctl(void)1624 static inline void unregister_sched_domain_sysctl(void)
1625 {
1626 }
1627 #endif
1628 
1629 extern void flush_smp_call_function_from_idle(void);
1630 
1631 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1632 static inline void flush_smp_call_function_from_idle(void)
1633 {
1634 }
1635 #endif
1636 
1637 #include "stats.h"
1638 #include "autogroup.h"
1639 
1640 #ifdef CONFIG_CGROUP_SCHED
1641 
1642 /*
1643  * Return the group to which this tasks belongs.
1644  *
1645  * We cannot use task_css() and friends because the cgroup subsystem
1646  * changes that value before the cgroup_subsys::attach() method is called,
1647  * therefore we cannot pin it and might observe the wrong value.
1648  *
1649  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1650  * core changes this before calling sched_move_task().
1651  *
1652  * Instead we use a 'copy' which is updated from sched_move_task() while
1653  * holding both task_struct::pi_lock and rq::lock.
1654  */
task_group(struct task_struct * p)1655 static inline struct task_group *task_group(struct task_struct *p)
1656 {
1657     return p->sched_task_group;
1658 }
1659 
1660 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1661 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1662 {
1663 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1664     struct task_group *tg = task_group(p);
1665 #endif
1666 
1667 #ifdef CONFIG_FAIR_GROUP_SCHED
1668     set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1669     p->se.cfs_rq = tg->cfs_rq[cpu];
1670     p->se.parent = tg->se[cpu];
1671 #endif
1672 
1673 #ifdef CONFIG_RT_GROUP_SCHED
1674     p->rt.rt_rq = tg->rt_rq[cpu];
1675     p->rt.parent = tg->rt_se[cpu];
1676 #endif
1677 }
1678 
1679 #else /* CONFIG_CGROUP_SCHED */
1680 
set_task_rq(struct task_struct * p,unsigned int cpu)1681 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1682 {
1683 }
task_group(struct task_struct * p)1684 static inline struct task_group *task_group(struct task_struct *p)
1685 {
1686     return NULL;
1687 }
1688 
1689 #endif /* CONFIG_CGROUP_SCHED */
1690 
__set_task_cpu(struct task_struct * p,unsigned int cpu)1691 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1692 {
1693     set_task_rq(p, cpu);
1694 #ifdef CONFIG_SMP
1695     /*
1696      * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1697      * successfully executed on another CPU. We must ensure that updates of
1698      * per-task data have been completed by this moment.
1699      */
1700     smp_wmb();
1701 #ifdef CONFIG_THREAD_INFO_IN_TASK
1702     WRITE_ONCE(p->cpu, cpu);
1703 #else
1704     WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1705 #endif
1706     p->wake_cpu = cpu;
1707 #endif
1708 }
1709 
1710 /*
1711  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1712  */
1713 #ifdef CONFIG_SCHED_DEBUG
1714 #include <linux/static_key.h>
1715 #define const_debug __read_mostly
1716 #else
1717 #define const_debug const
1718 #endif
1719 
1720 #define SCHED_FEAT(name, enabled) __SCHED_FEAT_##name,
1721 
1722 enum {
1723 #include "features.h"
1724     __SCHED_FEAT_NR,
1725 };
1726 
1727 #undef SCHED_FEAT
1728 
1729 #ifdef CONFIG_SCHED_DEBUG
1730 
1731 /*
1732  * To support run-time toggling of sched features, all the translation units
1733  * (but core.c) reference the sysctl_sched_features defined in core.c.
1734  */
1735 extern const_debug unsigned int sysctl_sched_features;
1736 
1737 #ifdef CONFIG_JUMP_LABEL
1738 #define SCHED_FEAT(name, enabled)                                                                                      \
1739     static __always_inline bool static_branch_##name(struct static_key *key)                                           \
1740     {                                                                                                                  \
1741         return static_key_##enabled(key);                                                                              \
1742     }
1743 
1744 #include "features.h"
1745 #undef SCHED_FEAT
1746 
1747 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1748 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1749 
1750 #else /* !CONFIG_JUMP_LABEL */
1751 
1752 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1753 
1754 #endif /* CONFIG_JUMP_LABEL */
1755 
1756 #else /* !SCHED_DEBUG */
1757 
1758 /*
1759  * Each translation unit has its own copy of sysctl_sched_features to allow
1760  * constants propagation at compile time and compiler optimization based on
1761  * features default.
1762  */
1763 #define SCHED_FEAT(name, enabled) (1UL << __SCHED_FEAT_##name) * (enabled) |
1764 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1765 #include "features.h"
1766     0;
1767 #undef SCHED_FEAT
1768 
1769 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1770 
1771 #endif /* SCHED_DEBUG */
1772 
1773 extern struct static_key_false sched_numa_balancing;
1774 extern struct static_key_false sched_schedstats;
1775 
global_rt_period(void)1776 static inline u64 global_rt_period(void)
1777 {
1778     return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1779 }
1780 
global_rt_runtime(void)1781 static inline u64 global_rt_runtime(void)
1782 {
1783     if (sysctl_sched_rt_runtime < 0) {
1784         return RUNTIME_INF;
1785     }
1786 
1787     return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1788 }
1789 
task_current(struct rq * rq,struct task_struct * p)1790 static inline int task_current(struct rq *rq, struct task_struct *p)
1791 {
1792     return rq->curr == p;
1793 }
1794 
task_running(struct rq * rq,struct task_struct * p)1795 static inline int task_running(struct rq *rq, struct task_struct *p)
1796 {
1797 #ifdef CONFIG_SMP
1798     return p->on_cpu;
1799 #else
1800     return task_current(rq, p);
1801 #endif
1802 }
1803 
task_on_rq_queued(struct task_struct * p)1804 static inline int task_on_rq_queued(struct task_struct *p)
1805 {
1806     return p->on_rq == TASK_ON_RQ_QUEUED;
1807 }
1808 
task_on_rq_migrating(struct task_struct * p)1809 static inline int task_on_rq_migrating(struct task_struct *p)
1810 {
1811     return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1812 }
1813 
1814 /*
1815  * wake flags
1816  */
1817 #define WF_SYNC 0x01     /* Waker goes to sleep after wakeup */
1818 #define WF_FORK 0x02     /* Child wakeup after fork */
1819 #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1820 #define WF_ON_CPU 0x08   /* Wakee is on_cpu */
1821 
1822 /*
1823  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1824  * of tasks with abnormal "nice" values across CPUs the contribution that
1825  * each task makes to its run queue's load is weighted according to its
1826  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1827  * scaled version of the new time slice allocation that they receive on time
1828  * slice expiry etc.
