1# Function Flow Runtime Serial Queue (C) 2 3## Overview 4 5The FFRT serial queue is implemented based on the coroutine scheduling model. It provides efficient message queue functions and supports multiple service scenarios, such as asynchronous communication, mobile data peak clipping, lock-free status and resource management, and architecture decoupling. The following functions are supported: 6 7- **Queue creation and destruction**: The queue name and priority can be specified during creation. Each queue is equivalent to an independent thread. Tasks in the queue are executed asynchronously compared with user threads. 8- **Task delay**: The `delay` can be set when a task is submitted. The unit is `μs`. The delayed task will be scheduled and executed after `uptime` (submission time + delay time). 9- **Serial scheduling**: Tasks in the same queue are sorted in ascending order of `uptime` and executed in serial mode. Ensure that the next task starts to be executed only after the previous task in the queue is complete. 10- **Task canceling**: You can cancel a task that is not dequeued based on the task handle. The task cannot be canceled if it has been started or completed. 11- **Task waiting**: You can wait for a task to complete based on the task handle. When a specified task is complete, all tasks whose `uptime` is earlier than the specified task in the queue have been executed. 12- **Task priority**: You can set the priority of a single task when submitting the task. Priorities take effect only after a task is dequeued relative to other system loads, and do not affect the serial task order in the same queue. If the task priority is not set, the priority of the queue is inherited by default. 13 14## Example: Asynchronous Log System 15 16The following is an example of implementing an asynchronous log system. The main thread submits the log task to the queue, and the background thread obtains the task from the queue and writes the task to the file. It ensures the log sequence and prevents the main thread from being blocked by the file write operation. 17 18With FFRT APIs, you only need to focus on service logic implementation and do not need to pay attention to asynchronous thread management, thread security, and scheduling efficiency. 19 20The example simplifies the logic for handling exceptions and ensuring thread security. The code is as follows: 21 22```c 23#include <stdio.h> 24#include <stdlib.h> 25#include <string.h> 26#include <unistd.h> 27#include "ffrt/queue.h" 28#include "ffrt/task.h" 29 30typedef struct { 31 FILE *logFile; // Pointer to a log file. 32 ffrt_queue_t queue; // Task queue. 33} logger_t; 34 35// Global logger variable. 36logger_t* g_logger = NULL; 37 38// Initialize the log system. 39logger_t *logger_create(const char *filename) 40{ 41 logger_t *logger = (logger_t *)malloc(sizeof(logger_t)); 42 if (!logger) { 43 perror("Failed to allocate memory for logger_t"); 44 return NULL; 45 } 46 47 // Open the log file. 48 logger->logFile = fopen(filename, "a"); 49 if (!logger->logFile) { 50 perror("Failed to open log file"); 51 free(logger); 52 return NULL; 53 } 54 printf("Log file opened: %s\n", filename); 55 56 // Create a task queue. 57 logger->queue = ffrt_queue_create(ffrt_queue_serial, "logger_queue_c", NULL); 58 if (!logger->queue) { 59 perror("Failed to create queue"); 60 fclose(logger->logFile); 61 free(logger); 62 return NULL; 63 } 64 65 return logger; 66} 67 68// Destroy the log system. 69void logger_destroy(logger_t *logger) 70{ 71 if (logger) { 72 // Destroy the queue. 73 if (logger->queue) { 74 ffrt_queue_destroy(logger->queue); 75 } 76 77 // Close the log file. 78 if (logger->logFile) { 79 fclose(logger->logFile); 80 printf("Log file closed\n"); 81 } 82 83 free(logger); 84 } 85} 86 87// Log task. 88void write_task(void *arg) 89{ 90 char *message = (char *)arg; 91 if (g_logger && g_logger->logFile) { 92 fprintf(g_logger->logFile, "%s\n", message); 93 fflush(g_logger->logFile); 94 } 95 96 free(message); 97} 98 99// Add a log task. 100void logger_log(logger_t *logger, const char *message) 101{ 102 if (!logger || !logger->queue) { 103 return; 104 } 105 106 // Copy the message string. 