1# Copyright 2022 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.common.dtype as mstype 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore import context 23 24 25class MultiLabelSoftMarginLossNet(nn.Cell): 26 def __init__(self, weight=None, reduction='mean'): 27 super(MultiLabelSoftMarginLossNet, self).__init__() 28 self.multilabel_soft_margin_loss = nn.MultiLabelSoftMarginLoss(weight=weight, reduction=reduction) 29 30 def construct(self, x, target): 31 return self.multilabel_soft_margin_loss(x, target) 32 33 34@pytest.mark.level2 35@pytest.mark.platform_x86_cpu 36@pytest.mark.platform_arm_cpu 37@pytest.mark.platform_x86_gpu_training 38@pytest.mark.platform_arm_ascend_training 39@pytest.mark.platform_x86_ascend_training 40@pytest.mark.env_onecard 41@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) 42@pytest.mark.parametrize('weight', [None, Tensor([1.0, 1.5, 0.8], mstype.float32)]) 43@pytest.mark.parametrize('reduction', ['mean', 'none', 'sum']) 44def test_multilabel_soft_margin_loss(mode, weight, reduction): 45 """ 46 Feature: MultiLabelSoftMarginLoss with weight=[None, Tensor([1.0, 1.5, 0.8], mstype.float32)], 47 reduction=['mean', 'none', 'sum'] 48 Description: Verify the result of MultiLabelSoftMarginLoss 49 Expectation: success 50 """ 51 context.set_context(mode=mode) 52 net = MultiLabelSoftMarginLossNet(weight=weight, reduction=reduction) 53 arr1 = np.array([[0.3, 0.6, 0.6], [0.9, 0.4, 0.2]], np.float32) 54 arr2 = np.array([[0.0, 0.0, 1.0], [0.0, 0.0, 1.0]], np.float32) 55 x = Tensor(arr1, mstype.float32) 56 label = Tensor(arr2, mstype.float32) 57 output = net(x, label) 58 if weight is None: 59 if reduction == 'mean': 60 expected = np.array(0.846940, np.float32) 61 elif reduction == 'sum': 62 expected = np.array(1.693880, np.float32) 63 else: 64 expected = np.array([0.776444, 0.917436], np.float32) 65 else: 66 if reduction == 'mean': 67 expected = np.array(0.974961, np.float32) 68 elif reduction == 'sum': 69 expected = np.array(1.949922, np.float32) 70 else: 71 expected = np.array([0.920193, 1.029729], np.float32) 72 assert np.allclose(output.asnumpy(), expected) 73