1# ArkTS Performant Programming Practices 2 3## Overview 4 5 6This topic provides a set of performant programming practices that you can apply in performance-critical scenarios. They are techniques and recommendations drawn from real-world development. Following these practices in your service implementation can help develop performant applications. For details about ArkTS coding standards, see [ArkTS Coding Style Guide](./arkts-coding-style-guide.md). 7 8## Declaration and Expression 9 10### Using const to Declare Unchanged Variables 11 12You are advised to use **const** to declare variables that remain unchanged. 13 14``` TypeScript 15const index = 10000; // This variable does not change in the subsequent process. You are advised to declare it as a constant. 16``` 17 18 19### Avoiding Mixed Use of Integers and Floating-Point Numbers in Variables of the number Type 20 21For variables of the **number** type, integer data and floating-point data are distinguished during optimization at runtime. As such, avoid changing the data type of the variables after they have been initialized. 22 23``` TypeScript 24let intNum = 1; 25intNum = 1.1; // This variable is declared as an integer data type. Avoid assigning a floating-point number to it. 26 27let doubleNum = 1.1; 28doubleNum = 1; // This variable is declared as a floating-point data type. Avoid assigning an integer to it. 29``` 30 31 32### Avoiding Overflow in Arithmetic Operations 33 34When arithmetic operations run into overflow, the engine enters a slower logic branch for processing overflow, affecting subsequent performance. Below are some suggestions to mitigate the overflow risk. 35 36- For operations such as addition, subtraction, multiplication, and exponentiation, the value should not be greater than **INT32_MAX** or less than **INT32_MIN**. 37 38- For operations such as & (and) and >>> (unsigned right shift), the value should not be greater than **INT32_MAX**. 39 40 41### Extracting Constants in Loops to Reduce Attribute Access Times 42 43In a loop where there is frequent access to a constant that does not change, extract the constant outside of the loop to reduce the number of times the property is accessed. 44 45``` TypeScript 46class Time { 47 static start: number = 0; 48 static info: number[] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; 49} 50 51function getNum(num: number): number { 52 let total: number = 348; 53 for (let index: number = 0x8000; index > 0x8; index >>= 1) { 54 // The system searches for info and start of Time multiple times, and the values found each time are the same. 55 total += ((Time.info[num - Time.start] & index) !== 0) ? 1 : 0; 56 } 57 return total; 58} 59``` 60 61This optimization extracts constants in **Time.info[num - Time.start]**, which greatly reduces the number of property access times and brings better performance. The optimized code is as follows: 62 63``` TypeScript 64class Time { 65 static start: number = 0; 66 static info: number[] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; 67} 68 69function getNum(num: number): number { 70 let total: number = 348; 71 const info = Time.info[num - Time.start]; // Extract constants from the loop. 72 for (let index: number = 0x8000; index > 0x8; index >>= 1) { 73 if ((info & index) != 0) { 74 total++; 75 } 76 } 77 return total; 78} 79``` 80 81 82## Functions 83 84### Using Parameters to Pass External Variables 85 86Using closures may incur additional overhead for closure creation and access. In performance-sensitive scenarios, you are advised to use parameters to pass external variables instead of using closures. 87 88``` TypeScript 89let arr = [0, 1, 2]; 90 91function foo(): number { 92 return arr[0] + arr[1]; 93} 94 95foo(); 96``` 97 98You are advised to use parameter to pass external variables instead of using closures. 99``` TypeScript 100let arr = [0, 1, 2]; 101 102function foo(array: number[]): number { 103 return array[0] + array[1]; 104} 105 106foo(arr); 107``` 108 109 110### Avoiding Optional Parameters 111 112An optional function parameter may be **undefined**. When such a parameter is used in the function, the system needs to check whether the parameter is null, which will cause extra overhead. 113 114``` TypeScript 115function add(left?: number, right?: number): number | undefined { 116 if (left != undefined && right != undefined) { 117 return left + right; 118 } 119 return undefined; 120} 121``` 122 123Declare function parameters as mandatory parameters based on service requirements. You can use the default parameters. 124``` TypeScript 125function add(left: number = 0, right: number = 0): number { 126 return left + right; 127} 128``` 129 130 131## Arrays 132 133### Prioritizing TypedArray for Value Arrays 134 135Where only arithmetic operations are involved, prefer **TypedArrays** over Arrays. 136 137Before optimization 138``` TypeScript 139const arr1 = new Array<number>([1, 2, 3]); 140const arr2 = new Array<number>([4, 5, 6]); 141let res = new Array<number>(3); 142for (let i = 0; i < 3; i++) { 143 res[i] = arr1[i] + arr2[i]; 144} 145``` 146 147After optimization 148``` TypeScript 149const typedArray1 = new Int8Array([1, 2, 3]); 150const typedArray2 = new Int8Array([4, 5, 6]); 151let res = new Int8Array(3); 152for (let i = 0; i < 3; i++) { 153 res[i] = typedArray1[i] + typedArray2[i]; 154} 155``` 156 157 158### Avoiding Sparse Arrays 159 160When allocating an array whose size exceeds 1024 or a sparse array, a hash table is used to store elements. This mode, compared with using an offset to access array elements, results in slower access speeds. Therefore, during development, avoid changing arrays into sparse arrays. 161 162``` TypeScript 163// Allocate an array of 100,000 bytes, for which a hash table is used to store elements. 164let count = 100000; 165let result: number[] = new Array(count); 166 167// The array will become a sparse array when the value is changed to 9999 after the array is created. 168let result: number[] = new Array(); 169result[9999] = 0; 170``` 171 172 173### Avoiding Arrays of Union Types 174 175When appropriate, use arrays that contain elements of the same type. That is, avoid using arrays of union types. Avoid mixed use of integer data and floating-point data in number arrays. 176 177``` TypeScript 178let arrNum: number[] = [1, 1.1, 2]; // Both integer data and floating-point data are used in a value array. 179 180let arrUnion: (number | string)[] = [1, 'hello']; // Union array. 181``` 182 183Place the data of the same type in the same array based on service requirements. 184``` TypeScript 185let arrInt: number[] = [1, 2, 3]; 186let arrDouble: number[] = [0.1, 0.2, 0.3]; 187let arrString: string[] = ['hello', 'world']; 188``` 189 190 191## Exceptions 192 193### Avoiding Frequent Exceptions 194 195Creating exceptions involves constructing the stack frame for the exception, which may performance overhead. In light of this, avoid frequently throwing exceptions in performance-sensitive scenarios, for example, in **for** loop statements. 196 197Before optimization 198 199``` TypeScript 200function div(a: number, b: number): number { 201 if (a <= 0 || b <= 0) { 202 throw new Error('Invalid numbers.') 203 } 204 return a / b 205} 206 207function sum(num: number): number { 208 let sum = 0 209 try { 210 for (let t = 1; t < 100; t++) { 211 sum += div(t, num) 212 } 213 } catch (e) { 214 console.log(e.message) 215 } 216 return sum 217} 218``` 219 220After optimization 221 222``` TypeScript 223function div(a: number, b: number): number { 224 if (a <= 0 || b <= 0) { 225 return NaN 226 } 227 return a / b 228} 229 230function sum(num: number): number { 231 let sum = 0 232 for (let t = 1; t < 100; t++) { 233 if (t <= 0 || num <= 0) { 234 console.log('Invalid numbers.') 235 } 236 sum += div(t, num) 237 } 238 return sum 239} 240``` 241