107 char *messageCopy = strdup(message); 108 if (!messageCopy) { 109 perror("Failed to allocate memory for message"); 110 return; 111 } 112 113 ffrt_queue_submit(logger->queue, ffrt_create_function_wrapper(write_task, NULL, messageCopy), NULL); 114} 115 116int main() 117{ 118 // Initialize the global logger. 119 g_logger = logger_create("log_c.txt"); 120 if (!g_logger) { 121 return -1; 122 } 123 124 // Use the global logger to add a log task. 125 logger_log(g_logger, "Log message 1"); 126 logger_log(g_logger, "Log message 2"); 127 logger_log(g_logger, "Log message 3"); 128 129 // Simulate the main thread to continue executing other tasks. 130 sleep(1); 131 132 // Destroy the global logger. 133 logger_destroy(g_logger); 134 g_logger = NULL; 135 return 0; 136} 137``` 138 139C-style FFRT construction requires additional encapsulation using common code and is irrelevant to specific service scenarios. 140 141```c 142typedef struct { 143 ffrt_function_header_t header; 144 ffrt_function_t func; 145 ffrt_function_t after_func; 146 void* arg; 147} c_function_t; 148 149static inline void ffrt_exec_function_wrapper(void* t) 150{ 151 c_function_t* f = (c_function_t *)t; 152 if (f->func) { 153 f->func(f->arg); 154 } 155} 156 157static inline void ffrt_destroy_function_wrapper(void* t) 158{ 159 c_function_t* f = (c_function_t *)t; 160 if (f->after_func) { 161 f->after_func(f->arg); 162 } 163} 164 165#define FFRT_STATIC_ASSERT(cond, msg) int x(int static_assertion_##msg[(cond) ? 1 : -1]) 166static inline ffrt_function_header_t *ffrt_create_function_wrapper(const ffrt_function_t func, 167 const ffrt_function_t after_func, void *arg) 168{ 169 FFRT_STATIC_ASSERT(sizeof(c_function_t) <= ffrt_auto_managed_function_storage_size, 170 size_of_function_must_be_less_than_ffrt_auto_managed_function_storage_size); 171 172 c_function_t* f = (c_function_t *)ffrt_alloc_auto_managed_function_storage_base(ffrt_function_kind_queue); 173 f->header.exec = ffrt_exec_function_wrapper; 174 f->header.destroy = ffrt_destroy_function_wrapper; 175 f->func = func; 176 f->after_func = after_func; 177 f->arg = arg; 178 return (ffrt_function_header_t *)f; 179} 180``` 181 182## Available APIs 183 184The main FFRT APIs involved in the preceding example are as follows: 185 186| Name | Description | 187| ---------------------------------------------------------------- | ------------------------------ | 188| [ffrt_queue_create](ffrt-api-guideline-c.md#ffrt_queue_create) | Creates a queue. | 189| [ffrt_queue_destroy](ffrt-api-guideline-c.md#ffrt_queue_destroy) | Destroys a queue. | 190| [ffrt_queue_submit](ffrt-api-guideline-c.md#ffrt_queue_submit) | Submits a task to a queue.| 191 192## Constraints 193 194- **Avoid submitting ultra-long tasks.** The FFRT has a built-in process-level queue task timeout detection mechanism. When the execution time of a serial task exceeds the preset threshold (30 seconds by default), the system prints and reports exception logs and triggers the preset process timeout callback function (if configured). 195- **Use synchronization primitives correctly.** Do not use `std::mutex`, `std::condition_variable`, or `std::recursive_mutex` in the task closure submitted to FFRT. As synchronization primitives in the standard library will occupy the FFRT Worker thread for a long time, you should use the synchronization primitives provided by FFRT: `ffrt::mutex`, `ffrt::condition_variable`, or `ffrt::recursive_mutex`. The usage is the same as that of the standard library. 196- **Manage queues in global variables.** If serial queues are managed in global variables and destroyed with service processes, pay attention to lifecycle decoupling in the test program. When the test is complete, the serial queue needs to be explicitly released. Other resources can be released with global variables. The reason is that global variables are destructed after the main function ends, and the release of serial queues depends on other resources in the FFRT framework, and the resources may have been destroyed. 197