1829  */
1830 
1831 #define WEIGHT_IDLEPRIO 3
1832 #define WMULT_IDLEPRIO 1431655765
1833 
1834 extern const int sched_prio_to_weight[40];
1835 extern const u32 sched_prio_to_wmult[40];
1836 #ifdef CONFIG_SCHED_LATENCY_NICE
1837 extern const int		sched_latency_to_weight[40];
1838 #endif
1839 
1840 /*
1841  * {de,en}queue flags:
1842  *
1843  * DEQUEUE_SLEEP  - task is no longer runnable
1844  * ENQUEUE_WAKEUP - task just became runnable
1845  *
1846  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1847  *                are in a known state which allows modification. Such pairs
1848  *                should preserve as much state as possible.
1849  *
1850  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1851  *        in the runqueue.
1852  *
1853  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1854  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1855  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1856  *
1857  */
1858 
1859 #define DEQUEUE_SLEEP 0x01
1860 #define DEQUEUE_SAVE 0x02    /* Matches ENQUEUE_RESTORE */
1861 #define DEQUEUE_MOVE 0x04    /* Matches ENQUEUE_MOVE */
1862 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1863 
1864 #define ENQUEUE_WAKEUP 0x01
1865 #define ENQUEUE_RESTORE 0x02
1866 #define ENQUEUE_MOVE 0x04
1867 #define ENQUEUE_NOCLOCK 0x08
1868 
1869 #define ENQUEUE_HEAD 0x10
1870 #define ENQUEUE_REPLENISH 0x20
1871 #ifdef CONFIG_SMP
1872 #define ENQUEUE_MIGRATED 0x40
1873 #else
1874 #define ENQUEUE_MIGRATED 0x00
1875 #endif
1876 
1877 #define ENQUEUE_WAKEUP_SYNC 0x80
1878 
1879 #define RETRY_TASK ((void *)-1UL)
1880 
1881 struct sched_class {
1882 #ifdef CONFIG_UCLAMP_TASK
1883     int uclamp_enabled;
1884 #endif
1885 
1886     void (*enqueue_task)(struct rq *rq, struct task_struct *p, int flags);
1887     void (*dequeue_task)(struct rq *rq, struct task_struct *p, int flags);
1888     void (*yield_task)(struct rq *rq);
1889     bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1890 
1891     void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1892 
1893     struct task_struct *(*pick_next_task)(struct rq *rq);
1894 
1895     void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1896     void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1897 
1898 #ifdef CONFIG_SMP
1899     int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1900     int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1901     void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1902 
1903     void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1904 
1905     void (*set_cpus_allowed)(struct task_struct *p, const struct cpumask *newmask);
1906 
1907     void (*rq_online)(struct rq *rq);
1908     void (*rq_offline)(struct rq *rq);
1909 #endif
1910 
1911     void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1912     void (*task_fork)(struct task_struct *p);
1913     void (*task_dead)(struct task_struct *p);
1914 
1915     /*
1916      * The switched_from() call is allowed to drop rq->lock, therefore we
1917      * cannot assume the switched_from/switched_to pair is serliazed by
1918      * rq->lock. They are however serialized by p->pi_lock.
1919      */
1920     void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1921     void (*switched_to)(struct rq *this_rq, struct task_struct *task);
1922     void (*prio_changed)(struct rq *this_rq, struct task_struct *task, int oldprio);
1923 
1924     unsigned int (*get_rr_interval)(struct rq *rq, struct task_struct *task);
1925 
1926     void (*update_curr)(struct rq *rq);
1927 
1928 #define TASK_SET_GROUP 0
1929 #define TASK_MOVE_GROUP 1
1930 
1931 #ifdef CONFIG_FAIR_GROUP_SCHED
1932     void (*task_change_group)(struct task_struct *p, int type);
1933 #endif
1934 #ifdef CONFIG_SCHED_WALT
1935     void (*fixup_walt_sched_stats)(struct rq *rq, struct task_struct *p, u16 updated_demand_scaled);
1936 #endif
1937 #ifdef CONFIG_SCHED_EAS
1938     void (*check_for_migration)(struct rq *rq, struct task_struct *p);
1939 #endif
1940 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1941 
put_prev_task(struct rq * rq,struct task_struct * prev)1942 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1943 {
1944     WARN_ON_ONCE(rq->curr != prev);
1945     prev->sched_class->put_prev_task(rq, prev);
1946 }
1947 
set_next_task(struct rq * rq,struct task_struct * next)1948 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1949 {
1950     WARN_ON_ONCE(rq->curr != next);
1951     next->sched_class->set_next_task(rq, next, false);
1952 }
1953 
1954 /* Defined in include/asm-generic/vmlinux.lds.h */
1955 extern struct sched_class __begin_sched_classes[];
1956 extern struct sched_class __end_sched_classes[];
1957 
1958 #define sched_class_highest (__end_sched_classes - 1)
1959 #define sched_class_lowest (__begin_sched_classes - 1)
1960 
1961 #define for_class_range(class, _from, _to) for (class = (_from); class != (_to); (class)--)
1962 
1963 #define for_each_class(class) for_class_range(class, sched_class_highest, sched_class_lowest)
1964 
1965 extern const struct sched_class stop_sched_class;
1966 extern const struct sched_class dl_sched_class;
1967 extern const struct sched_class rt_sched_class;
1968 extern const struct sched_class fair_sched_class;
1969 extern const struct sched_class idle_sched_class;
1970 
sched_stop_runnable(struct rq * rq)1971 static inline bool sched_stop_runnable(struct rq *rq)
1972 {
1973     return rq->stop && task_on_rq_queued(rq->stop);
1974 }
1975 
sched_dl_runnable(struct rq * rq)1976 static inline bool sched_dl_runnable(struct rq *rq)
1977 {
1978     return rq->dl.dl_nr_running > 0;
1979 }
1980 
sched_rt_runnable(struct rq * rq)1981 static inline bool sched_rt_runnable(struct rq *rq)
1982 {
1983     return rq->rt.rt_queued > 0;
1984 }
1985 
sched_fair_runnable(struct rq * rq)1986 static inline bool sched_fair_runnable(struct rq *rq)
1987 {
1988     return rq->cfs.nr_running > 0;
