• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# \@AnimatableExtend Decorator: Definition of Animatable Attributes
2
3The @AnimatableExtend decorator is used to define an attribute method for the non-animatable attribute of a component. During animation execution, a frame-by-frame callback is used to change the value of the non-animatable attribute so that an animation effect can be applied to the attribute. Additionally, you can implement frame-by-frame layout effects by changing the values of animatable properties in the per-frame callback function.
4
5- Animatable attribute: If an attribute method is called before the **animation** attribute, and changing the value of this attribute can make the animation effect specified by the **animation** attribute take effect, then this attribute is called animatable attribute. For example, **height**, **width**, **backgroundColor**, **translate**, and **fontSize** (of the **Text** component) are all animatable attributes.
6
7- Non-animatable attribute: If an attribute method is called before the **animation** attribute, and changing the value of this attribute cannot make the animation effect specified by the **animation** attribute take effect, then this attribute is called non-animatable attribute. For example, the **points** attribute of the **Polyline** component is a non-animatable attribute.
8
9>  **NOTE**
10>
11>  This decorator is supported since API version 10. Updates will be marked with a superscript to indicate their earliest API version.
12>
13> This decorator can be used in atomic services since API version 11.
14
15## Rules of Use
16
17
18### Syntax
19
20
21```ts
22@AnimatableExtend(UIComponentName) function functionName(value: typeName) {
23  .propertyName(value)
24}
25```
26
27- \@AnimatableExtend can be defined only globally.
28- The parameter of the \@AnimatableExtend decorated function must be of the number type or a custom type that implements the **AnimatableArithmetic\<T\>** API.
29- In the \@AnimatableExtend decorated function body, only the attribute methods of the component specified in brackets immediately following \@AnimatableExtend can be called.
30
31### Available APIs
32The **AnimatableArithmetic** API defines the animation operation rules for non-number data types. To animate non-number data (such as arrays, structs, and colors), implement the addition, subtraction, multiplication, and equality judgment functions in the **AnimatableArithmetic\<T\>** API.
33In this way, the data can be involved in an interpolation operation of the animation and identify whether the data changes, that is, the non-number data is defined as the types that implement the **AnimatableArithmetic\<T\>** API.
34| Name| Input Parameter Type| Return Value Type| Description |
35| -------- | -------- |-------- |-------- |
36| plus | AnimatableArithmetic\<T\> | AnimatableArithmetic\<T\> | Defines the addition rule of the data type.|
37| subtract | AnimatableArithmetic\<T\> | AnimatableArithmetic\<T\> | Defines the subtraction rule of the data type.|
38| multiply | number | AnimatableArithmetic\<T\> | Defines the multiplication rule of the data type.|
39| equals | AnimatableArithmetic\<T\> | boolean | Defines the equality judgment rule of the data type.|
40
41## Example
42
43The following example implements the frame-by-frame layout effects by changing the width of the **Text** component.
44
45
46```ts
47@AnimatableExtend(Text)
48function animatableWidth(width: number) {
49  .width(width)
50}
51
52@Entry
53@Component
54struct AnimatablePropertyExample {
55  @State textWidth: number = 80;
56
57  build() {
58    Column() {
59      Text("AnimatableProperty")
60        .animatableWidth(this.textWidth)
61        .animation({ duration: 2000, curve: Curve.Ease })
62      Button("Play")
63        .onClick(() => {
64          this.textWidth = this.textWidth == 80 ? 160 : 80;
65        })
66    }.width("100%")
67    .padding(10)
68  }
69}
70```
71![image](figures/AnimatableProperty.gif)
72
73
74The following example implements a polyline animation effect.
75
76
77```ts
78class Point {
79  x: number
80  y: number
81
82  constructor(x: number, y: number) {
83    this.x = x
84    this.y = y
85  }
86
87  plus(rhs: Point): Point {
88    return new Point(this.x + rhs.x, this.y + rhs.y)
89  }
90
91  subtract(rhs: Point): Point {
92    return new Point(this.x - rhs.x, this.y - rhs.y)
93  }
94
95  multiply(scale: number): Point {
96    return new Point(this.x * scale, this.y * scale)
97  }
98
99  equals(rhs: Point): boolean {
100    return this.x === rhs.x && this.y === rhs.y
101  }
102}
103
104// PointVector implements the AnimatableArithmetic<T> API.
105class PointVector extends Array<Point> implements AnimatableArithmetic<PointVector> {
106  constructor(value: Array<Point>) {
107    super();
108    value.forEach(p => this.push(p))
109  }
110
111  plus(rhs: PointVector): PointVector {
112    let result = new PointVector([])
113    const len = Math.min(this.length, rhs.length)
114    for (let i = 0; i < len; i++) {
115      result.push((this as Array<Point>)[i].plus((rhs as Array<Point>)[i]))
116    }
117    return result
118  }
119
120  subtract(rhs: PointVector): PointVector {
121    let result = new PointVector([])
122    const len = Math.min(this.length, rhs.length)
123    for (let i = 0; i < len; i++) {
124      result.push((this as Array<Point>)[i].subtract((rhs as Array<Point>)[i]))
125    }
126    return result
127  }
128
129  multiply(scale: number): PointVector {
130    let result = new PointVector([])
131    for (let i = 0; i < this.length; i++) {
132      result.push((this as Array<Point>)[i].multiply(scale))
133    }
134    return result
135  }
136
137  equals(rhs: PointVector): boolean {
138    if (this.length != rhs.length) {
139      return false
140    }
141    for (let i = 0; i < this.length; i++) {
142      if (!(this as Array<Point>)[i].equals((rhs as Array<Point>)[i])) {
143        return false
144      }
145    }
146    return true
147  }
148
149  get(): Array<Object[]> {
150    let result: Array<Object[]> = []
151    this.forEach(p => result.push([p.x, p.y]))
152    return result
153  }
154}
155
156@AnimatableExtend(Polyline)
157function animatablePoints(points: PointVector) {
158  .points(points.get())
159}
160
161@Entry
162@Component
163struct AnimatablePropertyExample {
164  @State points: PointVector = new PointVector([
165    new Point(50, Math.random() * 200),
166    new Point(100, Math.random() * 200),
167    new Point(150, Math.random() * 200),
168    new Point(200, Math.random() * 200),
169    new Point(250, Math.random() * 200),
170  ])
171
172  build() {
173    Column() {
174      Polyline()
175        .animatablePoints(this.points)
176        .animation({ duration: 1000, curve: Curve.Ease })// Set animation parameters.
177        .size({ height: 220, width: 300 })
178        .fill(Color.Green)
179        .stroke(Color.Red)
180        .backgroundColor('#eeaacc')
181      Button("Play")
182        .onClick(() => {
183          // points is a data type that implements the animation protocol. During the animation, points can be changed from the previous PointVector data to the new one based on the defined operation rules and animation parameters to generate the PointVector data of each frame and then generate an animation.
184          this.points = new PointVector([
185            new Point(50, Math.random() * 200),
186            new Point(100, Math.random() * 200),
187            new Point(150, Math.random() * 200),
188            new Point(200, Math.random() * 200),
189            new Point(250, Math.random() * 200),
190          ])
191        })
192    }.width("100%")
193    .padding(10)
194  }
195}
196```
197![image](figures/animatable-points.gif)
198