• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21
22
23class Net(nn.Cell):
24    def __init__(self):
25        super(Net, self).__init__()
26        self.pool = nn.LPPool2d(norm_type=1, kernel_size=3, stride=1)
27
28    def construct(self, x):
29        out = self.pool(x)
30        return out
31
32
33@pytest.mark.level2
34@pytest.mark.platform_x86_cpu
35@pytest.mark.platform_arm_cpu
36@pytest.mark.platform_x86_gpu_training
37@pytest.mark.env_onecard
38@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
39def test_lppool2d_normal(mode):
40    """
41    Feature: LPPool2d
42    Description: Verify the result of LPPool2d
43    Expectation: success
44    """
45    ms.set_context(mode=mode)
46    net = Net()
47    x = ms.Tensor(np.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5)), dtype=ms.float32)
48    out = net(x)
49    expect_out = np.array([[[[54., 63., 72.],
50                             [99., 108., 117.]],
51                            [[234., 243., 252.],
52                             [279., 288., 297.]],
53                            [[414., 423., 432.],
54                             [459., 468., 477.]]],
55                           [[[594., 603., 612.],
56                             [639., 648., 657.]],
57                            [[774., 783., 792.],
58                             [819., 828., 837.]],
59                            [[954., 963., 972.],
60                             [999., 1008., 1017.]]]])
61    assert np.allclose(out.asnumpy(), expect_out)
62