1989 }
1990 
1991 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1992 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1993 
1994 #ifdef CONFIG_SMP
1995 
1996 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1997 
1998 extern void trigger_load_balance(struct rq *rq);
1999 
2000 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
2001 
2002 #endif
2003 
2004 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2005 static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state)
2006 {
2007     rq->idle_state = idle_state;
2008 }
2009 
idle_get_state(struct rq * rq)2010 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2011 {
2012     SCHED_WARN_ON(!rcu_read_lock_held());
2013 
2014     return rq->idle_state;
2015 }
2016 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2017 static inline void idle_set_state(struct rq *rq, struct cpuidle_state *idle_state)
2018 {
2019 }
2020 
idle_get_state(struct rq * rq)2021 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2022 {
2023     return NULL;
2024 }
2025 #endif
2026 
2027 extern void schedule_idle(void);
2028 
2029 extern void sysrq_sched_debug_show(void);
2030 extern void sched_init_granularity(void);
2031 extern void update_max_interval(void);
2032 
2033 extern void init_sched_dl_class(void);
2034 extern void init_sched_rt_class(void);
2035 extern void init_sched_fair_class(void);
2036 
2037 extern void reweight_task(struct task_struct *p, int prio);
2038 
2039 extern void resched_curr(struct rq *rq);
2040 extern void resched_cpu(int cpu);
2041 
2042 extern struct rt_bandwidth def_rt_bandwidth;
2043 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2044 
2045 extern struct dl_bandwidth def_dl_bandwidth;
2046 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2047 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2048 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2049 
2050 #define BW_SHIFT 20
2051 #define BW_UNIT (1 << BW_SHIFT)
2052 #define RATIO_SHIFT 8
2053 #define MAX_BW_BITS (64 - BW_SHIFT)
2054 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2055 unsigned long to_ratio(u64 period, u64 runtime);
2056 
2057 extern void init_entity_runnable_average(struct sched_entity *se);
2058 extern void post_init_entity_util_avg(struct task_struct *p);
2059 
2060 #ifdef CONFIG_NO_HZ_FULL
2061 extern bool sched_can_stop_tick(struct rq *rq);
2062 extern int __init sched_tick_offload_init(void);
2063 
2064 /*
2065  * Tick may be needed by tasks in the runqueue depending on their policy and
2066  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2067  * nohz mode if necessary.
2068  */
sched_update_tick_dependency(struct rq * rq)2069 static inline void sched_update_tick_dependency(struct rq *rq)
2070 {
2071     int cpu = cpu_of(rq);
2072     if (!tick_nohz_full_cpu(cpu)) {
2073         return;
2074     }
2075 
2076     if (sched_can_stop_tick(rq)) {
2077         tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2078     } else {
2079         tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2080     }
2081 }
2082 #else
sched_tick_offload_init(void)2083 static inline int sched_tick_offload_init(void)
2084 {
2085     return 0;
2086 }
sched_update_tick_dependency(struct rq * rq)2087 static inline void sched_update_tick_dependency(struct rq *rq)
2088 {
2089 }
2090 #endif
2091 
add_nr_running(struct rq * rq,unsigned count)2092 static inline void add_nr_running(struct rq *rq, unsigned count)
2093 {
2094     unsigned prev_nr = rq->nr_running;
2095 
2096     rq->nr_running = prev_nr + count;
2097     if (trace_sched_update_nr_running_tp_enabled()) {
2098         call_trace_sched_update_nr_running(rq, count);
2099     }
2100 
2101 #ifdef CONFIG_SMP
2102     if (prev_nr < TASK_ON_RQ_MIGRATING && rq->nr_running >= TASK_ON_RQ_MIGRATING) {
2103         if (!READ_ONCE(rq->rd->overload)) {
2104             WRITE_ONCE(rq->rd->overload, 1);
2105         }
2106     }
2107 #endif
2108 
2109     sched_update_tick_dependency(rq);
2110 }
2111 
sub_nr_running(struct rq * rq,unsigned count)2112 static inline void sub_nr_running(struct rq *rq, unsigned count)
2113 {
2114     rq->nr_running -= count;
2115     if (trace_sched_update_nr_running_tp_enabled()) {
2116         call_trace_sched_update_nr_running(rq, -count);
2117     }
2118 
2119     /* Check if we still need preemption */
2120     sched_update_tick_dependency(rq);
2121 }
2122 
2123 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2124 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2125 
2126 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2127 
2128 extern const_debug unsigned int sysctl_sched_nr_migrate;
2129 extern const_debug unsigned int sysctl_sched_migration_cost;
2130 
2131 #ifdef CONFIG_SCHED_HRTICK
2132 
2133 /*
2134  * Use hrtick when:
2135  *  - enabled by features
2136  *  - hrtimer is actually high res
2137  */
hrtick_enabled(struct rq * rq)2138 static inline int hrtick_enabled(struct rq *rq)
2139 {
2140     if (!sched_feat(HRTICK)) {
2141         return 0;
2142     }
2143     if (!cpu_active(cpu_of(rq))) {
2144         return 0;
2145     }
2146     return hrtimer_is_hres_active(&rq->hrtick_timer);
2147 }
2148 
2149 void hrtick_start(struct rq *rq, u64 delay);
2150 
2151 #else
2152 
hrtick_enabled(struct rq * rq)2153 static inline int hrtick_enabled(struct rq *rq)
2154 {
2155     return 0;
2156 }
2157 
2158 #endif /* CONFIG_SCHED_HRTICK */
2159 
2160 #ifdef CONFIG_SCHED_WALT
2161 u64 sched_ktime_clock(void);
2162 #else
sched_ktime_clock(void)2163 static inline u64 sched_ktime_clock(void)
2164 {
2165     return sched_clock();
2166 }
2167 #endif
2168 
2169 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2170 static __always_inline void arch_scale_freq_tick(void)
2171 {
2172 }
2173 #endif
2174 
2175 #ifndef arch_scale_freq_capacity
2176 /**
2177  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2178  * @cpu: the CPU in question.
