1# \@AnimatableExtend Decorator: Definition of Animatable Attributes 2 3The @AnimatableExtend decorator is used to define an attribute method for the non-animatable attribute of a component. During animation execution, a frame-by-frame callback is used to change the value of the non-animatable attribute so that an animation effect can be applied to the attribute. Additionally, you can implement frame-by-frame layout effects by changing the values of animatable properties in the per-frame callback function. 4 5- Animatable attribute: If an attribute method is called before the **animation** attribute, and changing the value of this attribute can make the animation effect specified by the **animation** attribute take effect, then this attribute is called animatable attribute. For example, **height**, **width**, **backgroundColor**, **translate**, and **fontSize** (of the **Text** component) are all animatable attributes. 6 7- Non-animatable attribute: If an attribute method is called before the **animation** attribute, and changing the value of this attribute cannot make the animation effect specified by the **animation** attribute take effect, then this attribute is called non-animatable attribute. For example, the **points** attribute of the **Polyline** component is a non-animatable attribute. 8 9> **NOTE** 10> 11> This decorator is supported since API version 10. Updates will be marked with a superscript to indicate their earliest API version. 12> 13> This decorator can be used in atomic services since API version 11. 14 15## Rules of Use 16 17 18### Syntax 19 20 21```ts 22@AnimatableExtend(UIComponentName) function functionName(value: typeName) { 23 .propertyName(value) 24} 25``` 26 27- \@AnimatableExtend can be defined only globally. 28- The parameter of the \@AnimatableExtend decorated function must be of the number type or a custom type that implements the **AnimatableArithmetic\<T\>** API. 29- In the \@AnimatableExtend decorated function body, only the attribute methods of the component specified in brackets immediately following \@AnimatableExtend can be called. 30 31### Available APIs 32The **AnimatableArithmetic** API defines the animation operation rules for non-number data types. To animate non-number data (such as arrays, structs, and colors), implement the addition, subtraction, multiplication, and equality judgment functions in the **AnimatableArithmetic\<T\>** API. 33In this way, the data can be involved in an interpolation operation of the animation and identify whether the data changes, that is, the non-number data is defined as the types that implement the **AnimatableArithmetic\<T\>** API. 34| Name| Input Parameter Type| Return Value Type| Description | 35| -------- | -------- |-------- |-------- | 36| plus | AnimatableArithmetic\<T\> | AnimatableArithmetic\<T\> | Defines the addition rule of the data type.| 37| subtract | AnimatableArithmetic\<T\> | AnimatableArithmetic\<T\> | Defines the subtraction rule of the data type.| 38| multiply | number | AnimatableArithmetic\<T\> | Defines the multiplication rule of the data type.| 39| equals | AnimatableArithmetic\<T\> | boolean | Defines the equality judgment rule of the data type.| 40 41## Example 42 43The following example implements the frame-by-frame layout effects by changing the width of the **Text** component. 44 45 46```ts 47@AnimatableExtend(Text) 48function animatableWidth(width: number) { 49 .width(width) 50} 51 52@Entry 53@Component 54struct AnimatablePropertyExample { 55 @State textWidth: number = 80; 56 57 build() { 58 Column() { 59 Text("AnimatableProperty") 60 .animatableWidth(this.textWidth) 61 .animation({ duration: 2000, curve: Curve.Ease }) 62 Button("Play") 63 .onClick(() => { 64 this.textWidth = this.textWidth == 80 ? 160 : 80; 65 }) 66 }.width("100%") 67 .padding(10) 68 } 69} 70``` 71 72 73 74The following example implements a polyline animation effect. 75 76 77```ts 78class Point { 79 x: number 80 y: number 81 82 constructor(x: number, y: number) { 83 this.x = x 84 this.y = y 85 } 86 87 plus(rhs: Point): Point { 88 return new Point(this.x + rhs.x, this.y + rhs.y) 89 } 90 91 subtract(rhs: Point): Point { 92 return new Point(this.x - rhs.x, this.y - rhs.y) 93 } 94 95 multiply(scale: number): Point { 96 return new Point(this.x * scale, this.y * scale) 97 } 98 99 equals(rhs: Point): boolean { 100 return this.x === rhs.x && this.y === rhs.y 101 } 102} 103 104// PointVector implements the AnimatableArithmetic<T> API. 105class PointVector extends Array<Point> implements AnimatableArithmetic<PointVector> { 106 constructor(value: Array<Point>) { 107 super(); 108 value.forEach(p => this.push(p)) 109 } 110 111 plus(rhs: PointVector): PointVector { 112 let result = new PointVector([]) 113 const len = Math.min(this.length, rhs.length) 114 for (let i = 0; i < len; i++) { 115 result.push((this as Array<Point>)[i].plus((rhs as Array<Point>)[i])) 116 } 117 return result 118 } 119 120 subtract(rhs: PointVector): PointVector { 121 let result = new PointVector([]) 122 const len = Math.min(this.length, rhs.length) 123 for (let i = 0; i < len; i++) { 124 result.push((this as Array<Point>)[i].subtract((rhs as Array<Point>)[i])) 125 } 126 return result 127 } 128 129 multiply(scale: number): PointVector { 130 let result = new PointVector([]) 131 for (let i = 0; i < this.length; i++) { 132 result.push((this as Array<Point>)[i].multiply(scale)) 133 } 134 return result 135 } 136 137 equals(rhs: PointVector): boolean { 138 if (this.length != rhs.length) { 139 return false 140 } 141 for (let i = 0; i < this.length; i++) { 142 if (!(this as Array<Point>)[i].equals((rhs as Array<Point>)[i])) { 143 return false 144 } 145 } 146 return true 147 } 148 149 get(): Array<Object[]> { 150 let result: Array<Object[]> = [] 151 this.forEach(p => result.push([p.x, p.y])) 152 return result 153 } 154} 155 156@AnimatableExtend(Polyline) 157function animatablePoints(points: PointVector) { 158 .points(points.get()) 159} 160 161@Entry 162@Component 163struct AnimatablePropertyExample { 164 @State points: PointVector = new PointVector([ 165 new Point(50, Math.random() * 200), 166 new Point(100, Math.random() * 200), 167 new Point(150, Math.random() * 200), 168 new Point(200, Math.random() * 200), 169 new Point(250, Math.random() * 200), 170 ]) 171 172 build() { 173 Column() { 174 Polyline() 175 .animatablePoints(this.points) 176 .animation({ duration: 1000, curve: Curve.Ease })// Set animation parameters. 177 .size({ height: 220, width: 300 }) 178 .fill(Color.Green) 179 .stroke(Color.Red) 180 .backgroundColor('#eeaacc') 181 Button("Play") 182 .onClick(() => { 183 // points is a data type that implements the animation protocol. During the animation, points can be changed from the previous PointVector data to the new one based on the defined operation rules and animation parameters to generate the PointVector data of each frame and then generate an animation. 184 this.points = new PointVector([ 185 new Point(50, Math.random() * 200), 186 new Point(100, Math.random() * 200), 187 new Point(150, Math.random() * 200), 188 new Point(200, Math.random() * 200), 189 new Point(250, Math.random() * 200), 190 ]) 191 }) 192 }.width("100%") 193 .padding(10) 194 } 195} 196``` 197 198