• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore as ms
19from mindspore import Tensor, nn, ops
20
21
22class Net(nn.Cell):
23    def construct(self, x, beta=1, threshold=20):
24        return ops.softplus(x, beta, threshold)
25
26
27@pytest.mark.level2
28@pytest.mark.platform_x86_cpu
29@pytest.mark.platform_arm_cpu
30@pytest.mark.platform_x86_gpu_training
31@pytest.mark.platform_arm_ascend_training
32@pytest.mark.platform_x86_ascend_training
33@pytest.mark.env_onecard
34@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
35def test_ops_softplus(mode):
36    """
37    Feature: test ops.softplus
38    Description: verify the result of softplus
39    Expectation: success
40    """
41    ms.set_context(mode=mode)
42    softplus = Net()
43    x = Tensor(np.array([0.1, 0.2, 30, 25]), ms.float32)
44
45    output = softplus(x)
46    expect_output = np.array([0.7443967, 0.7981389, 30.0000000, 25.0000000])
47    assert np.allclose(output.asnumpy(), expect_output)
48
49    output = softplus(x, 0.3, 100)
50    expect_output = np.array([2.3608654, 2.4119902, 30.0004082, 25.0018444])
51    assert np.allclose(output.asnumpy(), expect_output)
52