2179  *
2180  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2181  *
2182  *     f_curr
2183  *     ------ * SCHED_CAPACITY_SCALE
2184  *     f_max
2185  */
arch_scale_freq_capacity(int cpu)2186 static __always_inline unsigned long arch_scale_freq_capacity(int cpu)
2187 {
2188     return SCHED_CAPACITY_SCALE;
2189 }
2190 #endif
2191 
2192 unsigned long capacity_curr_of(int cpu);
2193 unsigned long cpu_util(int cpu);
2194 
2195 #ifdef CONFIG_SMP
2196 #ifdef CONFIG_SCHED_WALT
2197 extern unsigned int sysctl_sched_use_walt_cpu_util;
2198 extern unsigned int walt_disabled;
2199 #endif
2200 #ifdef CONFIG_PREEMPTION
2201 
2202 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2203 
2204 /*
2205  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2206  * way at the expense of forcing extra atomic operations in all
2207  * invocations.  This assures that the double_lock is acquired using the
2208  * same underlying policy as the spinlock_t on this architecture, which
2209  * reduces latency compared to the unfair variant below.  However, it
2210  * also adds more overhead and therefore may reduce throughput.
2211  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2212 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock)
2213     __acquires(busiest->lock) __acquires(this_rq->lock)
2214 {
2215     raw_spin_unlock(&this_rq->lock);
2216     double_rq_lock(this_rq, busiest);
2217 
2218     return 1;
2219 }
2220 
2221 #else
2222 /*
2223  * Unfair double_lock_balance: Optimizes throughput at the expense of
2224  * latency by eliminating extra atomic operations when the locks are
2225  * already in proper order on entry.  This favors lower CPU-ids and will
2226  * grant the double lock to lower CPUs over higher ids under contention,
2227  * regardless of entry order into the function.
2228  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2229 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock)
2230     __acquires(busiest->lock) __acquires(this_rq->lock)
2231 {
2232     int ret = 0;
2233 
2234     if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2235         if (busiest < this_rq) {
2236             raw_spin_unlock(&this_rq->lock);
2237             raw_spin_lock(&busiest->lock);
2238             raw_spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2239             ret = 1;
2240         } else {
2241             raw_spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2242         }
2243     }
2244     return ret;
2245 }
2246 
2247 #endif /* CONFIG_PREEMPTION */
2248 
2249 /*
2250  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2251  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2252 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2253 {
2254     if (unlikely(!irqs_disabled())) {
2255         /* printk() doesn't work well under rq->lock */
2256         raw_spin_unlock(&this_rq->lock);
2257         BUG_ON(1);
2258     }
2259 
2260     return _double_lock_balance(this_rq, busiest);
2261 }
2262 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2263 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock)
2264 {
2265     raw_spin_unlock(&busiest->lock);
2266     lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2267 }
2268 
double_lock(spinlock_t * l1,spinlock_t * l2)2269 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2270 {
2271     if (l1 > l2) {
2272         swap(l1, l2);
2273     }
2274 
2275     spin_lock(l1);
2276     spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2277 }
2278 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2279 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2280 {
2281     if (l1 > l2) {
2282         swap(l1, l2);
2283     }
2284 
2285     spin_lock_irq(l1);
2286     spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2287 }
2288 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2289 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2290 {
2291     if (l1 > l2) {
2292         swap(l1, l2);
2293     }
2294 
2295     raw_spin_lock(l1);
2296     raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2297 }
2298 
2299 /*
2300  * double_rq_lock - safely lock two runqueues
2301  *
2302  * Note this does not disable interrupts like task_rq_lock,
2303  * you need to do so manually before calling.
2304  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2305 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock)
2306 {
2307     BUG_ON(!irqs_disabled());
2308     if (rq1 == rq2) {
2309         raw_spin_lock(&rq1->lock);
2310         __acquire(rq2->lock); /* Fake it out ;) */
2311     } else {
2312         if (rq1 < rq2) {
2313             raw_spin_lock(&rq1->lock);
2314             raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2315         } else {
2316             raw_spin_lock(&rq2->lock);
2317             raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2318         }
2319     }
2320 }
2321 
2322 /*
2323  * double_rq_unlock - safely unlock two runqueues
2324  *
2325  * Note this does not restore interrupts like task_rq_unlock,
2326  * you need to do so manually after calling.
2327  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2328 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock)
2329 {
2330     raw_spin_unlock(&rq1->lock);
2331     if (rq1 != rq2) {
2332         raw_spin_unlock(&rq2->lock);
2333     } else {
2334         __release(rq2->lock);
2335     }
2336 }
2337 
2338 extern void set_rq_online(struct rq *rq);
2339 extern void set_rq_offline(struct rq *rq);
2340 extern bool sched_smp_initialized;
2341 
2342 #else /* CONFIG_SMP */
2343 
2344 /*
2345  * double_rq_lock - safely lock two runqueues
2346  *
2347  * Note this does not disable interrupts like task_rq_lock,
2348  * you need to do so manually before calling.
2349  */
double_rq_lock(struct rq * rq1,struct rq * rq2)2350 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) __acquires(rq1->lock) __acquires(rq2->lock)
2351 {
2352     BUG_ON(!irqs_disabled());
2353     BUG_ON(rq1 != rq2);
2354     raw_spin_lock(&rq1->lock);
2355     __acquire(rq2->lock); /* Fake it out ;) */
2356 }
2357 
2358 /*
2359  * double_rq_unlock - safely unlock two runqueues
2360  *
2361  * Note this does not restore interrupts like task_rq_unlock,
2362  * you need to do so manually after calling.
