• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21from mindspore import Tensor
22import mindspore.ops as ops
23
24
25class Net(nn.Cell):
26    def construct(self, x, y):
27        return ops.multiply(x, y)
28
29
30@pytest.mark.level2
31@pytest.mark.platform_x86_cpu
32@pytest.mark.platform_arm_cpu
33@pytest.mark.platform_x86_gpu_training
34@pytest.mark.platform_arm_ascend_training
35@pytest.mark.platform_x86_ascend_training
36@pytest.mark.env_onecard
37@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
38def test_multiply(mode):
39    """
40    Feature: test Tensor.log10.
41    Description: Verify the result of Tensor.log10.
42    Expectation: expect correct forward result.
43    """
44    ms.set_context(mode=mode)
45    x = Tensor([1, 2, 3], dtype=ms.float32)
46    y = Tensor([1, 2, 3], dtype=ms.float32)
47    multiply = Net()
48    output = multiply(x, y)
49    expect_output = np.array([1, 4, 9], dtype=np.float32)
50
51    assert np.allclose(output.asnumpy(), expect_output)
52