• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import mindspore.context as context
17import mindspore.nn as nn
18from mindspore import Tensor
19import mindspore.common.dtype as mstype
20from mindspore.ops import operations as P
21
22
23context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
24
25
26class Net(nn.Cell):
27    def __init__(self):
28        super(Net, self).__init__()
29        self.unique = P.Unique()
30
31    def construct(self, x):
32        x = self.unique(x)
33        return (x[0], x[1])
34
35
36def test_unique():
37    """
38    Feature: for Unique op
39    Description: inputs are integers
40    Expectation: the result is correct
41    """
42    x = Tensor(np.array([1, 1, 2, 3, 3, 3]), mstype.int32)
43    unique = Net()
44    output = unique(x)
45    expect1 = np.array([1, 2, 3])
46    expect2 = np.array([0, 0, 1, 2, 2, 2])
47    assert (output[0].asnumpy() == expect1).all()
48    assert (output[1].asnumpy() == expect2).all()
49
50
51if __name__ == "__main__":
52    test_unique()
53