2363  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2364 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __releases(rq1->lock) __releases(rq2->lock)
2365 {
2366     BUG_ON(rq1 != rq2);
2367     raw_spin_unlock(&rq1->lock);
2368     __release(rq2->lock);
2369 }
2370 
2371 #endif
2372 
2373 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2374 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2375 
2376 #ifdef CONFIG_SCHED_DEBUG
2377 extern bool sched_debug_enabled;
2378 
2379 extern void print_cfs_stats(struct seq_file *m, int cpu);
2380 extern void print_rt_stats(struct seq_file *m, int cpu);
2381 extern void print_dl_stats(struct seq_file *m, int cpu);
2382 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2383 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2384 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2385 #ifdef CONFIG_NUMA_BALANCING
2386 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
2387 extern void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, unsigned long tpf, unsigned long gsf,
2388                              unsigned long gpf);
2389 #endif /* CONFIG_NUMA_BALANCING */
2390 #endif /* CONFIG_SCHED_DEBUG */
2391 
2392 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2393 extern void init_rt_rq(struct rt_rq *rt_rq);
2394 extern void init_dl_rq(struct dl_rq *dl_rq);
2395 
2396 extern void cfs_bandwidth_usage_inc(void);
2397 extern void cfs_bandwidth_usage_dec(void);
2398 
2399 #ifdef CONFIG_NO_HZ_COMMON
2400 #define NOHZ_BALANCE_KICK_BIT 0
2401 #define NOHZ_STATS_KICK_BIT 1
2402 
2403 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2404 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2405 
2406 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2407 
2408 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2409 
2410 extern void nohz_balance_exit_idle(struct rq *rq);
2411 #else
nohz_balance_exit_idle(struct rq * rq)2412 static inline void nohz_balance_exit_idle(struct rq *rq)
2413 {
2414 }
2415 #endif
2416 
2417 #ifdef CONFIG_SMP
__dl_update(struct dl_bw * dl_b,s64 bw)2418 static inline void __dl_update(struct dl_bw *dl_b, s64 bw)
2419 {
2420     struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2421     int i;
2422 
2423     RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), "sched RCU must be held");
2424     for_each_cpu_and(i, rd->span, cpu_active_mask)
2425     {
2426         struct rq *rq = cpu_rq(i);
2427 
2428         rq->dl.extra_bw += bw;
2429     }
2430 }
2431 #else
__dl_update(struct dl_bw * dl_b,s64 bw)2432 static inline void __dl_update(struct dl_bw *dl_b, s64 bw)
2433 {
2434     struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2435 
2436     dl->extra_bw += bw;
2437 }
2438 #endif
2439 
2440 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2441 struct irqtime {
2442     u64 total;
2443     u64 tick_delta;
2444     u64 irq_start_time;
2445     struct u64_stats_sync sync;
2446 };
2447 
2448 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2449 
2450 /*
2451  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2452  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2453  * and never move forward.
2454  */
irq_time_read(int cpu)2455 static inline u64 irq_time_read(int cpu)
2456 {
2457     struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2458     unsigned int seq;
2459     u64 total;
2460 
2461     do {
2462         seq = __u64_stats_fetch_begin(&irqtime->sync);
2463         total = irqtime->total;
2464     } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2465 
2466     return total;
2467 }
2468 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2469 
2470 #ifdef CONFIG_CPU_FREQ
2471 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2472 
2473 /**
2474  * cpufreq_update_util - Take a note about CPU utilization changes.
2475  * @rq: Runqueue to carry out the update for.
2476  * @flags: Update reason flags.
2477  *
2478  * This function is called by the scheduler on the CPU whose utilization is
2479  * being updated.
2480  *
2481  * It can only be called from RCU-sched read-side critical sections.
2482  *
2483  * The way cpufreq is currently arranged requires it to evaluate the CPU
2484  * performance state (frequency/voltage) on a regular basis to prevent it from
2485  * being stuck in a completely inadequate performance level for too long.
2486  * That is not guaranteed to happen if the updates are only triggered from CFS
2487  * and DL, though, because they may not be coming in if only RT tasks are
2488  * active all the time (or there are RT tasks only).
2489  *
2490  * As a workaround for that issue, this function is called periodically by the
2491  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2492  * but that really is a band-aid.  Going forward it should be replaced with
2493  * solutions targeted more specifically at RT tasks.
2494  */
cpufreq_update_util(struct rq * rq,unsigned int flags)2495 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2496 {
2497     struct update_util_data *data;
2498     u64 clock;
2499 
2500 #ifdef CONFIG_SCHED_WALT
2501     if (!(flags & SCHED_CPUFREQ_WALT)) {
2502         return;
2503     }
2504 
2505     clock = sched_ktime_clock();
2506 #else
2507     clock = rq_clock(rq);
2508 #endif
2509     data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, cpu_of(rq)));
2510     if (data) {
2511         data->func(data, clock, flags);
2512     }
2513 }
2514 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2515 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2516 {
2517 }
2518 #endif /* CONFIG_CPU_FREQ */
2519 
2520 #ifdef CONFIG_UCLAMP_TASK
2521 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2522 
2523 /**
2524  * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2525  * @rq:        The rq to clamp against. Must not be NULL.
2526  * @util:    The util value to clamp.
2527  * @p:        The task to clamp against. Can be NULL if you want to clamp
2528  *        against @rq only.
2529  *
2530  * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2531  *
2532  * If sched_uclamp_used static key is disabled, then just return the util
2533  * without any clamping since uclamp aggregation at the rq level in the fast
2534  * path is disabled, rendering this operation a NOP.
2535  *
2536  * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2537  * will return the correct effective uclamp value of the task even if the
2538  * static key is disabled.
2539  */
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2540 static __always_inline unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, struct task_struct *p)
2541 {
2542     unsigned long min_util = 0;
2543     unsigned long max_util = 0;
2544 
2545     if (!static_branch_likely(&sched_uclamp_used)) {
2546         return util;
2547     }
2548 
2549     if (p) {
2550         min_util = uclamp_eff_value(p, UCLAMP_MIN);
2551         max_util = uclamp_eff_value(p, UCLAMP_MAX);
2552 
2553         /*
2554          * Ignore last runnable task's max clamp, as this task will
2555          * reset it. Similarly, no need to read the rq's min clamp.
2556          */
2557         if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) {
2558             goto out;
2559         }
2560     }
2561 
2562     min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2563     max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2564 out:
2565     /*
2566      * Since CPU's {min,max}_util clamps are MAX aggregated considering
2567      * RUNNABLE tasks with _different_ clamps, we can end up with an
2568      * inversion. Fix it now when the clamps are applied.
2569      */
2570     if (unlikely(min_util >= max_util)) {
2571         return min_util;
2572     }
2573 
2574     return clamp(util, min_util, max_util);
2575 }
2576 
uclamp_boosted(struct task_struct * p)2577 static inline bool uclamp_boosted(struct task_struct *p)
2578 {
2579     return uclamp_eff_value(p, UCLAMP_MIN) > 0;
2580 }
2581 
2582 /*
2583  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2584  * by default in the fast path and only gets turned on once userspace performs
2585  * an operation that requires it.
2586  *
2587  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2588  * hence is active.
2589  */
uclamp_is_used(void)2590 static inline bool uclamp_is_used(void)
2591 {
2592     return static_branch_likely(&sched_uclamp_used);
2593 }
2594 #else  /* CONFIG_UCLAMP_TASK */
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2595 static inline unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util, struct task_struct *p)
2596 {
2597     return util;
2598 }
2599 
uclamp_boosted(struct task_struct * p)2600 static inline bool uclamp_boosted(struct task_struct *p)
2601 {
2602     return false;
2603 }
2604 
uclamp_is_used(void)2605 static inline bool uclamp_is_used(void)
2606 {
2607     return false;
2608 }
2609 #endif /* CONFIG_UCLAMP_TASK */
2610 
2611 #ifdef arch_scale_freq_capacity
2612 #ifndef arch_scale_freq_invariant
2613 #define arch_scale_freq_invariant() true
2614 #endif
2615 #else
2616 #define arch_scale_freq_invariant() false
2617 #endif
2618 
2619 #ifdef CONFIG_SMP
capacity_of(int cpu)2620 static inline unsigned long capacity_of(int cpu)
2621 {
2622     return cpu_rq(cpu)->cpu_capacity;
2623 }
2624 
capacity_orig_of(int cpu)2625 static inline unsigned long capacity_orig_of(int cpu)
2626 {
2627     return cpu_rq(cpu)->cpu_capacity_orig;
2628 }
2629 #endif
2630 
2631 /**
2632  * enum schedutil_type - CPU utilization type
2633  * @FREQUENCY_UTIL:    Utilization used to select frequency
2634  * @ENERGY_UTIL:    Utilization used during energy calculation
2635  *
2636  * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2637  * need to be aggregated differently depending on the usage made of them. This
2638  * enum is used within schedutil_freq_util() to differentiate the types of
2639  * utilization expected by the callers, and adjust the aggregation accordingly.
2640  */
2641 enum schedutil_type {
2642     FREQUENCY_UTIL,
2643     ENERGY_UTIL,
2644 };
2645 
2646 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2647 
2648 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, unsigned long max, enum schedutil_type type,
2649                                  struct task_struct *p);
2650 
cpu_bw_dl(struct rq * rq)2651 static inline unsigned long cpu_bw_dl(struct rq *rq)
2652 {
2653     return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2654 }
2655 
cpu_util_dl(struct rq * rq)2656 static inline unsigned long cpu_util_dl(struct rq *rq)
2657 {
2658     return READ_ONCE(rq->avg_dl.util_avg);
2659 }
2660 
cpu_util_cfs(struct rq * rq)2661 static inline unsigned long cpu_util_cfs(struct rq *rq)
2662 {
2663     unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2664 
2665     if (sched_feat(UTIL_EST)) {
2666         util = max_t(unsigned long, util, READ_ONCE(rq->cfs.avg.util_est.enqueued));
2667     }
2668 
2669     return util;
2670 }
2671 
cpu_util_rt(struct rq * rq)2672 static inline unsigned long cpu_util_rt(struct rq *rq)
2673 {
2674     return READ_ONCE(rq->avg_rt.util_avg);
2675 }
2676 #else  /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2677 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs, unsigned long max,
2678                                                enum schedutil_type type, struct task_struct *p)
2679 {
2680     return 0;
2681 }
2682 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2683 
2684 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2685 static inline unsigned long cpu_util_irq(struct rq *rq)
2686 {
2687     return rq->avg_irq.util_avg;
2688 }
2689 
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2690 static inline unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2691 {
2692     util *= (max - irq);
2693     util /= max;
2694 
2695     return util;
2696 }
2697 #else
cpu_util_irq(struct rq * rq)2698 static inline unsigned long cpu_util_irq(struct rq *rq)
2699 {
2700     return 0;
2701 }
2702 
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2703 static inline unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2704 {
2705     return util;
2706 }
2707 #endif
2708 
2709 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2710 
2711 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2712 
2713 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2714 
sched_energy_enabled(void)2715 static inline bool sched_energy_enabled(void)
2716 {
2717     return static_branch_unlikely(&sched_energy_present);
2718 }
2719 
2720 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2721 
2722 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2723 static inline bool sched_energy_enabled(void)
2724 {
2725     return false;
2726 }
2727 
2728 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2729 
2730 #ifdef CONFIG_MEMBARRIER
2731 /*
2732  * The scheduler provides memory barriers required by membarrier between:
2733  * - prior user-space memory accesses and store to rq->membarrier_state,
2734  * - store to rq->membarrier_state and following user-space memory accesses.
2735  * In the same way it provides those guarantees around store to rq->curr.
2736  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2737 static inline void membarrier_switch_mm(struct rq *rq, struct mm_struct *prev_mm, struct mm_struct *next_mm)
2738 {
2739     int membarrier_state;
2740 
2741     if (prev_mm == next_mm) {
2742         return;
2743     }
2744 
2745     membarrier_state = atomic_read(&next_mm->membarrier_state);
2746     if (READ_ONCE(rq->membarrier_state) == membarrier_state) {
2747         return;
2748     }
2749 
2750     WRITE_ONCE(rq->membarrier_state, membarrier_state);
2751 }
2752 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2753 static inline void membarrier_switch_mm(struct rq *rq, struct mm_struct *prev_mm, struct mm_struct *next_mm)
2754 {
2755 }
2756 #endif
2757 
2758 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2759 static inline bool is_per_cpu_kthread(struct task_struct *p)
2760 {
2761     if (!(p->flags & PF_KTHREAD)) {
2762         return false;
2763     }
2764 
2765     if (p->nr_cpus_allowed != 1) {
2766         return false;
2767     }
2768 
2769     return true;
2770 }
2771 #endif
2772 
2773 void swake_up_all_locked(struct swait_queue_head *q);
2774 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2775 
2776 #ifdef CONFIG_SCHED_RTG
2777 extern bool task_fits_max(struct task_struct *p, int cpu);
2778 extern unsigned long capacity_spare_without(int cpu, struct task_struct *p);
2779 extern int update_preferred_cluster(struct related_thread_group *grp, struct task_struct *p, u32 old_load,
2780                                     bool from_tick);
2781 extern struct cpumask *find_rtg_target(struct task_struct *p);
2782 #endif
2783 
2784 #ifdef CONFIG_SCHED_WALT
cluster_first_cpu(struct sched_cluster * cluster)2785 static inline int cluster_first_cpu(struct sched_cluster *cluster)
2786 {
2787     return cpumask_first(&cluster->cpus);
2788 }
2789 
2790 extern struct list_head cluster_head;
2791 extern struct sched_cluster *sched_cluster[NR_CPUS];
2792 
2793 #define for_each_sched_cluster(cluster) list_for_each_entry_rcu(cluster, &cluster_head, list)
2794 
2795 extern struct mutex policy_mutex;
2796 extern unsigned int sched_disable_window_stats;
2797 extern unsigned int max_possible_freq;
2798 extern unsigned int min_max_freq;
2799 extern unsigned int max_possible_efficiency;
2800 extern unsigned int min_possible_efficiency;
2801 extern unsigned int max_capacity;
2802 extern unsigned int min_capacity;
2803 extern unsigned int max_load_scale_factor;
2804 extern unsigned int max_possible_capacity;
2805 extern unsigned int min_max_possible_capacity;
2806 extern unsigned int max_power_cost;
2807 extern unsigned int __read_mostly sched_init_task_load_windows;
2808 extern unsigned int sysctl_sched_restrict_cluster_spill;
2809 extern unsigned int sched_pred_alert_load;
2810 extern struct sched_cluster init_cluster;
2811 
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)2812 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
2813 {
2814     rq->cum_window_demand_scaled += scaled_delta;
2815     if (unlikely((s64)rq->cum_window_demand_scaled < 0)) {
2816         rq->cum_window_demand_scaled = 0;
2817     }
2818 }
2819 
2820 /* Is frequency of two cpus synchronized with each other? */
same_freq_domain(int src_cpu,int dst_cpu)2821 static inline int same_freq_domain(int src_cpu, int dst_cpu)
2822 {
2823     struct rq *rq = cpu_rq(src_cpu);
2824 
2825     if (src_cpu == dst_cpu) {
2826         return 1;
2827     }
2828 
2829     return cpumask_test_cpu(dst_cpu, &rq->freq_domain_cpumask);
2830 }
2831 
2832 extern void reset_task_stats(struct task_struct *p);
2833 
2834 #define CPU_RESERVED 1
is_reserved(int cpu)2835 static inline int is_reserved(int cpu)
2836 {
2837     struct rq *rq = cpu_rq(cpu);
2838 
2839     return test_bit(CPU_RESERVED, &rq->walt_flags);
2840 }
2841 
mark_reserved(int cpu)2842 static inline int mark_reserved(int cpu)
2843 {
2844     struct rq *rq = cpu_rq(cpu);
2845 
2846     return test_and_set_bit(CPU_RESERVED, &rq->walt_flags);
2847 }
2848 
clear_reserved(int cpu)2849 static inline void clear_reserved(int cpu)
2850 {
2851     struct rq *rq = cpu_rq(cpu);
2852 
2853     clear_bit(CPU_RESERVED, &rq->walt_flags);
2854 }
2855 
cpu_capacity(int cpu)2856 static inline int cpu_capacity(int cpu)
2857 {
2858     return cpu_rq(cpu)->cluster->capacity;
2859 }
2860 
cpu_max_possible_capacity(int cpu)2861 static inline int cpu_max_possible_capacity(int cpu)
2862 {
2863     return cpu_rq(cpu)->cluster->max_possible_capacity;
2864 }
2865 
cpu_load_scale_factor(int cpu)2866 static inline int cpu_load_scale_factor(int cpu)
2867 {
2868     return cpu_rq(cpu)->cluster->load_scale_factor;
2869 }
2870 
cluster_max_freq(struct sched_cluster * cluster)2871 static inline unsigned int cluster_max_freq(struct sched_cluster *cluster)
2872 {
2873     /*
2874      * Governor and thermal driver don't know the other party's mitigation
2875      * voting. So struct cluster saves both and return min() for current
2876      * cluster fmax.
2877      */
2878     return cluster->max_freq;
2879 }
2880 
2881 /* Keep track of max/min capacity possible across CPUs "currently" */
__update_min_max_capacity(void)2882 static inline void __update_min_max_capacity(void)
2883 {
2884     int i;
2885     int max_cap = 0, min_cap = INT_MAX;
2886 
2887     for_each_possible_cpu(i)
2888     {
2889         if (!cpu_active(i)) {
2890             continue;
2891         }
2892 
2893         max_cap = max(max_cap, cpu_capacity(i));
2894         min_cap = min(min_cap, cpu_capacity(i));
2895     }
2896 
2897     max_capacity = max_cap;
2898     min_capacity = min_cap;
2899 }
2900 
2901 /*
2902  * Return load_scale_factor of a cpu in reference to "most" efficient cpu, so
2903  * that "most" efficient cpu gets a load_scale_factor of 1
2904  */
load_scale_cpu_efficiency(struct sched_cluster * cluster)2905 static inline unsigned long load_scale_cpu_efficiency(struct sched_cluster *cluster)
2906 {
2907     return DIV_ROUND_UP(CPU_FREQ_1K * max_possible_efficiency, cluster->efficiency);
2908 }
2909 
2910 /*
2911  * Return load_scale_factor of a cpu in reference to cpu with best max_freq
2912  * (max_possible_freq), so that one with best max_freq gets a load_scale_factor
2913  * of 1.
2914  */
load_scale_cpu_freq(struct sched_cluster * cluster)2915 static inline unsigned long load_scale_cpu_freq(struct sched_cluster *cluster)
2916 {
2917     return DIV_ROUND_UP(CPU_FREQ_1K * max_possible_freq, cluster_max_freq(cluster));
2918 }
2919 
compute_load_scale_factor(struct sched_cluster * cluster)2920 static inline int compute_load_scale_factor(struct sched_cluster *cluster)
2921 {
2922     int load_scale = CPU_FREQ_1K;
2923 
2924     /*
2925      * load_scale_factor accounts for the fact that task load
2926      * is in reference to "best" performing cpu. Task's load will need to be
2927      * scaled (up) by a factor to determine suitability to be placed on a
2928      * (little) cpu.
2929      */
2930     load_scale *= load_scale_cpu_efficiency(cluster);
2931     load_scale >>= 0xa;
2932 
2933     load_scale *= load_scale_cpu_freq(cluster);
2934     load_scale >>= 0xa;
2935 
2936     return load_scale;
2937 }
2938 
is_max_capacity_cpu(int cpu)2939 static inline bool is_max_capacity_cpu(int cpu)
2940 {
2941     return cpu_max_possible_capacity(cpu) == max_possible_capacity;
2942 }
2943 
is_min_capacity_cpu(int cpu)2944 static inline bool is_min_capacity_cpu(int cpu)
2945 {
2946     return cpu_max_possible_capacity(cpu) == min_max_possible_capacity;
2947 }
2948 
2949 /*
2950  * Return 'capacity' of a cpu in reference to "least" efficient cpu, such that
2951  * least efficient cpu gets capacity of 1024
2952  */
capacity_scale_cpu_efficiency(struct sched_cluster * cluster)2953 static unsigned long capacity_scale_cpu_efficiency(struct sched_cluster *cluster)
2954 {
2955     return (0x400 * cluster->efficiency) / min_possible_efficiency;
2956 }
2957 
2958 /*
2959  * Return 'capacity' of a cpu in reference to cpu with lowest max_freq
2960  * (min_max_freq), such that one with lowest max_freq gets capacity of 1024.
2961  */
capacity_scale_cpu_freq(struct sched_cluster * cluster)2962 static unsigned long capacity_scale_cpu_freq(struct sched_cluster *cluster)
2963 {
2964     return (0x400 * cluster_max_freq(cluster)) / min_max_freq;
2965 }
2966 
compute_capacity(struct sched_cluster * cluster)2967 static inline int compute_capacity(struct sched_cluster *cluster)
2968 {
2969     int capacity = 0x400;
2970 
2971     capacity *= capacity_scale_cpu_efficiency(cluster);
2972     capacity >>= 0xa;
2973 
2974     capacity *= capacity_scale_cpu_freq(cluster);
2975     capacity >>= 0xa;
2976 
2977     return capacity;
2978 }
2979 
power_cost(int cpu,u64 demand)2980 static inline unsigned int power_cost(int cpu, u64 demand)
2981 {
2982     return cpu_max_possible_capacity(cpu);
2983 }
2984 
cpu_util_freq_walt(int cpu)2985 static inline unsigned long cpu_util_freq_walt(int cpu)
2986 {
2987     u64 util;
2988     struct rq *rq = cpu_rq(cpu);
2989     unsigned long capacity = capacity_orig_of(cpu);
2990 
2991     if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util)) {
2992         return cpu_util(cpu);
2993     }
2994 
2995     util = rq->prev_runnable_sum << SCHED_CAPACITY_SHIFT;
2996     util = div_u64(util, sched_ravg_window);
2997 
2998     return (util >= capacity) ? capacity : util;
2999 }
3000 
hmp_capable(void)3001 static inline bool hmp_capable(void)
3002 {
3003     return max_possible_capacity != min_max_possible_capacity;
3004 }
3005 #else  /* CONFIG_SCHED_WALT */
walt_fixup_cum_window_demand(struct rq * rq,s64 scaled_delta)3006 static inline void walt_fixup_cum_window_demand(struct rq *rq, s64 scaled_delta)
3007 {
3008 }
3009 
same_freq_domain(int src_cpu,int dst_cpu)3010 static inline int same_freq_domain(int src_cpu, int dst_cpu)
3011 {
3012     return 1;
3013 }
3014 
is_reserved(int cpu)3015 static inline int is_reserved(int cpu)
3016 {
3017     return 0;
3018 }
3019 
clear_reserved(int cpu)3020 static inline void clear_reserved(int cpu)
3021 {
3022 }
3023 
hmp_capable(void)3024 static inline bool hmp_capable(void)
3025 {
3026     return false;
3027 }
3028 #endif /* CONFIG_SCHED_WALT */
3029 
3030 struct sched_avg_stats {
3031     int nr;
3032     int nr_misfit;
3033     int nr_max;
3034     int nr_scaled;
3035 };
3036 #ifdef CONFIG_SCHED_RUNNING_AVG
3037 extern void sched_get_nr_running_avg(struct sched_avg_stats *stats);
3038 #else
sched_get_nr_running_avg(struct sched_avg_stats * stats)3039 static inline void sched_get_nr_running_avg(struct sched_avg_stats *stats)
3040 {
3041 }
3042 #endif
3043 
3044 #ifdef CONFIG_CPU_ISOLATION_OPT
3045 extern int group_balance_cpu_not_isolated(struct sched_group *sg);
3046 #else
group_balance_cpu_not_isolated(struct sched_group * sg)3047 static inline int group_balance_cpu_not_isolated(struct sched_group *sg)
3048 {
3049     return group_balance_cpu(sg);
3050 }
3051 #endif /* CONFIG_CPU_ISOLATION_OPT */
3052 
3053 #ifdef CONFIG_HOTPLUG_CPU
3054 extern void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf, bool migrate_pinned_tasks);
3055 #endif
3056 #endif